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Converging material with two bulges
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In numerical studies of thermal convection that includes a layer of lighter surface fluid, the
light fluid naturally forms clusters that bulge downward at downwelling sites. A curious
result is that in some cases, the clusters have maximum bulging downward near the sides
of the cluster instead of a single bulge downward centred above the downwelling. The
fluid mechanics leading to this ‘double bulge’ formation is analysed. To accomplish this,
a simplified model replaces the thermally driven convection cells with driving cells with
a fixed speed. Adding a layer of dense fluid on the bottom to the previous configuration
leads to bulges along the top and bottom. More importantly, this allows a new scaling that
reduces the number of governing parameters from four to three and even to two in this
study. The mechanism for the double bulges comes from buoyancy of the clusters. This
produces localized vorticity at the sides of the cluster that has the opposite sign of the
driving cells. When this vorticity is approximately the same order of magnitude as the
driving cell vorticity, a divergence in the middle of each cluster leads to the double bulges.
The effect can be so great that the underlying flow cells are tilted so that vertical motion is
reversed under the middle of each bulge.
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1. Introduction

This work is prompted by some unexpected results in numerical simulations for a thin
layer of lighter fluid distributed along the top of two-dimensional thermal convection
cells. Figure 1 shows a demonstration experiment of a surface layer of silicon oil above
two-dimensional cells driven by rollers in corn syrup. The result is what one normally
expects (Whitehead 2003), the oil is swept to the centre of the top into a cluster and
the convergence from the roller flow is balanced by the natural spreading of the oil.
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J.A. Whitehead

Figure 1. A laboratory demonstration of two cells driven by rollers that produce convergence of a layer of
silicon oil floating on the surface (Whitehead 2003).

This would seem to be the principal balance for the formation of continents on the surface
of the Earth: convergence of continental crusts by mantle convection balanced by the
natural spreading of the lighter crust.

Numerical studies had surprising new results (Whitehead 2023) whereby a single bulge
of light fluid over a downwelling location splits in two. The fluid mechanics needed
for the double bulges are the subject of this study. Figure 2 shows five cases from a
calculation with layers of a yellow low-density compositional component diffusing down
into two-dimensional (2-D) convection cells driven by a vertical temperature difference
between bottom and top boundaries. The flows are steady, and each example has a different
value of dimensionless density difference for the yellow component. The detailed set-up,
calculation and definition of parameters is explained in more detail in § 2. Isotherms are
in red, and the closed contours are streamfunctions. The panels are centred on the sinking
location of one pair of convection cells, and the actual calculation has four cells. The top
example shows a natural downward bulge of yellow fluid from surface convergence over
the sinking cold thermal. This bulge resembles the interface between oil and corn syrup
in figure 1. The four other examples have denser layers, and the central bulge has been
split apart into two bulges. The double bulges are the topic here. They are not previously
reported, to our knowledge, and the mechanism producing them must be understood. What
is the mechanics for their production?

Section 2 has a brief review of the convection study leading to figure 2 as reported
previously (Whitehead 2023). The primary purpose of the review is to illustrate the
physical meaning of the four governing parameters, although some motivating issues
connected with continents and mantle convection are mentioned as well. The fluid
dynamics of the splitting and double bulges is the principal motivation for this study and
this topic is analysed in the following sections. The thermal convection cells are replaced
by steady kinematic cells, and we focus on the flow that splits the bulges and makes double
bulges. The number of governing parameters is reduced from the previous four to two: one
expressing the cell speed and the other expressing the compositional buoyancy force. The
range for double bulges is determined. It indicates that double bulges as in figure 2 are a
simple result of fluid dynamics. The results suggest that they might exist starting with two
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Figure 2. Numerical simulations of five surface layers above steady double-diffusive convection cells with
increasing values of ‘lightness’ (quantified by values of RaC) of a low-density yellow compositional component.
The isotherms are red and the streamfunction contours are closed curves. The yellow regions bordered by the
black curve have lightness quantified by C< 0.6. The values of the relevant parameters are RaT = 104,Le =
10−2, γn = 10 (definitions in § 2).

distinct immiscible layers of fluid, although explicit simulations are only done here with
diffusively produced layers.

2. Previous results and production of the layers

Motivation for figures 1 and 2 came from the desire to make the simplest paradigm
model of continent formation and its interaction with mantle convection. In the last 50
years, the three greatest components of mantle convection have clearly been identified to
be subduction zones, hotspots and upwelling at ridges (Davies 2001; Schubert, Turcotte
& Olson 2001; Turcotte & Schubert 2002). Continent–convection interaction is less
well understood, but surface material floating on two-dimensional convection cells is
a prospective simple example. As shown in figure 2, the double bulges appear within
certain parameter ranges, and they change the simple bulge with one maximum to a clump
with two bulges separated by a central region of relatively constant thickness. Whitehead
(2023) has arguments about why this is an interesting first approximation for a simple
continent with thickening (like mountains) at the margins next to subduction zones. A cold
root under it and a uniform tabular interior are additional features of this model that are
possessed by real continents. Questions remain. What are the overall governing parameters
for two bulges? What determines the size and thickness of the two bulges?

It is useful to review the calculation for both figure 2 and other results (Whitehead 2023).
First, the layer of lighter material along the top is supplied by downward diffusion at the
top boundary of a compositional concentration in a numerical code for cellular convection.
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The value of concentration alters density. The normal concentration everywhere has the
non-dimensional value C = 1 and lightness, quantified by the concentration value C = 0, is
imposed at the top boundary and diffuses down. Therefore, dynamics at this stage is double
diffusion convection. The Lewis number Le = κ/κC is large, where κ is thermal diffusivity
and κC is the composition diffusivity. The lightness remains localized and steadily deepens
near the top for a long time after the convection cells become steady. It is convenient to
keep the lightness confined to a top layer, so deepening is arrested and flows become steady
by adding a term in the concentration equation that restores concentration at a fixed rate
to the value C = 1 within the fluid. The two processes of diffusion and restoration produce
a permanent layer of light fluid along the top. This is a simple model of production of
new continent material balanced by loss by delamenization. Both processes are widely
discussed (Hawkesworth, Cawood & Dhuime 2020).

Finally, in this code, fluid inertia is zero because simulations are done in a Stokes-flow
limit with infinite Prandtl number. Even with all the simplifications, the flow is governed
by four dimensionless numbers. In addition to Lewis number, two others are common in
multicomponent (double-diffusive) convection: the Rayleigh number RaT = gα�TD3/κν
that quantifies thermal buoyant forcing and the composition Rayleigh number RaC =
gβ�CD3/κν that quantifies compositional buoyant forcing. Here, �T is the temperature
difference between bottom and top surfaces, �C is the applied surface concentration
difference between bottom and top surfaces, g is the acceleration of gravity, D is layer
depth, α is the coefficient of thermal expansion, β is the coefficient of density change
by composition, ν is the kinematic viscosity, κ is thermal diffusivity, and κC is the
composition diffusivity. Since the studies were directed towards mantle convection, the
explored ranges are RaT ≥ 103, Le> 1 and RaC over wide ranges. In addition, a fourth
dimensionless number exists.

The fourth dimensionless number quantifies a restoration term that limits the diffusive
thickening of the layer of lightness. The value defines the thickness of a layer at the top and
makes the results completely reproducible. It is motivated by the example given in (2.1).
Instead of a layer of oil on the top, there is diffusion down from the top of unmoving fluid
with concentration of a component Cdim (the subscript dim indicates that the variable is
dimensional). A value of 0 is imposed at the top, and this is balanced by restoration in the
interior to a value �C so the governing diffusion-restoration equation is

κC
∂2Cdim

∂z2
dim

+ γ (�C − Cdim). (2.1)

This produces the density distribution

ρ = ρ0(1 − β�Ce
√
γ /κCzdim). (2.2)

The vertical coordinate zdim is negative downward, κC is the composition diffusivity
and β is the coefficient of density change by composition. Equation (2.2) defines the
dimensional layer depth ddim = √

κC/γ , and using the length scale D given by the total
depth of the fluid region, this leads to the fourth dimensionless number γn = γD2/κC.
Therefore, the dimensionless layer depth is γ−1/2

n , and γn > 1 produces a layer confined
near the top.

In figure 2, these four variables have the values RaT = 104, Le = 10−2, γn = 10 along
with 5 for RaC, but in general, wide ranges of parameters have been explored, resulting
in many different styles and shapes of the lightness layers and bulges. First, of course,
RaT must be large enough to produce cellular convection, so the range 103 > RaT > 105
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is used. Second, a clump occurs for 2 × 103 < RaC < 2 × 105. For smaller values, the
surface material is swept down to mix with the convection cells and for larger values, a
top layer is formed. Although two bulges are often formed, their existence occurs in wide
ranges of four parameters, and this makes it difficult to find any systematic first-order
balance for bulges. Although not a topic here, internal heating produces splitting and
merging cycles like the Wilson cycle, with some overlapping of neighbouring clusters
that resembles continent–continent collisions like those that formed the Himalayas and
the Alps.

This model is sufficiently complicated to make the origin of the double bulges obscure.
Do they result from double diffusion, from the restoration term or from buoyancy alone?

3. The simplified model

Achieving dynamical insight by varying four dimensionless variables is complicated
because it requires extensive documentation in four-parameter space. Based upon a
perceived lack of sensitivity upon Lewis number for double bulges, it was decided to use
a simpler approach and delete double diffusion. The calculation employs a set of imposed
kinematic steady 2-D driving cells that replace the thermal convection cells. The number
of governing dimensionless numbers is thereby reduced so that the dynamics behind
the double bulges is clarified. In addition, this simplifies the scaling because diffusion
of temperature is not included; only component diffusivity is included. Therefore, the
velocity is scaled by the compositional diffusivity divided by fluid depth. In addition,
the strength of the buoyancy of the surface layer is quantified by a different composition
Rayleigh number, Ra′

C = gβ�CD3/κCν.
In the equations, the dimensionless driving cell velocity field ud has the lateral and

vertical components ud = −∂S0/∂z and wd = ∂S0/∂x. The steady streamfunction S =
S0 sin πx sin πz is used because it represents a flow like the syrup flow from the rollers in
figure 1. A buoyancy-induced response flow is driven by variation C in the concentration
that is advected diffused, and restored to a value of 1 by the equation

∂C
∂t

+ (ud + ub) · ∇C = ∇2C + γn(1 − C). (3.1)

The total fluid flow has two components: the driving flow plus a buoyant flow ũb that is
governed by the buoyancy-driven Stokes flow equation

∇2ub = −∇p − Ra′
CCk̂. (3.2)

It obeys continuity
∇ · ub = 0, (3.3)

where p is pressure and k̂ is an upward unit vector away from gravity. Flow is
incompressible, so the lateral (x) and vertical (z) buoyancy-driven velocities have a
streamfunction so that ub = −∂ψ/∂z and wb = ∂ψ/∂x and

∇2ψ = ωb, (3.4)

where the buoyancy-driven vorticity is ωb = ∂wb/∂x − ∂ub/∂z.

4. Results

Equations (3.1)–(3.3) have three governing dimensionless numbers, S0, Ra′
C and γn, rather

than the four describing the equivalent convection because S0 replaces RaT and Le for
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(a) (b)

(c) (d )

Figure 3. Close-up of streamlines and layers in a chamber holding four cells with steady driving and four
values of Ra′

C. Layers are defined by low density (<0.6, yellow) and high density (>1.4, green). Values of Ra′
C

are (a) 105, (b) 5 × 105, (c) 106, (d) 2 × 106, with S0 = 103 and γn = 103.

thermal convection. The equations are solved numerically in a 64 × 256 chamber with two
pairs of driving cells. First, (3.1) is advanced in time using a simple finite difference time
step. Then, a Poisson equation solver operating on the curl of (3.2) is used to determine
the vorticity, and then it operates on (3.4) to determine the streamfunction. The code to
do this (in MATLAB) is easily simplified from the code in the supporting information of
Whitehead (2023).

For the case with only a top layer with lightness as in figure 2, the layer depth with no
motion scales with γ−1/2

n from (2.2). A simpler case that eliminates γn is used here. It has
the value C = 0 at the top boundary and C = 2 at the bottom, so light and heavy layers
are established near the top and bottom, and the interior of the closed cells has the value
C = 1. Starting with C = 1 everywhere, the cells and boundary layers or clumps quickly
become steady. Given a fixed value for S0 proportional to the speed of the driving eddies
of order 102 or more, two layers are established near the top and bottom boundaries. The
structure of the clusters and local bulges depends on the value of Ra′

C and γn.
It is important to point out that this cell with both top and bottom layers is the limit for

the previous simulations for Whitehead (2023) after a very long time, although this was
not realized because they were not long enough. More important is the fact that these two
layers become either compositional boundary layers or bulges with two possible thickness
scales. The first scale is γ−1/2

n and the second is the thickness scale of a dimensionless
compositional boundary layer S−1

0 . Formally, as long as S0 � γ
1/2
n , the compositional

boundary layer thickness is smaller than the restoring layer depth γ−1/2
n , so one expects

that γn can be set to zero and flows still become steady. Although true (figure 5), both
variables are important in most simulations.

Figure 3 shows flows at four values of Rac for S0 = 103 and γn = 103. At the lower
values Ra′

C = 105 and 5 × 105, both the top (yellow) and bottom (green) layers have
clusters with one maximum, as normally expected. At the larger values Ra′

C = 106 and
2 × 106, each cluster has double bulges. The flows are also calculated with γn = 0 and the
figure is literally identical.
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(a)

(b)

(c)

Figure 4. (a) Contours of total vorticity for a run with Ra′
C = 1.5 × 106, S0 = 103 and γn = 103. (b) Flow in

the indicated box has 50 streamfunction contours (green) and nine density contours (black). (c) Contours of
ωb, the vorticity produced by buoyancy alone.

For figures 4 and 5 similar comparisons produce identical figures, so the value of γn is
not judged to be very important for those cases.

The dynamics leading to double bulges is illustrated by figure 4 for runs at Ra′
C = 15 ×

105. Figure 4(a) shows contours of the total vorticity (the driving cell vorticity is added to
the buoyancy-produced vorticity). There is comparable vorticity magnitude but opposite
signs near the centre and along the flanks of the composition clusters. Figure 4(b) shows
the streamfunction and composition fields. Out of 50 streamfunction contours, only two
intersect the clusters. This shows that vertical speed within each cluster is very slow. The
cluster contours show how the double bulges exist throughout the depth of the cluster.
Figure 4(c) shows how buoyancy driven vorticity ωb is concentrated near a production
location at the double bulge flanks.

The double bulges and the circulation producing them are clearly linked to ωb,
the vorticity that is produced by buoyancy at the flanks of the clusters. When ωb is
approximately the same magnitude as the vorticity of the driving cells, the combined
driving and buoyant cells produce tilted cells. This creates a wide region of very small
vertical flow near each cluster. This small speed is illustrated by the fact that in figure 4(b),
only two streamlines out of 50 intersect the cluster.

Figure 5 shows a steady flow with γn = 0. The top and bottom layers are thicker possibly
due partly to a smaller composition density difference Ra′

C = 106 and the convection cells
are markedly oval and tilted. Counter-circulations exist in the light layer that produce
localized upwelling in the middle of the cluster, and the double bulges are large and
occupy much of the cluster. The vorticities near the flanks of clusters in figures 4 and
5 are like those in figure 3 and in some figures of Whitehead (2023). This indicates that
this simplified driving flow catches the basic dynamics of the more complex flow.
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(a)

(b)

(c)

Figure 5. As in figure 4 but with Ra′
C = 106, S0 = 103 and γn = 0. (a) Contours of total vorticity (every 2000).

(b) Streamfunction (50 green contours) and density (black and blue contours every 0.1). (c) Contours of ωb,
vorticity produced by buoyancy alone (every 2000).

One way to clearly see if there are one or two bulges is to plot the value of concentration
C along a horizontal line at fixed depth below the top surface as in figure 6. There, contours
at 5/64 depth below the top are shown for seven values of S0 with Ra′

C and γn at fixed
values. The transitions from a contour with one maximum for S0 = 10, 100 and 200 to
contours with two maxima for the intermediate values S0 = 500, 1000 and 2000 and then
back to one for S0 = 3000 are quite clear.

The presence of single or double bulges can be quantified using profiles like those in
figure 6 with numerous plots varying either speed or Ra′

C while holding the other one
fixed. The profiles can be used to generate a contour plot as in figure 7. In this case, for
S0 = 103 and γn = 103, double maxima exist in the range 3.1 × 105 < Ra′

C < 5 × 106.
Next, covering a wide range of values of Ra′

C and S0 for contours like figure 7, a regime
diagram over Ra′

C and S0 parameter space with γn = 103 can be constructed (figure 8).
Double bulges occur above the black solid curve with the values for transition shown by
stars. The break in the curve is not well resolved due to the limited number of stars. There
is an upper limit for double bulges shown as the dashed black line with S0 < 150, but it
is off the range of figure 7 for greater S0. Specifically, curves like those in figure 6 have
lateral variation (<1 %) for Ra′

C > 4 × 105, S0 < 200 with γn = 103, so the existence of
extrema and their sizes are not well resolved and deemed negligible. Single maxima with
flows like figure 3(a) occur below the solid black curve and for S0 < 150.
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Figure 6. Profiles of concentration C across four cells as in figure 4 at a depth of 5/64 (0.078) below the top
for seven different values of S0 (Ra′

C = 1.5 × 106, γn = 103).
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Figure 7. Contours of C with 0.1 intervals for one cell at a depth of 5/64 (0.078) as a function of Ra′
C for

one pair of cells with fixed speed (S0 = 103, γn = 103). Double bulges replace single ones above the dashed
black line.
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Figure 8. Transition values (black symbols and black curve by eye) and ranges in Ra′
C − S0 space for single

and double bulges with γn = 103. Also, values of maximum buoyancy-driven vorticity at transition (red
line) and value of vorticity for the driving cells (red dashed line). Double bulges disappear above the black
dashed line.
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The maximum value of vorticity for the buoyancy-driven flow and for the driving cells
is also plotted. Although the buoyancy-driven vorticity is smaller than the vorticity of the
driving cells, the vorticity near the double bulge would be great enough to have the total
change sign.

5. Discussion

As Ra′
C increases, some trends are found in both configurations. Figure 2, from cellular

convection (like Whitehead 2023) and figures 3 and 7, from the simplified system, all show
that as Ra′

C increases: (1) a single bulge gives way to double bulges; (2) the double bulges
spread apart; (3) amplitude of the double bulges decreases; (4) a wide flat region forms in
between bulges. In addition, both figures 2 and 3 show that the speed of flow slows in the
bulge region. These all are evidence that the simplified system contains all the dynamics
needed for double bulges.

The fact that double bulges exist for layers limited by the two different processes of
diffusion of the concentration alone (§ 3 and beyond) and double diffusion and restoration
(in § 2 and Whitehead 2023) is consistent with the idea that neither double diffusion
nor restoration is needed for double bulges. The mechanism clearly originates from
buoyant fluid stresses that produce vorticity. The buoyant component of the flow ub always
produces vorticity opposite in sign to the driving cell vorticity. Double bulges exist when
buoyant vorticity is large enough to make flows large enough to distort the driving cells.

Although this is simple and sensible, no reports of the double bulges for layers above
infinite Prandtl number convection seem to exist in the literature. This seems odd, but
since large ranges of parameter space do not satisfy this constraint, perhaps this explains
why double bulges have not been found before. Of course, perhaps the present simulations
do not apply for viscous cellular flow with two distinct immiscible layers rather than the
diffusive layer used in this study. A definite proof for double bulges with immiscible layers
is not present so far, but the present results indicate that the vorticity considerations would
probably hold even for two distinct layers so that layered flows with distinct interfaces
might have similar results. The contour shapes in figure 6 seem to be all similar within
the range of double bulges. Possibly an exact solution for interface configuration exists,
although none is presently known.

This study was motivated by a desire to quantify the effects of the buoyancy forces
from lighter continental material in Earth’s mantle convection. The presence of simple
flows that produce double bulges and the understanding of the vorticity producing them
might help to understand the general problem of the construction of continents through
mountain building and orogeny (Whitehead 2023). The differential stress along the base
of continental crust that leads to convergence of crust and mountain building certainly acts
like the vorticity that produces double bulges.

Double bulges that are generated by thickening at the flanks of clusters of lighter
material at sinking regions were a surprise. Other aspects might exist in extensions to this
study, so additional work would be useful. Hopefully, this simple study might stimulate
new inquiries in this direction. For the Earth, the vorticity produced by the lower-density
continent material, and its opposite sign to vorticity produced by subducting slabs, might
be verified by seismic analysis. For fluid mechanics, extension to three dimensions (both
Cartesian and spherical) and to flow with variations of properties would be interesting.
Whether double bulges extend to flows with compositional or temperature-dependent
viscosities could also be fruitfully explored.
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