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WATER WAVES, NONLINEAR SCHRODINGER EQUATIONS
AND THEIR SOLUTIONS
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Abstract

Equations governing modulations of weakly nonlinear water waves are described. The
modulations are coupled with wave-induced mean flows except in the case of water
deeper than the modulation length scale. Equations suitable for water depths of the order
the modulation length scale are deduced from those derived by Davey and Stewartson [5]
and Dysthe [6], A number of cases in which these equations reduce to a one dimensional
nonlinear Schrodinger (NLS) equation are enumerated.

Several analytical solutions of NLS equations are presented, with discussion of some of
their implications for describing the propagation of water waves. Some of the solutions
have not been presented in detail, or in convenient form before. One is new, a " rational"
solution describing an "amplitude peak" which is isolated in space-time. Ma's [13] soli ton
is particularly relevant to the recurrence of uniform wave trains in the experiment of Lake
etal.[\O].

In further discussion it is pointed out that although water waves are unstable to
three-dimensional disturbances, an effective description of weakly nonlinear two-dimen-
sional waves would be a useful step towards describing ocean wave propagation.

1. Introduction

One of the remarkable developments in mathematics in the last 20 years has been
the almost complete solution of certain types of nonlinear partial differential
equations by the inverse scattering transform. See Ablowitz and Segur [2] for an
up-to-date monograph on the topic which gives a wide perspective on the method.
The method was first discovered in the solution of the Korteweg-de Vries (KdV)
equation. The KdV equation is a canonical equation for weakly dispersive, weakly
nonlinear waves which was first derived to describe shallow water waves (see
Miles [14]).
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[2 ] Water waves and NLS equations 17

Once the inverse scattering method became known it was soon found to give
solutions to other canonical equations, including the nonlinear Schrodinger (NLS)
equations (Zakharov and Shabat [23,24])

iq, + qxx±2\q\2q = 0. (NLS ±)

These equations describe the evolution of modulations of dispersive waves with
weak nonlinearity. They arise in the propagation of electromagnetic waves
through matter and in view of the character of their solutions they are called the
"self-focussing" and "defocussing" NLS equations for the + and — signs
respectively. Here we use NLS + and NLS- to denote them.

For water wave modulations there is usually a coupling between the modula-
tions and the wave-induced current so that it is only in certain cases that water
wave modulations are described by an NLS equation. However, these include
important cases such as (i) deep-water modulations for which the depth, h, is such
that the modulation wave number, K, satisfies

Kh»\, (1.1)

and (ii) the modulations of a steady wave field which suffers small changes of
direction on any depth for which kh is not very small (A: is the water wave
wavenumber).

The main aim of this paper is to review analytic solutions of the NLS equations
in a water-wave context.Thus equations for weakly-nonlinear water-wave modula-
tions are presented in the next section. Such equations have not previously been
given for the case Kh = 0(1). The results of Davey and Stewartson [5] for Kh « 1
and Dysthe's [6] higher-order analysis for deep-water waves are combined to
cover this case. The modulations are assumed to be long compared with a
wavelength, i.e.

K^k. (1.2)

For KdV and NLS equations the inverse scattering transform shows that, for
an initial disturbance of finite extent, the solution is obtained from a discrete set
of eigenvalues and a continuous spectrum. Each of the eigenvalues corresponds to
a "soliton" and the continuous spectrum corresponds to an oscillatory dispersive
wave. Certain conditions need to be satisfied in order that the set of eigenvalues
be not empty. It is found that the asymptotic development of the solution with
time leads to decay of the oscillatory part and thus the solitons asymptotically
dominate the solution. This is relatively well-known, especially for the KdV
equation, so we shall do no more than note that an individual soliton is effectively
finite in extent, i.e. it decays exponentially to the undisturbed level; and that
when solitons of different velocities meet each other they interact nonlinearly but
eventually reemerge intact with only a phase shift due to the interaction.
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18 D. H. Peregrine [31

It is natural with these results to concentrate on solitons. Unlike the KdV and
defocussing NLS- equations, the self-focussing NLS + equation has more than
one soliton solution. It is thus useful to give the NLS solitons names as follows:

(a) An isolated soliton is that soliton of the NLS + equation which decays to
zero. This is the best known soliton (Zakharov and Shabat [23]), sometimes
known as an "envelope" soliton to emphasis its modulational character.

(b) A Ma soliton is the soliton solution of the NLS + equation, given by Ma
[13], which decays to the uniform solution. This soliton is probably the most
relevant to modulations of a wide-spread wave field.

(c) A bi-soliton is a solution of the NLS + equation derived from two eigenval-
ues of equal real parts (Zakharov and Shabat [23]). The velocity of the soliton
depends on the real part of the eigenvalue, so this solution corresponds to two
isolated solitons which cannot separate and are thus "bound" solitons. The
combination thus acts like a soliton. Multi-soliton solutions corresponding to
more than two eigenvalues also exist.

(d) A dark soliton is a soliton of the defocussing NLS- equation which decays to
a uniform solution (Zakharov and Shabat [24]). It is "dark" in the sense that its
modulus is always less than that of the uniform solution in which it propagates.
This soliton is similar to the KdV soliton.

Only the isolated soliton has received much attention in the water wave
context. The Ma soliton and the bi-soliton are particularly interesting since they
are oscillatory solutions, so more attention is given to them here. Less attention is
given to the dark soliton since solutions of the NLS- equation are similar to
solutions of the KdV equation, and also form part of Peregrine's [18] discussion
of jumps in water-wave properties, wave focussing and refraction.

The Ma soliton gives a nontrivial solution in the limit of zero amplitude. Apart
from a simple exponential factor it is a rational function and hence is a typical
example of such solutions (Ablowitz and Segur [2], Section 3.4). It describes an
isolated "amplitude peak" in space-time arising out of the uniform solution.
There is also a class of limiting bi-solitons, which are not rational functions. They
describe distant equal isolated solitons drawing together and " bouncing" off each
other.

This paper does not review the whole area of NLS equations and water waves.
A substantial review of deep water waves, with particular emphasis on the
stability of steep waves, has recently appeared (Yuen and Lake [22]). A general
discussion of wave packet evolution for water waves is given by Ablowitz and
Segur [1]. This last account includes the effects of surface tension, which extend
the variety of equations to be considered. The book by Ablowitz and Segur [2]
should also be consulted for a more complete picture.
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[4] Water waves and NLS equations 19

2. Modulation equations for water waves

A modulated water wave train can be described to a first, linear, approximation
by the velocity potential

<*>(*, y, z, t) = A(x, y, 0 °°S
 h^—£•«.'(**-<•"> + complex conjugate,

(2.1)

where the modulation is given by the "slowly-varying" complex-valued function
A(x, y, t); w and k are the frequency and wave number respectively of the
modulated wave, or "carrier wave", which has an amplitude a = 2u\A \/k. This
first approximation leads to the result that

A, + cgAx = 0, (2.2)

where cg — u'(k), the linear group velocity. That is, long modulations of linear
waves travel at the group velocity.

The next approximation which includes both weakly nonlinear dispersive
effects and the next order of terms in the modulation gradient gives

2i(A, + cgAx) - bxAxx + b2Ayy = B,\A\2A + B2A*X\Z=O, (2.3)

where O(x, y, z, t) is the velocity potential of the wave induced flow and satisfies

V2$ = 0 i n - / i < z < 0 , (2.4a)

$xhx + %hy = *z &tz = -h(x,y), (2.4b)

and

g9z + 9,, = B2{\A\2)x atz = 0, (2.4c)

where z = 0 is the undisturbed free surface and z = -his the bed. The derivation
of these equations is briefly discussed in the Appendix where the coefficients
b}, b2, Bt and B2 are also defined. The combined pair of terms from equation
(2.2) which appear in equation (2.3) are, together, of the same order as each of the
other terms. The second derivative terms are the higher-order modulation terms
(or diffraction terms). The terms with Bx and B2 as coefficients are the first order
nonlinear terms. In all but the first-mentioned pair of terms, the first approxima-
tion (2.2) allows 3/3/ and cgd/dx to be interchanged.

There are two special cases of equations (2.3) and (2.4) which have been
studied.

(i) The deep-water limit, in which 4> is of the order (\A \2)x and may be
neglected, giving
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20 D. H. Peregrine [s]

(ii) The case in which the modulation length-scale, say I/AT, is very much
greater than the depth h, that is

Afc«l . (2.6)

The equations (2.4) for $ can then be reduced to a long wave equation for
&0(x, y , t):

(vh - r2)<b. + a/i<&- +R.(\4P) = 0 (2.7)

Equations (2.3) and (2.7) are the Davey-Stewartson equations (Davey and
Stewartson [5]).

3. NLS equations for water waves

In one space dimension there are two fundamentally different nonlinear
Schrodinger equations. In the canonical forms used with the inverse scattering
transform they are the " self-focussing" equation

2 | 9 | 2 ? = 0 ) (NLS + )

and the "de-focussing" equation

2|4f<7 = 0. (NLS-)

The names represent the character of certain solutions of the equations which
were first examined in the context of nonlinear optics (see Whitham [20], chapter
16). It is only the relative sign of qxx and 2\q\2q which is significant; a change of
sign of iqT simply gives the complex conjugate equation.

With more than one space dimension the term NLS equation is applied to any
combination of second order space derivatives in place of qxx. For example in
two space dimensions the canonical forms are

iqT+qXY+2\q\2q = 0, (3.1)

and

«1T+ 9XX + 1YY± 2 \q\2q = 0. (3.2,3.3)

Only a little work has been done with two dimensional problems, e.g. see Hui and
Hamilton [7] and Yuen and Lake [22]. Here, only one-dimensional examples are
considered.

The full modulation equations (2.3) and (2.4) are not an NLS equation,
however NLS equations may be obtained from them in various ways.
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(6 ] Water waves and NLS equations 21

(i) Steady waves, slow x variation
For steady waves with much longer modulations in the x direction than in the y

direction the terms Axx and A$x become negligible in equation (2.3), this
decouples the wave-induced flow and gives

2icgAx + b2Ayy = Bx | A \2A. (3.4)

The transformation

T=x/2cg, X=b;1'2y, q={{Bx)
X/2A, (3.5a, b,c)

transforms it into the NLS- equation.
Equation (3.4) is used by Yue and Mei [21] to study reflection of near-linear

water waves, and by Peregrine [18] to discuss the focussing of near-linear water
waves.
(ii) Transverse modulations

If there is no x variation equation (2.4) becomes

2iA, + b2Ayy = Bx\A\2A, (3.6)

another example of the defociissing equation. Modulations at other specific angles
do not give NLS equations except in the limiting cases considered below.
(iii) Deep water modulations

Equation (2.5) is an NLS equation. The transformation

T={at, X=kx-{ut + 2-x/2ky, Y = kx - \at - 2~x/2ky,

q = 2x/2k2A*/o>, (3.7a,b,c,d)

gives the two-dimensional equation (3.1).
Cylindrical modulations at an angle a to the wave direction and the transfor-

mation

(cos2a-2sin2a)1/2

q = 2l/2k2A*/u = 2l/2ka*, (3.8a, b, c)

give the NLS + equation for

t a n a < ^ ; (3.9)

and similarly,

2 ^ k ~ (?)"')cos<*lut x=
( 2 s2 a)(2 sin2 a — cos2 a )

= 2l/2k2A/u (3.10a, b,c)
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22 D. H. Peregrine [7]

gives the NLS- equation when

t a n O * . (3.11)

See Hui and Hamilton [7] for discussion of the critical angle

a = arctan2'1/2 = 35.3°. (3.12)

This is the angle of the modulation to the waves in the " bow wave" train of the
Kelvin ship-wave pattern,
(iv) Shallow-water modulations

The Davey-Stewartson equations also transform into NLS equations when
cylindrical modulations are considered in which the only spatial variation is in the
coordinate

Z - xcosa + ysina. (3.13)

Equation (2.7) can then be integrated to give

_ B2 \A |2

gh — c2 cos2 a '

and equation (2.4) becomes

2i(At + cgcos aAz) + (-£>, cos2 a + fc2sin2 a)Azz

= {BX + B2/ (gh - c2cos2a)] \A\2A. (3.15)

This equation can correspond to either a self-focussing or defocussing NLS
equation according to the sign of

-bf cos2 a + b2sin2 a. (3.16)

Note, bx changes sign at kh = 1.36.
In the following sections it is impractical to refer back to all the above

examples of water-wave NLS equations. The deep-water case of modulations in
the wave direction is taken as a representative example for the self-focussing
NLS+ equation,

« dt+kdx

with transformation to the NLS + equation effected by

X=2kx-cot, q = 2l/2k2A*/o>. (3.18)
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[ 8) Water waves and NLS equations 2 3

4. Uniform solutions

The solutions of the self-focussing NLS+ equation which have constant
amplitude q0 are

-pZ)T + PoX}, (4.1)

wherep0 is another constant. The corresponding solution of equation (3.17) is

A = Aoexpi{2pokx - u{Po - {pi + 2k4A2/u
2)t}. (4.2)

When this solution (4.2) is multiplied by the exponential from the carrier wave
(2.1) it is seen that this solution corresponds to a plane wave of wave number
k + 2p0k with an attendant shift in frequency which is the appropriate ap-
proximation to the Stokes dispersion relation for/>0 and aok < 1, namely

o>l=[g{k + 2Pok){\+a2k2)]V2

= «[l +p0- \p2 + \a\k2 + 0{pl p0a
2k, a4

0k
4)] (4.3)

where « = (gk)1//2. Thus, p0 corresponds to a simple shift of carrier-wave wave
number. Most such shifts are ignored in discussion of other solutions here.

Thus, the wave of constant wavenumber is

q = q,e2'^ (4.4)

and the wave of constant frequency is

q = q^P^+PoX) (4.5)

where/>0 is one of the roots of

p2 + 2p0 - 2q2 = 0. (4.6)

However, only the smallest root (p0 — ql, when q0 « 1) is realistic for water
waves.

The uniform solutions for the NLS- equation are obtained by changing the
sign of ql. If ql > 2~x/1 there is no real solution of equation (4.6), however this is
not relevant to water waves.

Comparison of the Taylor series expansion (4.3) with the exact dispersion
equation for deep water waves indicates that the series is a good approximation
for a variation of 20% in k and for ak up to 0.2, that is q up to about 0.3.
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5. The isolated soliton

The self-focussing NLS + equation, with the boundary conditions | ̂  | —* 0 as
| x | -» oo, has the isolated soliton solution

q = qosechqo(X- 2PoT) exp i{PoX + {ql - P1)T) . (5.1)

As for the uniform solution, p0 corresponds to a simple shift of carrier-wave
wavenumber and hence it can often be set to zero without loss of generality. In
that case, the soliton solution for equation (3.17) is

A = (uao/2k)sech21/2aok(kx - ^ut)e-a^u'/4. (5.2)

The nonlinear effect on wave frequency is only half that for the uniform wave
train corresponding to the maximum amplitude. This difference is accounted for
by the curvature, qxx, of the wave envelope which has different signs for the high
and low parts of the waves. The low parts travel faster and the high parts slower
than the uniform solutions and thus the soliton maintains its integrity.

The velocity of solitons (5.1) depends only on p0. Thus for fixed wavenumber,
p0 = 0, all solitons have the same velocity, zero in {X, T) and cg in {x, t) where cg

is the linear group velocity for that wavenumber. For given frequency of the
carrier wave

Pi + 2/>0 - ql = 0, (5.3)

there are two soliton solutions of amplitude q0 corresponding to the two roots of
equation (5.3), but again only the case with PQ — \ql is relevant to water waves.
The velocity is «(1 + po)/2k in (x, t) and is 2p0 in (X, T).

The extent of the soliton in X varies like \/q0, so higher solitons are also
shorter. See Figure 5 for examples. The solution (5.2) is a wave envelope, and the
number of waves in the soliton can be determined for given maximum wave
steepness if we assign a "length" to sechx. A convenient value is 3 since
sech 1.5 = 0.425. In that case the number of deep-water waves in a soliton is
3/(4wao&

2) at an instant and twice as many if the waves are counted as they pass
a fixed point. This difference is due to the phase velocity being twice the group
velocity, see Figure 1. For modulations at an angle to the wave direction
transformation (3.8b) shows that the number of waves in a soliton of given
steepness decreases like (1 — 2tan2a)l /2. Similarly a soliton in water of finite
depth has fewer waves for a given steepness, but the appropriate range of
steepness is also reduced in this case.
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Figure 1. The number of waves in a deep-water modulation soliton of maximum wave steepness
aQk. There are twice as many waves passing a fixed point in space as may be seen at a given instant of
time.

Zakharov and Shabat [23] solved the NLS + equation with zero amplitude at
infinity and demonstrated the soliton behaviour of these solutions. It is thus
reasonable to consider the steepness versus modulation rate found here to be
typical. From solution (5.2) we may identify K with 2l/2a0k

2. Having done so we
can now identify the region between shallow-water and deep-water modulations,
as around

Kh = 2'/2« k2h = 1 (5 4)

Lines corresponding to equation (5.4) are drawn in Figure 2, which covers the
practical range of periods for ocean waves, and by suitable adjustment of units is
appropriate for laboratory generated waves.

For given depth, the region well above the appropriate line in Figure 2 is where
modulations are in deep-water; well below the line they are shallow-water
modulations. In the region of the line the full equations (2.3) and (2.4) are needed.
Although those equations do not simphfy to an NLS equation it seems unlikely
that their solutions differ greatly. Note that typical ocean waves (7-14 second
period, steepness 0.05—0.2) are mostly in the intermediate region on continental
shelves (50-200m deep). On the deep oceans, 4km deep, all significant waves have
deep-water modulations.
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10m 2Om 50m (O.Sm) 100m (lm)
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200m (2 m)

0.1
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1 km (10m)

seconds (1/10 sec.)
20

Figure 2. Each line, for the depth of water indicated, shows where modulation length scales are of
the same order as the water depth for waves with periods and steepness, ak, indicated. The figure can
be read in either of the two sets of units indicated.

6. The Ma soliton

Ma [13] extended the inverse scattering transform to solve the NLS+ equation
with the uniform solution at infinity. That is,

q(X, T)->qoe
2">°T as\X\-* oo. (6.1)

The soliton solution that Ma derives, is, after some simplification and choice of
the space and time origins,

_ 2j 2 J
[

2m(mcos4mnqQT + in sin Amnq^

n cosh 2 mq0 X + cos Amnq^ T
(6.2)

where n2 = 1 + m2; an unsteady solution with period "n
For values of m s> 1,

2mqoe
Aim2"«Tsech2mq0X, (6.3)

which is the superposition of the uniform solution and a very much larger soliton
of amplitude 2mq0.

The modulus of a Ma soli ton of moderate amplitude, m = 0.8, is illustrated for
half a period in Figure 3.

https://doi.org/10.1017/S0334270000003891 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003891


[121 Water waves and NLS equations 27

- l

- _ _ ^ ^ ^ ^ ^ ^

— • •

- •

i . i

i

-

-

i
mX

Figure 3. One half period of the Ma soliton (6.2) for m = 0.8. The quantity | q/q01 is given at
intervals of 30° in the variable Amnq^T.

For m -» 0, the uniform solution is not obtained. It is straightforward to verify
that at

Anmq^T = (2j + l)w, j = 0,±\,..., (6-4)

the solution has two zeros given by

n coshl mq0 X = n2 + m2. (6.5)

These always exist since n > 1. Midway between the zeros, at X = 0, | q/q0 | =
(2n + 1) which approaches 3 as m -> 0. Figure 4 illustrates \q\ for w = 0.1.
Notice particularly that there are two different amplitude scales used in the
figure. The growth of the amplitude peak appears to be rapid. This is not so, the
length of the soliton period increases indefinitely as m -» 0, the growth occurs on
a time scale O(\ql).

Note that the amplitude can be scaled out of the Ma soliton by putting

q' = q/q0, x' = q0X, t' = q2T. (6.6)

A double Taylor series expansion about the amplitude peak gives a new
solution of the NLS + equation:

4(1 + Ait')

4x' \6t '2
(6.7)

The method of deriving this solution is consistent with that for other rational
solutions, see Ablowitz and Segur [2], Section 3.4.
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Figure 4. One half period of the Ma soliton (6.2) for m = 0.1. The quantity | q/qo\ is given at
intervals of 30° and 10° in Amnq^T. Note that the vertical scale of the lower 6 profiles is 100 times as
great as that for the upper four.

The Ma solitons for small m are illustrative of the instability of the uniform
solution. A disturbance with maximum value m2q0, when T — 0 in equation (6.2)
grows in a time v/4mqQ to have maximum amplitude of 3q0. The disturbance
then decays again, a behaviour which is similar to the water wave experiments of
Lake et al. [10] where modulated waves return to a uniform condition.

7. Bound solitons

The solitons of the self-focussing NLS+ equation differ from those of the
defocussing NLS- and KdV equations. Different solitons may have the same
velocity. Thus in circumstances where more than one soliton exists it is possible
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for two or more solitons to remain close to each other and to interact indefinitely.
The inverse scattering transform may be used to find these "bound soliton"
solutions. Each of these "multi-solitons" has properties like a single soliton in
that they interact with other solitons, or multi-solitons, of different velocities but
eventually regain their identity apart from some displacement and phase shift.
Here only the bi-solitons, two bound solitons, with | q \ -> 0 as | x | -» oo are
considered.

To find the most general form of bi-soliton solution of the NLS + equation the
inverse-scattering solutions of Zakharov and Shabart [23] may be used. From
their equations (17') and (18') the solution for n solitons is

9 = 2 £****• (7.1)
k=\

where <f>k = \p*k in their notation, and is found from the set of equations

k=\ 1=\ V»/ SjJUt il )

The fy are the eigenvalues of the scattering problem, and

(7.3)

where c7 is a constant.
These expressions involve four complex constants for n = 2; they are c} and ly

For bound solitons these simplify a little since £, = £2, where

$j = ij + hj- (7-4)

In this development we are not concerned with particular initial conditions for the
equation but are looking for general solutions for bi-solitons. This means we can
simplify expressions by choosing the origins of X and T appropriately and
eliminating constants that correspond to a uniform change in the carrier-wave
frequency and wavenumber. The carrier wave wavenumber is changed by the
constant £, and we may put £7 = 0 without loss of generality.

With

y y , , (7.5)
it may be seen that changing the value of cy corresponds to changing the origin of
X and T, thus for the present purposes it is only the relative change of origin
between X, and X2 that is important. This leaves TJ,, TJ2 and the relative displace-
ment of the solitons in space as the only significant parameters. The bi-soliton
solution is periodic in time so that even the relative shift in time is unimportant.
As may be noted later only the ratio Tj|/i?2 gives qualitatively different solutions
for different i), and TJ2.
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The following choice of constants leads to some simplification in the final
solution

X, = (LM)l/2exp(-\MXl - \-iM2T), (7.6)

X2 = (LiV)1/2exp(-^X2 - {iN2T), (7.7)

where

X2- Xx- constant = B, (7.8)

M and N are positive constants and it is convenient to introduce

There are various ways of writing the bi-soliton solution which is eventually
found. Three forms which have been found to be convenient are

elA/2rA/cosh NX2 - e'N2TNcosh MXX

L2cosh(MAr
1 + NX2) + cosh(MX, - NX2) - K2cos(M2 - N2)T'

(7.10)

lM2T(Msech MXX - e'sNsechNX2)

1 + L2 - K2 tanh MXX tanh NX2 - K2 cos S sech MXX sech

(7.11)

and

e'M2rMsech MXX - e'NlTN sech NX2
q~ cosh J - sinh ./(tanh MXX tanh NX2 + cos Ssech MXX sech NX2) '

(7.12)

where

S = ( M 2 - 7 V 2 ) r and tanh / = AT2/(1 + L2) = 2MN/ (M2 + N2).

(7.13)

In the form (7.12) the individual solitons are displayed in the numerator and
the interaction effects are thus entirely in the denominator. For example if B is
very large, the denominator becomes approximately

cosh( MXX - J ) sech MXX (7.14)

in the neighbourhood of the origin of Xx, showing that the distant soliton of
amplitude N causes a shift of origin of J/M. To the next approximation the term
in cos S gives a periodic oscillation in each soliton's position, a result obtained by
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Karpman and Solov'ev [9] who solve perturbation differential equations for this
type of interaction between solitons.

The bi-soliton solution in the form (7.11) is convenient for examining some of
its properties since except for the factor e'M T, all the time variation is in terms of
5. Thus | q | has period 2-n/(M2 - N2).

Another property of all bi-solitons is that q = 0 when both 5 = 0 (mod2v7-)
and

Afsech MXX = Nsech NX2. (7.15)

Equation (7.15) always has two real solutions since the side of the equation which
has the largest maximum value also decays most rapidly to zero as \X\-> oo.
These zeros would occur even with a simple superposition of solutions since
solutions of different amplitudes have different frequencies.

The zeros of q are a striking feature of some diagrams of | q | and of any plot of
arg q. Some examples of particular solutions are given in Figures 5, 6 and 7; N is
always taken equal to unity since the solution for some other value, with the same
ratio M/N, is easily found by the transformation (6.6).

Figure 5 shows the amplitude for the case where two solitons of disparate size
are at the same point, i.e. Xi = X2. It may be noted that the outskirts of the
longer soliton appear to be unaffected by the higher soliton.

Figure 6 shows two solitons of similar size at the same point. Now the
difference wavenumber, M — N, is much smaller and hence this solution has a
greater spatial extent than either individual soliton, note the difference in the
scale of X from Figure 5. The interaction between the solitons is also greater. For
most of the period there are two equal symmetrically displaced "solitons" and
these come together at the centre for only a small portion of the period. It should
be noted that the period becomes longer as M -> N, and the amplitude peak that
occurs between the two zeros still grows on a time scale of O(^N2) which is short
compared with the period.

A solution with solitons displaced, X2 - Xx = 0.4, is shown in Figure 7. The
same values of M and N are used in both Figures 6 and 7.

Although in all the above examples two solitons that make up the bi-soliton
can be identified from the diagrams, this is not always the case. For example
M = 3, N = \, Xt — X2, is an intermediate case between those of Figures 5 and
6. It is the bi-soliton illustrated by Miles [15] (also Satsuma and Yajima [19]) and
has

a t S = 7r, (7.16)

as may readily be found from solution (7.10). The transition from a maximum at
X = 0, S = m occurs at M/N = 2.618.
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-0 .5

Figure 5. One half period of the bi-soliton (7.11) for M = 5, N = 1, and A", = X2. The quantity | q |
is plotted at intervals of 30° in S = (M2 - N2)T. The two individual solitons are illustrated
above

In the limit M -* N the bi-soliton becomes aperiodic. In deriving the limiting
solution from expression (7.10) one finds that the displacement between solitons
must also tend to zero. In the joint limit

M - 1

the solution for M = N = 1 is

M - N
b,

_ 4e'T[(l + 2/T) cosh x - (X - b) sinh X]

1 + 2{X - bf + 8T2 + cosh2A-

(7.17)

(7.18)
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i 1 1 1 1 1 1

Figure 6. One half period of the bi-soliton (7.11) for M = 1.2, N = 1, and A", = X2. The quantity
| <71 is plotted at intervals of 30° in S = ( M 2 — N2)T. A supplementary profile is shown by a broken
line.

This solution is not very different from the examples of Figures 6 and 7 in the
region around the origin.

At large distances from the origin,

_ Sie'TTeW = ie^_ . ,
q 16r2 + e 2 ^ cosh(|A-|-21og|2r|)" l ' ]

That is, the solution represents a pair of equal solitons with the distance between
them proportional to 41og| 2T| , a result deduced by Zakharov and Shabat [23].
It is interesting to note that the solution is only symmetrical in X when b = 0. For
the asymmetric case the solitons do not " pass" through each other at T = 0 but
"bounce" off each other. See Figure 7 and note that | q \ is symmetrical in T.

Multiple bound solitons (multi-sohtons) are not in general periodic. They are
only periodic when all the difference frequencies, TJ2 — TJ2, are integer multiples of
a single number. Swenson (private communication) reports that computation of
the tri-soliton in the family of solutions examined by Miles [15] reveals the
approach to its maximum amplitude is very similar to that of the bi-soliton
formed from the two largest eigenvalues.
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- 4

Figure 7. One half period of the bi-soliton (7.11) for M = 1.2, N = 1, and X2 = X, + 0.4. The
quantity | q | is plotted at intervals of 30° in S = (M2 - N2)T.

8. The dark soliton

There are no solutions of the defocussing NLS- equation corresponding to the
isolated soliton (5.1) of the NLS+ equation. However, it is straightforward to
find solutions of the form

q = Q(X- CT)exp{-2iq*T- iF(X- CT)}, (8.1)

which tend to the uniform solution qoe'2iq°T as | X — CT\ -» oo. The solution is

Q2(z) = ?o{l ~ s in2 5sech2Uozsin B)}, (8.2a)

and

F(z) — arctan{tan 5tanh(^02sin B)} (8.2b)

where

' C- ±±q0cosB. (8.2c)

In these expressions B is a constant such that q% sin2 B is the maximum deviation
of | q |2 below the uniform level q].
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The solution (8.2) has all the usual soliton features as is shown by Zakharov
and Shabat [24]. Their arrangement of the solution is

{ }q I + exp{2qo(X-CT) sin B) '

in our notation.
These solutions have a maximum amplitude, when B — \TT. The limiting wave

is

q = qoi&nhqoXe-2'^T, (8.4)

and is stationary in (X, T).
For small values of | q — q0 | there is a mathematical analogy between the

defocussing NLS- and the Boussinesq equations for shallow water waves for
which surface tension dominates the dispersive effects. The above soliton solu-
tions hence correspond to the shallow water solitary wave and the solitons of the
KdV equation which is derived from the Boussinesq equations. Details are in
Peregrine [18] which, among other things, discusses wave focussing as described
by the NLS equation (3.6). Since the Boussinesq equations are only appropriate
for near-linear waves (see Peregrine [17]) this correspondence with the NLS-
equation may be useful in studying their solutions.

9. Periodic solutions

Corresponding to all of the solitons discussed above (isolated soliton, Ma
soliton, bi-soliton and dark soliton) there are solutions periodic in space. For the
two solitons with steady profiles the periodic solutions are known and can be
expressed in terms of elliptic functions. For the others periodic solutions of long
wavelength are readily obtained by "matching" solitons with intervening stretches
of uniform or zero solution as appropriate. It is likely that shorter wavelength
solutions also exist.

A spatially periodic solution corresponding to the Ma soliton will be similar to
the solution obtained from the initial conditions of a uniform wave train with
small sinusoidal modulation. Such solutions have been numerically computed and
are illustrated in Figure 12, cases 1 and la of Yuen and Lake [22].
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It is doubtful if the aperiodic amplitude "peak" solution has a spatially
periodic counterpart since on the "outskirts" of such waves the linearized
equation

iq, + qxx = 0 (9.1)

should be satisfied. If q is periodic in x then consideration of a Fourier
component shows that it is also periodic in time.

The period in time of the oscillating solitons is likely to be changed by the
presence of neighbouring solitons as is readily seen by considering the sketch in
Figure 8 of a space periodic solution that might be obtained by combining
equal-bi-soliton solutions (7.18) with B = 0. The lines correspond to the local
maxima of | q\ . Such a solution is periodic in time, although solution (7.18) is
aperiodic.

» x
Figure 8. Sketch of a space-periodic solution of the NLS+ equation which may be obtained by

matching an array of the equal bi-soliton solutions (7.18) for b = 0. The lines correspond to the local
maxima of | q | .

By incorporating solitons of differing velocities so that they can pass through
each other, much more intricate patterns than Figure 8 can be conceived which
are periodic in both space and time. It is doubtful whether it is worth pursuing
these solutions rather than examining the basic elements of such patterns as is
done here.

A solution which appears to be equivalent to a periodic bi-soliton is described
by Bryant [4]. It is computed from the evolution of a set of Fourier modes.
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10. Conclusion

This paper has reviewed explicit solutions of one-dimensional NLS equations.
These equations are obtained by considering restricted classes of modulations of
water waves. Section 3 lists a range of such classes but discussion is mainly
confined to the uni-directional unsteady modulations of deep water waves. It is
well known that such waves are unstable to long modulations, the Benjamin-Feir
instability. The Ma soliton illustrates this instability.

The periodicity of the Ma solitons reflect the long period return to uniformity
that Lake et al. [10] found in experiments on weakly modulated deep-water wave
trains. In the experiments the steeper waves had a lower frequence and wavenum-
ber when uniform conditions returned. This shift in the carrier wave is not
modelled by the NLS computations of Lake et al. [10] or by the solutions
discussed here. However, the Ma soliton, or the amplitude peak (6.7), may
provide a suitable starting point for a more accurate theoretical investigation.

The amplitude-peak solution (6.7) shows how the self-focussing of an undis-
turbed uniform wave, for T -» -oo, can grow into a disturbance of three times the
original wave amplitude. It would be interesting to have more details of experi-
mental results in order to see whether this triple amplification is typical of the
growth of instabilities.

The steady one-dimensional solutions q(X, T) of the two-dimensional NLS
equation

iqT+qxx-qYY+2\q\2q = 0, ( 1 0 1 )

are unstable to two-dimensional disturbances. This equation is equivalent to
equation (3.1) and governs weakly nonlinear modulations of deep water waves.
The modulations are three-dimensional in physical space. Yuen and Lake [22]
give a substantial review of deep-water instabilities. See also Ablowitz and Segur
[1] and Larsen [11]. Water waves in sufficiently narrow channels are immune to
these instabilities.

The discovery of Benjamin-Feir instability and the NLS isolated solitons
stimulated study of wave groups among ocean waves (Mollo-Christensen and
Ramamonjiarisoa [16]), with the implicit hope that some improved representation
of the ocean surface and its statistics might emerge with the inclusion of these
nonlinear phenomena.

The three-dimensional instabilities of deep water waves imply that such an
approach is unlikely to be sufficient. Despite this, the two-dimensional case
described by the one-dimensional NLS equation still merits study. If a suitable
wave representation is found it may indicate how the three-dimensional problem
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should be tackled; there are experiments in narrow channels to be interpreted,
and there are applications to waves in channels and similar restricted waters. The
discussion here is based on this view, and not on any belief that the NLS +
equation is entirely appropriate.

One possible avenue of interpreting wave behaviour arises from the occurrence
of peaks of amplitude in numerical solutions of the NLS equation and of similar
calculations with sets of Fourier components, e.g. see Figure 12 of Yuen and
Lake [22] (see also Figure 18 which shows peaks in (x, y, t) for the two-dimen-
sional NLS equation (10.1)). It appears from the diagrams that many such peaks
are similar to those found here in that there is a zero on each side of a peak.

The peaks represent the steepest water waves. However a note of caution: the
similarity that appears may be rather superficial as can be seen from the solutions
in this paper. The peak of a Ma soliton differs very considerably from the peak of
a symmetrical bi-soliton. Not only are the analytic forms different, e.g. compare
(6.7) with (7.19) for B = 0, but the pattern of phase variation is also different.
The two cases are sketched in Figure 9, in each case the exponential factor has
been excluded to simplify the diagram.

The Ma-peak is probably more relevant to the propagation of a wave field since
it sits in a uniform background; whereas the bi-soliton has a zero background. In
view of the frequency shift of the carrier wave that occurs in water wave
experiments it is interesting to note that the gradient of phase between the zeros
corresponds to an increased frequency. Perhaps finite amplitude or high-order
modulation effects in some way negate this increase of frequency without affect-
ing the subsequent decrease.

The solitons are only part of the solution to an NLS problem. An initial-value
problem also gives rise to a continuous spectrum in the inverse scattering method.
For initial disturbances of finite extent this part of the solution eventually decays
like t']/2. For some ocean wave propagation the initial generation area may be so
large that even a trans-oceanic distance may be insufficient for solitons to reach
their asymptotic dominance. Generally, after a sufficiently great distance of
propagation only solitons with closely similar velocities would contribute to the
waves at any one place.

An important aspect of ocean-wave propagation is the change in the waves'
characteristics as they propagate into coastal waters. Figure 3 demonstrates that
as typical ocean swell passes onto a continental shelf it passes through a depth
range in which the modulation length is comparable with the depth and the
coupled equation for wave-induced flows does not simplify. Although this is a
region where an NLS equation is not directly applicable it would be surprising if
the solutions of these equations differed in character from the NLS solutions (e.g.
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Figure 9. (a) Sketch of the lines of constant phase of qe'2iT near the peak of the limiting Ma soliton
(6.7). (b) Sketch of the lines of constant phase of qe~'T near the peak of the limiting bi-soliton (7.19).
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long wave propagation in shallow water is described by the KdV equation which
can be solved by the inverse scattering method; however physically relevant
problems are equally well modelled by a whole range of equations, see Broer [3]).

A change of more significance is that from deep-water waves to shallow-water
waves. The type of governing NLS equation changes from self-focussing to
defocussing. There does not appear to be the same wealth of analytic solutions for
the latter equation. Others have studied this change (e.g. Johnson [8] and Larsen
[12]). For the present we note just two things, (i) The periodic modulations (and
other solutions) show "peaky" modulations for the self focussing equation and
"flat-topped" modulations for the defocussing equation (see Figure 10). This
might show up in wave statistics in the appropriate circumstances, (ii) The time
scale of the solutions discussed here is long. It may in some circumstances mean
that the region over which propagation conditions vary is too short for weakly
nonlinear effects to have 0(1) effects. Typical evolution time scales are
O(\/a2k2u) and in that time waves propagate a distance O(cg/a

2k2co). For
example, for 14 second waves with ak = 0.05 this gives a distance of about 10km.
Thus it is only for very long gentle waves or steep continental slopes that the
evolution distance is longer than the topographic scale.

(a)

(b)

Figure 10. Typical periodic modulation solutions, (a) deep water, (b) for waves with kh < 1.3.
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Appendix

Full expressions for equations (2.3) and (2.4) are

2io(A, + cgAx) -[c2
g - gh{\ -P

2){\ - khp)]Axx + (ucg/k)Ayy

= (Ic4/2p2){9 - Up2 + 13/>4 - 2p6)\A\2A

+ k2[2c + cg(l~p2)]A^x\z=0, (A.I)

V2$ = 0 in-/z<z<0, (A.2a)

$xhx + %hy = $, at z = -h, (A.2b)

g*z + <i>lt = k2[2c + cg(l-p
2)]{\A\2)x atz = 0, (A.2c)

where

c = u/k and p = tanh &/i = u>2/gk. (A.3)

These equations do not appear to have been stated before. They are readily
derived from the results presented by Dayey and Stewartson [5] and Dysthe [6].
Dysthe's equation for 3> only needs the bed boundary conditions (A.2b) in order
to be appropriate for a large, finite depth of water. It only needs the relation

<b(x, y , z , t ) = * 0 ( x , y , t ) - { { z + hf%xx +••• (A.4)

in the Davey and Stewartson case, to be noted together with the form of the
forcing of $ given by Dysthe to deduce the boundary condition (A.2c).

In cases where (A.I) and (A.2) cannot be simplified to the deep-water limit or
the Davey-Stewartson equation, i.e. when Kh = 0(1), the coefficients in the
equations can be simplified since K<&k and hence the carrier wave is a deep-water
wave train,/? = 1, cg = \c.

The order of magnitude of $ is not immediately clear. Suppose, for the purpose
of estimating it, that

\A\=A0cosK(x-cgt). (A.5)

Then

cosh2K(z + h) .

where

: + cg(l-p
2)]Al

2g tanh 2 Kh - 4Kc
; . (A.7)
2
g
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Thus, for Kh large, c\ - {g/k, and

B = (ak/g)Al (A.8)

since it is assumed ab initio that K <& k. Thus the term AQ>X is smaller than other

terms in (A. 1) since the derivative is of order K. Hence in deep water wave-induced

flows are only significant at the next order of approximation, given by Dysthe [6].

The case of shallow-water modulations, Kh « 1 gives

l

with the order of magnitude of 0 larger than it is in deep water by a factor \/K.

Davey and Stewartson [5] comment on the nonuniformity of the approximation

for shallow-water waves as c2
g -> gh.
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