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Abstract Consider the Mackey functor that assigns to each finite group G the Green ring of finitely
generated kG-modules, where k is a field of characteristic p > 0. Thévenaz foresaw in 1988 that the class
of primordial groups for this functor is the family of k-Dress groups. In this paper we prove that this is
true for the subfunctor defined by the Green ring of finitely generated kG-modules of trivial source.
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1. Introduction

For a field k, the Green ring of the category of finitely generated kG-modules, a(kG),
is, by definition, spanned over Z by elements [M ]: one for each isomorphism class of
finitely generated kG-modules and with structures given by [M ] + [N ] = [M ⊕ N ] and
[M ][N ] = [M ⊗k N ]. The subring generated by the kG-modules of trivial source (defined
in § 2.1) is denoted by a(kG, triv).

Assigning either of the two above-mentioned rings to each finite group G defines a
globally defined Mackey functor, as described by Bouc [3] and by Webb [9]. These func-
tors are denoted by a(k ) and a(k , triv). Based on § 3 of [9], we suggest that the concept
of primordial group can be defined for any globally defined Mackey functor. In terms of
our two functors this concept is expressed in a familiar way: let M be either a(k ) or
a(k , triv). A group G is then called primordial for M if M(G)/T (G) �= 0 with

T (G) =
∑

H↪→G
H�G

trG
HM(H).

This definition also works for the Mackey functor G0(k ), which assigns to G the
Grothendieck group of finitely generated kG-modules. We write Prim(M) for the class
of primordial groups for M .

Primordial groups were first studied by Dress [6] in the context of Green functors
for a finite group G. Thévenaz [8] proved that for such a functor N , the closure under
conjugation and subgroups of the primordials for N is the minimal set D of subgroups
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of G satisfying N(G) =
∑

H∈D trG
HN(H). Thévenaz also proved that if k is a field of

characteristic p > 0, the primordial groups for Q ⊗ a(kG) are the p-hypoelementary
subgroups of G (see § 2 for definitions). Also, he conjectured that the primordials for
G0(kG) were the k-elementary subgroups of G, which was proved in 1989 by Raggi [7],
and that an analogue of the Brauer–Berman–Witt Theorem (see [1, Theorem 5.6.7])
should hold for a(kG). The main result of this work, Theorem 3.2, states that this is true
for the subring of trivial source modules.

Recent work in the area of induction can be found in the papers of Boltje [2] and
Coşkun [4]. It is important to mention that some results about primordial groups can be
generalized to the context of globally defined Mackey functors: Lemma 3.1, for example,
shows the general behaviour of primordial groups of subfunctors.

2. Preliminaries

From this point on we assume that k is a field of characteristic p > 0, that all modules
are finitely generated, and that all groups are finite.

Recall that for a group G and a prime r, Or(G) is defined as the smallest normal
subgroup of G, such that G/Or(G) is an r-group, and Or(G) is the largest normal r-
subgroup of G.

Definition 2.1. If q and r are primes, a group H is called q-hyperelementary if Oq(H)
is cyclic, and r-hypoelementary if H/Or(H) is cyclic.

Observe that H is q-hyperelementary if and only if H = C � Q, with Q a q-group and
C a cyclic group of order prime to q, and it is r-hypoelementary if and only if H = D�C,
where D is an r-group and C is cyclic of order prime to r. It is easy to prove that the
classes of q-hyperelementary and r-hypoelementary groups are closed under subgroups
and quotients.

Notation 2.2. We write Z∗
m for the smallest non-negative representatives of the mul-

tiplicative group of units modulo m (which we denote by (Z/mZ)∗).

Definition 2.3. Suppose H = C � Q is a q-hyperelementary group with C = 〈x〉 of
order m prime to p. The group H is called k-elementary if the action of every y ∈ Q on
x is given by yxy−1 = xa with a ∈ Im(k), where Im(k) ⊆ Z∗

m is the set of the smallest
non-negative representatives of the image of Gal(k(ω)/k) under the injective morphism

Gal(k(ω)/k) → (Z/mZ)∗,

σ 	→ ā

if σ(ω) = ωa with 1 � a � m − 1, (a, m) = 1 and ω is a primitive mth root of unity.
We write Ek for the class of k-elementary groups.

Note that in the latter definition we can replace Im(k) by In(k), where n is any multiple
of m.

Definition 2.4. For a prime q, a group H is called q-Dress if Oq(H) is p-hypo-
elementary.
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It is easy to see that Oq(H) is p-hypoelementary if and only if H/Op(H) is q-hyper-
elementary. If, in addition to this, H/Op(H) is k-elementary, then H is called k-Dress
for q.

The class of q-Dress groups is closed under subgroups and quotients, and it is denoted
by Drq. The class of groups which are k-Dress for some prime will be denoted by Drk.
We write Dr∗

p for the class of k-Dress groups such that p divides the order of H/Op(H);
that is, H/Op(H) = C � D is k-elementary with D being a non-trivial p-group.

Notation 2.5. Let G be a group and H a subgroup of G. If M is a kH-module, we
will write M ↑G

H for the induced module kG⊗kH M . If N is a kG-module, the restriction
of N to kH will be denoted by N ↓G

H .

2.1. Trivial source modules

The following facts about trivial source modules are well known and can be found
in [1] and [5].

Recall that for a kG-module it is equivalent to be (G, H)-projective and to be a direct
summand of L ↑G

H for some kH-module L. If M is an indecomposable kG-module, there
exists a subgroup D for which M is (G, D)-projective and D �G H for any subgroup H

for which M is (G, H)-projective; such a group D is called a vertex of M . In this case,
if L is an indecomposable kD-module such that M is a direct summand of L ↑G

D, then
L is called a source of M . The module M is said to have trivial source if the field k is a
source of M , which is equivalent to saying that M is a direct summand of a permutation
module.

It can be proved that any two vertices of M are conjugate in G, and that any two
sources of M are conjugate by an element in NG(D). Since we are assuming that k is a
field of characteristic p, a vertex of M is a p-subgroup of G.

We prove the following property of trivial source modules, which will be used later.

Lemma 2.6. The tensor induction of a trivial source module is a trivial source module.

Proof. We denote the tensor induction from H to G by ↑G
H

⊗. Let B be a kH-module
of trivial source, then it is a direct summand of a permutation module, say

⊕
a∈[H/K] k =

B ⊕ A. From the proof of Proposition 3.15.2 (iii) in [1], it is easy to see that the tensor
induction of a permutation module is a permutation module. By the same proposition,
on the right-hand side we obtain

B↑G
H

⊗ ⊕ A↑G
H

⊗ ⊕ X,

where X is a sum of modules induced from proper subgroups of G. �

The following corollary to the Green Indecomposability Theorem [5, 19.22] will be
used in the following sections, as will the lemma that follows. Recall that k is a field of
characteristic p.

https://doi.org/10.1017/S0013091512000132 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000132


340 A. G. Raggi-Cárdenas and N. Romero

Corollary 2.7 (Curtis and Reiner [5, 19.23]). Suppose that G is a p-group and
H is an arbitrary subgroup. If L is an absolutely indecomposable kH module (i.e k′ ⊗ L

is indecomposable for every k′ field extension of k), then L ↑G
H is an absolutely indecom-

posable kG-module.

Lemma 2.8. Let U be an indecomposable kH-module of trivial source with vertex
containing Op(H), and let M be an indecomposable kG-module for G � H such that U

is a summand of M ↑H
G . Suppose also that if |H/Op(H)| is divisible by p, we have M of

trivial source. Then

(i) Op(H) is contained in a vertex of M and it acts trivially on M ;

(ii) any indecomposable summand V of M ↑H
G has trivial source, Op(H) is contained

in a vertex of V and it acts trivially on V .

Proof. Let D be a vertex of U that contains Op(H). If D1 and S are a vertex and
a source of M , respectively, then Op(H) ⊆ D1 ⊆ G (because U is a direct summand of
S ↑H

D1
). If |H/Op(H)| is a p′-number, then Op(H) is a vertex of U and D1 ⊆ Op(H), so

we have Op(H) = D1. This implies that S is a source of U and that M has trivial source.
With this we obtain that V is of trivial source, which is the first part of (ii).

Since M is a summand of k ↑G
D1

, then M ↓G
Op(H) is a direct summand of k ↑G

D1
↓G

Op(H).
By the Mackey formula, the latter is isomorphic to

⊕
a k, where a runs over [G/D1], so

M ↓G
Op(H) is isomorphic to a sum of k. With this we prove (i), and by the same argument

we prove that Op(H) acts trivially on V .
Finally, if A is a vertex of V , then V ↓H

Op(H)
∼=

⊕
k is a summand of k ↑H

A ↓H
Op(H),

which is isomorphic to
⊕

b k ↑Op(H)
Op(H)∩A. By Corollary 2.7, we have that k ↑Op(H)

Op(H)∩A is
indecomposable. For some b we should then have k ∼= k ↑Op(H)

Op(H)∩A, so Op(H) is contained
in A. �

3. Primordial groups

Lemma 3.1.

(i) Prim(a(k )) and Prim(a(k , triv)) are closed under subgroups and quotients.

(ii) Ek ⊆ Prim(a(k )) ⊆ Prim(a(k , triv)) ⊆
⋃

q Drq.

Proof. (i) The proof is the same for both functors, so M represents either of them.
First, let G be a primordial group for M , and let H be a subgroup of G. By Lemma 2.6,
tensor induction provides a map from M(H) to M(G), and clearly it sends the class
of the field k to itself. If we suppose that k can be written as a linear combination of
modules induced from proper subgroups of H, then, by (iii) and (iv) of Proposition 3.15.2
in [1], its image is a linear combination of modules induced from proper subgroups of G.
This contradicts that G is primordial for M .

Now we take G/K, a quotient of G. Consider the inflation from M(G/K) to M(G).
Again, the class of k is invariant under inflation, so if it could be written as a linear
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combination of modules induced from proper subgroups of G/K, then these could be
seen as modules induced form proper subgroups of G, which is a contradiction.

(ii) In order to prove the inclusions

Ek ⊆ Prim(a(k )) ⊆ Prim(a(k , triv)),

we recall that for every group H we have the following morphisms:

a(kH) → G0(kH) and a(kH, triv) ↪→ a(kH).

The first of these sends the class of T in a(kH) to the class of T in G0(kH). These
are morphisms of unitary algebras and commute with induction. To represent any of
them we write fH : M(H) → N(H). Now suppose that H is primordial for N . Given
the properties of fH , if k can be written as a linear combination of modules induced
from proper subgroups of H in M(H), then that can also be made in N(H), which is a
contradiction. So H is primordial for M . Recall that Prim(G0(k )) = Ek, as mentioned
in § 1.

To prove the inclusion Prim(a(k , triv)) ⊆
⋃

q Drq, we will write M for a(k , triv) and
D for Prim(a(k , triv)). Let G be any group. We will use the following facts.

(a) Using the Dress Induction Theorem for the Burnside ring, as stated in Yoshida’s
paper [10], we obtain a generalization of this theorem for the Mackey functor M .
If we denote the class of p-hypoelementary groups by p-Hypo, we have

M(G) =
∑

K�G
K∈H(p-Hypo)

trG
KM(K) +

⋂
L�G

L∈p-Hypo

ker(resG
L ),

where resG
L is the restriction map from M(G) to M(L) and

H(p-Hypo) = {H group | ∃q prime with Oq(H) ∈ p-Hypo}.

It is not hard to prove that H(p-Hypo) =
⋃

q Drq.

(b) Observe that the Mackey functor a(k ) satisfies the Frobenius reciprocity formulae

trG
K(m · resG

Kn) = (trG
Km) · n and trG

K((resG
Kn) · m) = n · (trG

Km)

for all m in a(kK) and n in a(kG), with K � G.

(c) Note also that D is the smallest class of groups that is closed under subgroups and
quotients such that, for every group G,

M(G) =
∑

K�G
K∈D

trG
KM(K).

A proof of this is a slight modification of Thévenaz’s in [8].
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We consider the inclusion a(kG, triv) ⊆ Q ⊗ a(kG) and we will write N for Q ⊗ a(k ).
From an article of Thévenaz [8] we have that Prim(N) is the class p-Hypo and that

N(G) =
∑

K�G
K∈p-Hypo

trG
KN(K).

So we have
1M(G) = 1N(G) =

∑
K�G

K∈p-Hypo

trG
KnK ,

where 1M(G) represents the unity of M(G) and nK is an element of N(K). From the
formula in (a), if m is any element m of

⋂
L�G

L∈p-Hypo

ker(resG
L ),

we have

m = 1M(G) · m =
∑

K�G
K∈p-Hypo

(trG
KnK) · m

=
∑

K�G
K∈p-Hypo

trG
K(nK · resG

Km) by (b)

=
∑

K�G
K∈p-Hypo

trG
K(nK · 0) = 0.

So we have
M(G) =

∑
K�G

K∈H(p-Hypo)

trG
KM(K).

Since H(p-Hypo) is closed under subgroups and quotients, using (c) we obtain

Prim(a(k , triv)) ⊆
⋃
q

Drq.

�

Theorem 3.2. Prim(a(k , triv)) = Drk.

The proof is given by Propositions 3.3 and 3.5.
From Proposition 3.5 we will conclude that every primordial group for a(k ) has to be

k-Dress for some prime. On the other hand, the following proposition shows that every
k-Dress group for a prime different from p is primordial for a(k ). As for the general case,
the main difficulty arises from the fact that the techniques we use (namely Lemma 2.8)
are ineffective for non-trivial source modules.
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Proposition 3.3.

(i) Drk � Dr∗
p ⊆ Prim(a(k )).

(ii) Dr∗
p ⊆ Prim(a(k , triv)).

Proof. We prove (i) and (ii) simultaneously by contradiction. Let H be a k-Dress
group. We have two cases.

• H/Op(H) is not divisible by p; in this case we suppose that H is not primordial
for a(k ) to prove (i).

• H/Op(H) is divisible by p, so we assume that H is not primordial for a(k , triv) to
prove (ii).

In both cases, k can be written as a linear combination of modules induced from proper
subgroups of H:

k ⊕
( ⊕

i

Mi ↑H
Li

)
∼=

⊕
j

Nj ↑H
Tj

.

We show that in the first case we can assume that Mi and Nj are trivial source mod-
ules. Notice that if an indecomposable module of trivial source is a direct summand of
one Mi ↑H

Li
(or Nj ↑H

Tj
), then, by Lemma 2.8, Mi (or Nj) and all the indecomposable

summands are trivial source modules. Therefore, by the Krull–Schmidt Theorem, we can
assume that all of the Mi and Nj are of trivial source. Since in the second case we already
assume that they are trivial source modules, the following arguments are valid for both
cases. From 2.8, we have that Op(H) acts trivially on Nj and Mi and that they have a
vertex containing Op(H). We take the quotients

k ⊕
( ⊕

i

Mi ↑H/Op(H)
Li/Op(H)

)
∼=

⊕
j

Nj ↑H/Op(H)
Tj/Op(H) .

This isomorphism turns into an equality in a(k(H/Op(H)), triv), which is contained in
a(k(H/Op(H))). Since H/Op(H) is k-elementary, Lemma 3.1 yields a contradiction. �

Lemma 3.4. If H is of the smallest order that is q-Dress but not k-Dress, then H is
of the form

H = 〈x〉 � 〈y〉, where |〈x〉| = r, |〈y〉| = qn,

with r and q different primes and yxy−1 = xa with a ∈ Z∗
r � Ir(k).

Proof. Being a quotient of H, H/Op(H) is q-Dress but, since it is not k-elementary
and Op(H/Op(H)) = 1, H/Op(H) is not k-Dress. Therefore, the minimality of H implies
Op(H) = 1. Hence, we have H = C � Q with C = 〈s〉 cyclic of order m and Q a q-group
such that m is not divisible by p and q. Now, as H is not k-elementary, there exists y ∈ Q

such that ysy−1 = sa with a ∈ Z∗
m � Im(k), so H = C � Cqn , where Cqn is the cyclic

group of order qn generated by y.
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Now we write C =
∏

i Cri
, where Cri

is the ri-Sylow subgroup of C and the ri are all
the primes that divide m, so

C � Cqn =
∏

i

(Cri � Cqn).

In addition, if ω is a primitive mth root of unity, we have the commutative diagram

Gal(k(ω)/k)

∼=
��

� � �� (Z/mZ)∗

∼=
��∏

i Gal(k(ωm/r
αi
i )/k) � � �� ∏

i(Z/rαi
i Z)∗

where αi is the largest positive integer such that rαi
i divides m. Thus, there exists i such

that Cri � Cqn is not k-elementary. Rewriting Cri = Crα we have H = Crα � Cqn , where
Crα = 〈xo〉, Cqn = 〈y〉 and yxoy

−1 = xa
o with a ∈ Z∗

rα � Irα(k).
Finally, we take ζ to be a primitive rαth root of unity. We have

Gal(k(ζ)/k) ∼= Gal(k(ζ)/k(ζrα−1
)) × Gal(k(ζrα−1

)/k)

and
(Z/rαZ)∗ ∼= Arα−1 × Ar−1,

where these groups have order rα−1 and r − 1, respectively. The morphism

Gal(k(ζ)/k) � � �� (Z/rαZ)∗

takes Gal(k(ζ)/k(ζrα−1
)) into Arα−1 and Gal(k(ζrα−1

)/k) into Ar−1, which is isomorphic
to (Z/rZ)∗, so we have the commutative diagram

Gal(k(ζ)/k)

����

� � �� (Z/rαZ)∗

����
Gal(k(ζrα−1

)/k)
� � �� (Z/rZ)∗

Now, we have aqn ≡ 1 mod rα, thus r does not divide the order of a modulo rα, and we
have a ∈ Z∗

r . Since a is not in Irα(k), we have a ∈ Z∗
r � Ir(k). Taking x = xrα−1

o we have
the result. �

Proposition 3.5. Prim(a(k , triv)) ⊆ Drk.

Proof. The proof is by contradiction. We suppose there is a group H of smallest
order in Prim(a(k , triv)) that is not k-Dress. Observe that Lemma 3.4 is also valid if H

satisfies a property that is preserved under subgroups and quotients and if H is q-Dress
and satisfies a property that is preserved under subgroups and quotients. Since this is the
case for the property of being primordial for a(k , triv), the lemma gives us H = C � Q
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with C = 〈x〉 of order r and Q = 〈y〉 of order qn with r and q different primes and
yxy−1 = xa with a ∈ Z∗

r � Ir(k).
We write 1H to identify the field k as a kH-module. We shall prove that 1H is a

sum of modules induced from proper subgroups of H, contradicting the assumption of
primordiality.

The image of 1Q under the induction morphism 1Q ↑H
Q is isomorphic, as a vector

space, to
⊕r−1

i=0 kxi ⊗Q 1Q. If ω is a primitive rth root of unity, then the k(ω)H-module
k(w) ⊗ 1Q ↑H

Q as a k(w)-vector space has the basis

{xi ⊗Q 1Q | i = 0, . . . , r − 1}.

We can define another basis yt :=
∑r−1

i=0 ω−ti(xi ⊗Q 1Q) for t = 0, . . . , r − 1. To prove
that it is a basis, observe that the matrix⎛

⎜⎜⎜⎜⎝

1 1 · · · 1 · · · 1
1 ω−1 · · · ω−j · · · ω−(r−1)

...
...

. . .
...

. . .
...

1 ω−(r−1) · · · ω−j(r−1) · · · ω−(r−1)2

⎞
⎟⎟⎟⎟⎠

has determinant equal to
∏

i �=j(ω
−i − ω−j), which is different from 0 since ω is an rth

primitive root of unity.
H acts on this basis in the following way:

xyt =
r−1∑
i=0

ω−ti(xi+1 ⊗Q 1Q) if j = i + 1

=
r−1∑
j=0

ω−t(j−1)(xj ⊗Q 1Q)

= ωtyt,

yyt =
r−1∑
i=0

ω−ti(yxi ⊗Q 1Q)

=
r−1∑
i=0

ω−ti(xai ⊗Q 1Q)

=
r−1∑
i=0

ω−tbi(xi ⊗Q 1Q)

= yt′ ,

where b ∈ Z∗
r is such that b̄ā = 1 in (Z/rZ)∗, and 0 � t′ � r − 1 satisfies t′ ≡ tb

mod r. From these relations we see that y0 is fixed under the action of H, so k(ω)y0 is
k(ω)H-isomorphic to k(ω) and we have

k(ω) ⊗ 1Q ↑H
Q

∼= k(ω) ⊕
( r−1∑

t=1

k(ω)yt

)
.
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It is clear that G = Gal(k(ω)/k) acts on k(ω) ⊗ 1Q ↑H
Q . Taking the fixed points of this

action in the isomorphism above gives us

1Q ↑H
Q

∼= 1H ⊕
( r−1∑

t=1

k(ω)yt

)G
.

Let σ be in G. We write bσ ∈ Ir(k) for the integer through which σ is defined. We have

σyt =
r−1∑
i=0

σ(ω−ti)(xi ⊗ 1) =
r−1∑
i=0

ω−tbσi(xi ⊗ 1) = ys,

where 0 � s � r − 1 and s ≡ tbσ mod r. If u =
∑r−1

t=1 λtyt is in (
∑r−1

t=1 k(ω)yt)G , then for
each t ∈ Z∗

r we must have σ(λt) = λs, where s ∈ Z∗
r and s ≡ tbσ mod r. From this we

define the vector spaces

Ml :=
{ ∑

σ∈G
σ(λl)ys

∣∣∣∣ s ≡ lbσ mod r, λl ∈ k(ω)
}

for each l ∈ Z∗
r . Observe that Ml1 = Ml2 if and only if l1 ≡ l2bσ mod r for some σ ∈ G;

this implies that ( r−1∑
t=1

k(ω)yt

)G
=

⊕
l∈Z∗

r/Ir(k)

Ml.

We shall prove that the right-hand side of this equality is a sum of modules induced from
proper subgroups of H. We have xMl = Ml and yMl = Ml′ with l′ ∈ Z∗

r and l′ ≡ lb

mod r. Since a does not belong to Ir(k), neither does b, so Ml is never fixed under the
action of y. Then Ml is not a kH-module. Taking the orbits of the action of y we have

( r−1∑
t=1

k(ω)yt

)G
=

⊕
l∈ Z∗

r/Ir(k)
∼

( ⊕
z∈[H/A]

zMl

)

=
⊕

l∈ Z∗
r/Ir(k)

∼

(Ml ↑H
A ),

where A = StabH(Ml), and ∼ represents the action of y.
It is clear that A is a proper subgroup of H. Finally, observe that every Ml is a trivial

source kA-module. If A = Cr � 〈yd〉, then Ml is a direct summand of the induced module( ∑
σ∈G

kys

)
↑A

〈yd〉,

where s ∈ Z∗
r and s ≡ lbσ mod r. Since kys

∼= k, Ml has trivial source. �

Acknowledgements. We thank Julio Aguilar Cabrera, whose master’s thesis was
of great help in writing this paper, and Luis Valero Elizondo for helpful conversations.
The authors were partly supported by a grant from CONACyT: Project B0291 ‘Funtores
de tipo Burnside’.

https://doi.org/10.1017/S0013091512000132 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000132


On primordial groups for the Green ring 347

References

1. D. J. Benson, Representations and cohomology, Volume I, Basic representation theory
of finite groups and associative algebras (Cambridge University Press, 1995).

2. R. Boltje, Explicit and canonical Dress induction, Alg. Representat. Theory 8 (2005),
731–746.

3. S. Bouc, Foncteurs d’ensembles munis d’une double action, J. Alg. 183 (1996), 664–736.
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