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As new concepts to protect marine structures from ocean waves, we propose the use of a
floating elastic annulus. In this paper, two types of annuli are demonstrated. The first is
a ‘wave shield’, which creates a calm free surface within an inner domain of the annulus
by preventing wave penetration. The second is a ‘cloak’, which not only creates a calm
space within the inner domain but also prevents wave scattering outside the annulus. To
evaluate the calmness of the inner domain of the annulus, an inlet wave energy factor
is newly defined. The wave shield is designed to minimise the inlet wave energy factor
to nearly zero. However, the cloak is designed to minimise both the inlet wave energy
factor and scattered-wave energy which evaluates the amount of wave scattering at far-
field. Each annulus consists of several horizontal concentric annular plates, and the flexural
rigidities of the plates are optimised to minimise objective functions at a target frequency.
Numerical simulations demonstrate that both the wave shield and the cloak can create
calm free surfaces within their inner domains. In addition, the cloak effectively suppresses
the outgoing scattering waves and reduces the resultant wave drift force.
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1. Introduction
Ocean waves, typically spanning tens to hundreds of metres in wavelengths, are powerful
and pose a significant threat to marine structures. Therefore, marine structures should be
designed to survive these waves (Goda 2010). If a calm free surface can be created on an
open sea, ocean space utilisation will be more convenient and expanded.

To reduce the wave action to structures, coastlines and harbours, floating breakwaters
have been developed (see a review by Dai et al. 2018). Most of the concepts are
for inshore, but some are developed for open sea utilisation (e.g. Xiao et al. 2016;
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Cominelli et al. 2023). Breakwaters manipulate waves by controlling various physical
mechanics, such as phase interaction, reflection (or scattering), refraction, breaking and
friction (Sawaragi 1995). Among them, we focus on the wave energy conservation process
(i.e. breaking and friction are not scoped).

Over the past decade, transformation-based wave manipulation (Leonhardt 2006;
Pendry et al. 2006) has been studied in the water wave communities. In particular, the
realisation of water wave cloaking has attracted much attention. Since the governing
equation of shallow water waves is invariant under the coordinate transformation (Cummer
& Schurig 2007), the methodologies of shallow water cloaking are well established (Farhat
et al. 2008; Zareei & Alam 2015; Dupont et al. 2016; Iida & Kashiwagi 2018; Zhang
et al. 2024). However, the transformation-based wave manipulation is not applicable to
ocean waves because the governing equation of non-shallow water waves is not form-
invariant (Porter 2017). Alternately, the cloaking by bending wave rays from the surface
into the internal surface using the nonlinear resonance of the bottom topography was
proposed for the intermediate-depth and stratified sea waves (Alam 2012). In the ocean
engineering communities, however, the scattering cancellation-based cloaking has been
studied (Porter & Newman 2014; Newman 2014; Iida et al. 2014, 2016, 2023). Sub-
structures (such as columns or elastic plate) are arranged to surround an inner structure,
and these are designed to cloak the inner structure from waves. The scattering cancellation-
based cloaking realises almost zero outgoing scattering waves, and the existence of the
inner structure cannot be detected even when waves are observed outside the cloak. As a
result, the steady wave drift force does not act on the cloaked structure. Nevertheless, this
cloaking does not create a calm free surface within the cloaked domain, and the cloaked
structure still meets waves. Therefore, the wave exciting force is acting on the structure
(Newman 2014). In addition, the optimal design of the cloak changes when the shape of
the inner structure changes.

In light of previous studies, the term ‘cloaking’ encompasses two different states. The
first is preventing the detection of an object by suppressing wave scattering outside the
cloak. The second is protecting the object from wave influence by shielding it from wave
penetration within the cloak. How much the object scatters waves can be estimated by the
scattered-wave energy (Newman 2014; Iida et al. 2014), and the first state is achieved by
reducing the scattered-wave energy. Scattering cancellation-based cloaking satisfies this
first state. However, the second state is more critical for protecting marine structures from
ocean waves.

Here, we study the second state, protection from invading waves, to create a calm free
surface within an inner domain of a floating elastic annulus. We newly derive a mean
energy density of waves entering into the inner domain of the annulus (namely inlet wave
energy density). The calmness of the free surface within the inner domain is estimated by
a metric called the inlet wave energy factor, which is defined by the ratio of the inlet wave
energy density to the mean density of the plane waves. The second state is achieved by
reducing the inlet wave energy factor.

The concept of the floating elastic annulus is described in figure 1. The annulus consists
of L horizontal plates of which adjacent plates are rigidly connected. The elastic annulus is
modelled as Kirchhoff’s thin plate (Meylan & Squire 1994; Peter et al. 2004). The response
of multi-connected elastic plates is solved by the developed eigenvalue matching method
(Iida et al. 2023) based on Peter et al. (2004), where assumed thin-plate modelling was
validated through the experiment (Meylan et al. 2015). It should be mentioned that the use
of a floating elastic annulus to reduce waves has already been attempted (Loukogeorgaki
& Kashiwagi 2019; Malenica et al. 2023). Nevertheless, performances were not dramatic
because they assumed constant flexural rigidity throughout the annulus.
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Figure 1. Schematic representation of floating annulus consisting of L horizontal concentric annular plates.
The annulus is designed to serve as a wave shied and a cloak.

We design two types of annuli. The first annulus is designed as a ‘wave shield’ that
creates a calm free surface within the inner domain of the annulus. This annulus is given
by reducing the inlet wave energy factor (i.e. achieving the second state). The second
annulus, however, is designed as a ‘cloak’ that blocks wave penetration and suppresses
outgoing waves by achieving both first and second states. Flexural rigidities of the plates
are optimised to maximise their performances at a target frequency. These parameters
are designed within constraints based on a hypothetical scenario to demonstrate the
feasibility of the concept, rather than as part of a practical application. We investigate
the sensitivity of flexural rigidities to the inlet wave energy factor and scattered-wave
energy and show that minimising them is typically in trade-off; achieving both states is
challenging. Nevertheless, we demonstrate that this optimisation is successfully achieved
by using the floating annulus with multi-plates. We numerically show that both the wave
shield and the cloak can create a calm free surface within the inner domain of the annuli. In
addition, the outgoing scattering waves can be also suppressed while maintaining a calm
free surface using the cloak. The cloak also demonstrates that the wave drift force does not
act on the cloak.

2. Theoretical descriptions

2.1. Formulation of the boundary-value problem and its solutions
We design both a floating wave shield and a floating cloak to illustrate the concepts for
protecting marine structures from ocean waves. In that sense, a float must be applicable
to deep water and performed for multi-directional sea waves. To meet these demands, we
use a floating annulus, and the calm free surface is created within the inner radius of the
annulus (inner domain). The concept and the problem definitions are shown in figure 1.
A three-dimensional Cartesian coordinate system O-xyz is defined where the origin O
is on the undisturbed (mean) free surface. The vertical axis z is positive in the upward
direction. Although our target is deep sea, we formulate the problem so that numerical
calculation can be performed at any water depth, with the flat bottom topography at
z = −h. We consider an elastic annulus floating on the free surface of the sea of which
the centre coincides with the origin. The outer and inner radii of the annulus are R
and 1, respectively. The annulus consists of L horizontal concentric annular plates, and
adjacent plates are rigidly connected. The annular plates are numbered from the outer to
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the inner (� = 1, 2, . . . , L), and the outer radius of each annular plate is denoted by R(�)

(i.e. R(1) = R and R(L+1) = 1). We do not use any active control force to create a calm
space; the space will be made by the passive wave response of the annulus. We assume an
elastic motion of the annulus can be described by Kirchhoff’s thin plate theory (Meylan &
Squire 1994; Peter et al. 2004). In addition, plane waves with single circular frequency
incident on the annulus are considered. Since the annulus is axisymmetric, the wave
response does not depend on the incident wave angle (i.e. omnidirectional). Therefore,
we simply assume waves are propagating from the negative x direction.

The problem is formulated under the linear potential flow theory; we assume
incompressible and inviscid fluid with the irrotational motion of the flow, and wave
amplitude is sufficiently smaller than the wavelength. In addition, a time-harmonic
solution of the response is considered. Therefore, we omit the time variable; a frequency
domain analysis is carried out. All values are normalised (non-dimensionalised) by the
incident wave amplitude, the fluid density, the gravitational acceleration and the inner
radius of the annulus. The normalised governing equation and boundary conditions in the
frequency domain are given as

∇2φ = 0 −h � z � 0, (2.1)

∂φ
∂z − ω2φ = 0 z = 0, r < 1, R � r, (2.2)(

β(�)∇4⊥ − ω2γ + 1
)

∂φ
∂z − ω2φ = 0 z = 0, R(�+1) � r < R(�), (2.3)

∂φ

∂z
= 0 z = −h, (2.4)

where φ is the complex amplitude of the velocity potential (i.e. Φ(x, t) = Re[φ(x)

exp(−iωt)]), ω is the circular frequency, and ∇ = (∂/∂x, ∂/∂y, ∂/∂z) and
∇⊥ = (∂/∂x, ∂/∂y) are the three-dimensional and horizontal gradient operators,
respectively. In addition, β(�) = D(�)/(ρwga4) and γ = ρptp/(ρwa) are non-dimensional
flexural rigidity and mass where ρw and ρp are the density of fluid and plate, g is the
gravitational acceleration, a is the inner radius of the annulus, tp is the thickness of
the annulus, D(�) = E (�)t3

p/12(1 − ν2) is the dimensional flexural rigidity, E (�) is the
Young’s modulus, and ν is Poisson’s ratio. Here, (2.1) is the Laplace equation, (2.2) is
the linearised free surface condition of water, (2.3) is the linearised surface condition on
the �th plate and (2.4) is the sea bottom condition. Our previous study (Iida et al. 2023)
revealed that changing flexural rigidity is more effective than that of mass for controlling
waves. Therefore, we use different values of flexural rigidity for each plate (i.e. β(�)), and
the mass remains constant for all plates (i.e. γ ). Except for this point, other formulations
are the same as in Iida et al. (2023), and the detail can be seen in this reference (although
notation is slightly changed).

To obtain the solution, the fluid domain is decomposed into an outer domain (R � r ),
plate’s domains (R(�+1) � r < R(�)) and inner domain (0 � r < 1). Using the variable
separation technique and spectral decomposition, the velocity potentials in these domains
are given as

φouter = 1
iω

∞∑
m=−∞

im Jm(k0r) f0(z) e imθ

+ 1
iω

∞∑
m=−∞

{
am0 H(1)

m (k0r) f0(z) +
∞∑

n=1

amn Km(knr) fn(z)

}
e imθ R � r,

(2.5)
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φ
(�)
plate = 1

iω

∞∑
m=−∞

{
b(�)

m0 Jm
(
μ

(k)
0 r

)
F (k)

0 (z) +
∞∑

n=−2,n �=0

b(�)
mn Im

(
μ(�)

n r
)
F (�)

n (z)

+ c(�)
m0 H(1)

m

(
μ

(k)
0 r

)
F (k)

0 (z) +
∞∑

n=−2,n �=0

c(�)
mn Km

(
μ(�)

n r
)
F (�)

n (z)

}
e imθ R(�+1) � r < R(�),

(2.6)

φinner = 1
iω

∞∑
m=−∞

{
dm0 Jm(k0r) f0(z) +

∞∑
n=1

dmn Im(knr) fn(z)

}
e imθ 0 � r < 1, (2.7)

where

fn(z) =

⎧⎪⎨
⎪⎩

cosh k0(z + h)

cosh k0h
n = 0,

cos kn(z + h)

cos knh
n > 0,

F (�)
n (z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cosh μ
(k)
0 (z + h)

cosh μ
(k)
0 h

n = 0,

cos μ
(�)
n (z + h)

cos μ
(�)
n h

n = −1, −2, n > 0.

(2.8)

Here, Jm(·), H(1)
m (·), Im(·) and Km(·) are the Bessel function of the first kind, the

Hankel function of the first kind, and the modified Bessel functions of the first and second
kinds, respectively. Functions fn(z) and F (�)

n (z) are solutions of the velocity potentials
for z. In addition, kn and μ

(�)
n are the wavenumbers of water waves and elastic waves of

the �th plate which satisfy the following dispersion relations (Peter et al. 2004):

ω2 =
{

k0 tanh k0h, n = 0,

−kn tan knh, n > 0,
(2.9)

and

ω2

β(�)μ
(�)4
n − γω2 + 1

=
{

μ
(k)
0 tanh μ

(k)
0 h, n = 0,

−μ
(�)
n tan μ

(�)
n h, n = −1, −2, n > 0.

(2.10)

Note that the wavenumber kn has an infinite number of positive and real solutions, and
μ

(�)
n also has an infinite number of positive and real solutions and two complex solutions

μ
(�)
−1 = (μ

(�)
−2)

∗ where these real parts are positive (Fox & Squire 1994). To obtain the

complex amplitudes amn , b(�)
mn , c(�)

mn and dmn , further boundary conditions between adjacent
domains are considered (see Appendix A). In this paper, the eigenvalue matching method
(Peter et al. 2004; Iida et al. 2023) is employed to solve them.

2.2. Inlet wave energy factor within the inner domain of the annulus
To measure the calmness of the free surface within the inner domain of the annulus,
we derive a mean wave energy density in the inner domain (namely, inlet wave energy
density). At first, the time average of the kinetic energy density is given as

Ekinetic = 1
4π

∫ 0

−h

∫ 2π

0

∫ 1

0
Re

[
∂φ

∂r

∂φ∗

∂r
+ 1

r2
∂φ

∂θ

∂φ∗

∂θ
+ ∂φ

∂z

∂φ∗

∂z

]
rdrdθdz. (2.11)
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Since the incident wave energy is not distributed to local waves (i.e. energy conservation
principle at far-field), the local wave component of (2.7) is not necessary to consider the
energy balance. Therefore, substituting the first term of (2.7) into (2.11), the kinetic energy
density in the inner domain is calculated as

Ekinetic = 1
16

∞∑
m=−∞

|dm0|2
[(

1 + 2k0h

sinh 2k0h

){
J′2

m−1(k0) +
(

1 − (m − 1)2

k2
0

)
J2

m−1(k0)

}

+
(

1 + 2k0h

sinh 2k0h

){
J′2

m+1(k0) +
(

1 − (m + 1)2

k2
0

)
J2

m+1(k0)

}

+ 2
(

1 − 2k0h

sinh 2k0h

){
J′2

m(k0) +
(

1 − m2

k2
0

)
J2

m(k0)

}]
. (2.12)

Similarly, the time average of the potential energy density is obtained as

E potential = 1
π

∫ ζ

0

∫ 2π

0

∫ 1

0
zrdrdθdz

= 1
4

∞∑
m=−∞

|dm0|2
{

J′2
m(k0) +

(
1 − m2

k2
0

)
J2

m(k0)

}
. (2.13)

The inlet wave energy density is given by the sum of these kinetic and potential energy
densities, as

Einlet = Ekinetic + E potential

=
∞∑

m=−∞
|dm0|2

[
ω2 + (

k2
0 − ω4)h

16ω2

{
J′2

m−1(k0) +
(

1 − (m − 1)2

k2
0

)
J2

m−1(k0)

}

+ ω2 + (
k2

0 − ω4)h

16ω2

{
J′2

m+1(k0) +
(

1 − (m + 1)2

k2
0

)
J2

m+1(k0)

}

+ 3ω2 − (
k2

0 − ω4)h

8ω2

{
J′2

m(k0) +
(

1 − m2

k2
0

)
J2

m(k0)

}]
. (2.14)

When the floating annulus is absent, the velocity potential of plane waves is of course
represented by the first term of (2.5). Then, the mean wave energy density for any free
surface position should be calculated by replacing dm0 in (2.14) with im . The result is
obtained as

E plane = Ekinetic + E potential = 1
4

+ 1
4

= 1
2
. (2.15)

Note that the relation

∞∑
m=−∞

{
J′2

m(k0) +
(

1 − m2

k2
0

)
J2

m(k0)

}
= 1 (2.16)

is used. The mean energy density (2.15) is the same result as the well-known one (Newman
2018a) where the dimensional expression is ρwgζ 2/2.
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The calmness of the inner domain is evaluated by the ratio of the inlet wave energy
density to the mean density of the plane wave, namely the inlet wave energy factor,
defined by

Finlet ≡ Einlet

E plane
. (2.17)

The calm free surface is realised by Finlet → 0.
It should be emphasised that the calmness of the inner domain should be evaluated by

the energy throughout the inner domain. If the energy at a single point, such as the origin,
is considered, there is a possibility that such a point could become a node of standing
waves, which does not ensure calmness throughout the inner domain. In practice, it is
simpler to minimise the wave amplitude

∑∞
m=−∞ |dm0|2 instead of (2.16). However, by

using (2.16), the ratio to the incident wave energy can be defined as (2.17), and this makes
physical interpretation easier than minimisation of the wave amplitude.

2.3. Scattered-wave energy and wave drift force
The amount of waves scattered by the annulus is evaluated by the scattered-wave energy
(Iida et al. 2014). The energy conservation principle at far-field is given as (Kashiwagi
et al. 2005)

W = 1
C0k0ω

∞∑
m=−∞

{
Re

[
ima∗

m0
] + |am0|2

}
= 0, (2.18)

where

C0 = k0

ω2 + (
k2

0 − ω4
)
h
. (2.19)

Note that (2.18) can be used for verification of the numerical code (this will be
demonstrated in § 2.4). The scattered-wave energy is defined by the second term of
(2.18), i.e.

WS = 1
C0k0ω

∞∑
m=−∞

|am0|2. (2.20)

Here, am0 is the complex amplitude of the outgoing scattering waves, and thus
(2.20) indicates the energy of scattering waves. A zero scattering wave is realised by
WS → 0.

The wave drift force, the steady component of the second-order hydrodynamic forces,
acting on the annulus is also given by the complex amplitude of scattering waves
(Kashiwagi et al. 2005), as

Fx = 1
2C0ω

∞∑
m=−∞

Im
[
2am0a∗

m+1,0 + ima∗
m+1,0 + (− i)m+1am0

]
. (2.21)

As (2.21) indicates, the wave drift force becomes very small when no wave is scattered
by the annulus.

2.4. Design of the annulus
We design the annulus as a wave shield to prevent waves from invading its inner
domain. Additionally, we design another annulus as a cloak to block wave penetration and
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suppress outgoing waves. Therefore, the following single-objective optimisation problem
is considered:

minimise f = w1Finlet + w2WS, (2.22)

where w1 and w2 are the weights. For the wave shield, we consider w1 = 1 and w2 = 0.
For the cloak, however, w1 = w2 = 1 is used as a simple allocation. Note that the original
dimensions of Finlet and WS are different (although these are normalised here). The mean
energy density has the dimension kg s−2, the inlet wave energy factor is dimensionless
and the scattered-wave energy has the dimension kg m2 s−3. We do not consider f = Ws
(i.e. w1 = 0 and w2 = 1) because this optimal solution is given by β(�) → 0; the annulus
is negligibly soft.

We solve the single optimisation (2.22) at non-dimensional wavenumber k0 = 1.0
subject to ν = 0.25, γ = 0.05 and the constraint 0.001 � β(�) � 220. We also assume the
outer radius of the annulus is R = 5.0 and the radial widths of all plates are the same.
This condition reflects the following scenario: a calm free surface with a radius of 16 m
is created against typical ocean waves with a wavelength of 100 m (i.e. the period is 8 s
in deep water). Assuming 2 m for the thickness of the annulus, the dimensional values
of the constraint of Young’s modulus are 9 × 10−4 ∼ 200 GPa, where these minimum
and maximum constraints correspond to the properties of rubber and steel. In addition,
γ = 0.05 is equivalent to the density ratio ρp/ρw = 0.4 (ρw = 1025 kg m−3 is considered).
Note that this scenario is set up to demonstrate that the annulus can be designed within a
feasible range, but it is not necessarily useful for practical applications (for instance, the
outer radius is considerably larger than that of the cloaked domain).

To seek an optimum design, the covariance matrix adaptation evolution strategy
(CMA-ES; Hansen 2016) is employed. The CMA-ES uses the covariance matrix of a
multivariate normal distribution for updating a searching area, and efficient optimisations
can be achieved even for non-separable and ill-conditioned problems. Since all the tuning
parameters have default recommendations (Hansen 2016), the CMA-ES could be applied
to various problems without devoting effort to tuning these parameters. To find the optimal
cloak design, multi-objective optimisation would be more suitable. However, since we only
have the in-house code for the single-objective optimisation, we solve (2.22) in this study.

For the numerical simulations, finite truncating numbers M = 20 and N = 15 are used
for velocity potentials (see Appendix A). Then, the simulations demonstrate good energy
conservation (2.18) with an accuracy of less than O(10−14). The water depth is assumed
h = λ (wavelength) to ensure the deep water assumption throughout all the frequencies.

3. Numerical results and discussion

3.1. Sensitivity study
Before conducting the optimisation, we first investigate the sensitivity of the combinations
of β(�) to the objective functions. We consider the two-plates case (L = 2), and the contour
maps of log10(Finlet ) and log10(WS) against β(1) (outer plate) and β(2) (inner plate) are
plotted in figure 2. Here, common logarithm is used to highlight the differences among
small values. Looking at figure 2(a), there is a peak around (β(1), β(2)) = (10, 15). As
β(1) and β(2) increase, Finlet decreases. Influences of β(1) and β(2) are not symmetrical;
increasing β(2) results in a faster decrease in Finlet . The result of WS in figure 2(b) has
similar contour lines around (β(1), β(2)) = (10, 15), but this area becomes a valley (smaller
than others). In addition, this also has another valley line around β(2) = 0.18(β(1) − 130).
In contrast to Finlet , WS increases as β(1) and β(2) increase. These indicate that bigger
flexural rigidity leads to more incident waves being scattered (or reflected) at the outer
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Figure 2. Sensitivity studies of the flexural rigidities β(1) (outer plate) and β(2) (inner plate) to (a) inlet wave
energy factor Finlet and (b) scattered-wave energy WS . Results are presented using their common logarithm.
Two plates case (L = 2) is considered where β(1) is of the outer plate and β(2)is of the inner plate.

boundary of the annulus, and it results in the prevention of wave propagation into the inner
domain. Therefore, Finlet → 0 and WS → 0 are typically in trade-off. As the plate number
L increases, the solution becomes more complex, and the objective function is likely to
become a multi-modal function. Therefore, a metaheuristic optimisation approach (i.e. the
CMA-ES) would be suitable to find an optimal solution.

3.2. Optimisation
The annuli are optimised to minimise f =Finlet (inlet waves) and f =Finlet + WS (inlet
waves and scattering waves), respectively. Optimisation results for the cases of the plate
number L = 1, 2, 4, 8, and 16 are shown in table 1. Looking at the results for f =Finlet ,
the inlet wave energy factor is less than 10 % for all plate numbers and less than 1% when
L � 4. However, the scattered-wave energy is maintained at WS ≈ 5, and thus incident
waves are highly scattered by the annulus. As for the results for f =Finlet + WS , cases of
L = 1, 2 and 4 show a reduction only in the scattered-wave energy, while the inlet wave
energy factor remains at 1. This indicates that the optimisation is performed to minimise
WS , and this results in β(�) → 0 (Finlet is not exactly 1 because the mass γ is a finite
value). However, the results of L = 8 and 16 demonstrate reductions of both inlet wave
energy factor and scattered-wave energy. Especially, the result of L = 16 can dramatically
suppress the scattered-wave energy while keeping a low inlet wave energy factor. In both
objective functions, the inlet wave energy factor can be reduced to a sufficiently small level
for practical purposes. Therefore, the structure of the wave shield is not unique.

Figure 3 shows a plot of β(�) along the radial direction of the annulus (1 � r � 5).
The result of the wave shield is shown in figure 3(a), while the result of the cloak is in
figure 3(b). Cases of L = 8 and 16 are shown. In figure 3(a), there is a peak around 2.5 �
r � 4, where β(�) reaches the maximum constraint value of 220. Outside this area, β(�)

becomes small. In figure 3(b), there are two peaks for L = 16. At the peaks, β(�) reaches the
maximum constraint; outside the peaks, it is nearly at the minimum constraint; and inside
the peaks, it takes on intermediate values. Such a structure cannot be achieved by L = 4.

Snapshots of wave fields are plotted in figures 4 and 5, where plane waves are incident
from the left-hand side of the figures. Figure 4 is the result for the wave shield and
figure 5 is for the cloak. Panels (a,c) are the snapshots of wave patterns (imaginary parts of
complex wave amplitude) and panels (b,d) are the wave amplitudes (magnitude of complex
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Type Objective function Plate number L Inlet wave energy factor Finlet Scattered-wave energy WS

Wave shield Finlet 1 0.094 5.066
2 0.047 4.987
4 0.003 4.340
8 0.002 5.356
16 0.002 5.404

Cloak Finlet + WS 1 1.093 0.014
2 1.049 0.018
4 1.001 0.004
8 0.076 0.029
16 0.040 0.002

Table 1. Optimisation results of the annulus designed as the wave shield and the cloak.
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Figure 3. Spatial distributions of flexural rigidity β(�) along the radial direction of the annulus (1 � r � 5).
(a) Optimised result for wave shields ( f =Finlet ). (b) Optimised result for cloaks ( f =Finlet + WS). Flexural
rigidities are optimised within the constraint 0.001 � β(�) � 220.

wave amplitude). Case L = 8 is shown in panel (a,b), and L = 16 is in panel (c,d). Figure 4
shows that almost no waves propagate into the inner domain of the annulus, and elastic
waves on the annulus are also small. These indicate that incident waves are scattered
by the outer boundary of the annulus. As a result, there is a shadow behind the wave
shield. In figure 5, wave penetration is also prevented by the cloak. In addition, there are
a few outgoing scattering waves outside the cloak (see panel b,d). Especially, case L = 16
achieves seemingly perfect cloaking condition.

To investigate the frequency responses, inlet wave energy factor Finlet and scattered-
wave energy WS against wavenumber k0 are plotted in figures 6(a) and 6(b), respectively.
The results are plotted on a semi-log graph. In figure 6(a), the line on Finlet = 100 = 1
indicates the same energy density as that of plane waves. In the long-wavelength region
(k0 < 0.3), the results converge to Finlet = 1 because the annulus merely follows the
motion of the waves without scattering them. There are some periodic peaks due
to resonance in the inner domain, which is typically known as moonpool resonance
(e.g. Newman 2018b). Similar results are found from Malenica et al. (2023). Since
the simulation is based on the linear potential theory, the amplified wave energy is
unrealistically high. In real situations, these waves are dissipated by nonlinear processes,
such as viscosity and wave-breaking. Except for these regions, all the annuli can reduce
the inlet wave energy factor not only at optimised wavenumber k0 = 1.0, but also at
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Figure 4. Wave fields for the ‘wave shield’ at wavenumber k0 = 1.0. (a,c) Snapshots of wave patterns.
(b,d) Wave amplitude. The results of plate numbers L = 8 and 16 are shown. Plane waves are incident from
the left-hand side of the figures. The corresponding movie of panel (c) is available as supplementary movie 1
available at https://doi.org/10.1017/jfm.2025.106.

other frequencies. The optimisations for the wave shield achieve a greater reduction in
the inlet wave energy factor compared with those for the cloak. In figure 6(b), the results
of the cloak show dramatic reductions of the scattered-wave energy at k0 = 1.0. Apart
from this wavenumber, the scattered-wave energy remains of a similar order in all cases.
Although the scattered-wave energy for L = 16 is lower than that for L = 8 at k0 = 1.0, the
order of the magnitude relationships is not consistent at other frequencies.

Finally, the wave drift force Fx acting on the annulus is shown in figure 7. The frequency
responses of the wave drift force show similar behaviour to those of the scattered-wave
energy as both are given by the scattering wave amplitude. As seen in figure 4(d), the
wave shield scatters incident waves in front of the annulus at k0 = 1.0. As a result, the
large wave drift force acts on the annulus in the positive direction along the x-axis due to
the action and reaction law. However, the cloak does not scatter waves outside the annulus
(see figure 5d). Therefore, the wave drift force becomes almost zero at the target frequency
as shown in figure 7.

3.3. Further discussions
In this section, we further discuss the proposed annuli, including their performances,
limitations and potentials for further development. Using the wave shield, the inlet wave
energy can be reduced over a wide range of frequencies compared with that in an open
sea. However, periodic wave amplifications were observed due to resonance. This may
endanger marine structures in the annulus. Using dissipative plates (e.g. Xiao et al. 2016;
Liu et al. 2017) could be one of the solutions to reduce such a wave amplification.
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Figure 5. Wave fields for the ‘cloak’ at wavenumber k0 = 1.0. (a,c) Snapshots of wave patterns. (b,d) Wave
amplitude. The results of plate numbers L = 8 and 16 are shown. Plane waves are incident from the left-hand
side of the figures. The corresponding movie of panel (c) is available as supplementary movie 2.

When the annulus is designed to minimise the inlet wave energy factor, a high wave
drift force acts on the annulus due to wave scattering. Therefore, a strong mooring system
is necessary to maintain a position. Another annulus, designed to minimise both inlet
wave energy factor and scattered-wave energy, achieved the cloaking and resultant low
wave drift force at the optimised frequency.

Optimisations were carried out at the single frequency k0 = 1.0. For real applications,
it is also demanded to perform over a range of frequencies. This could be achieved using
a new objective function

∫
�k f (k)dk (e.g. Bobinski et al. 2018). However, achieving the

desired frequency band performance would require a larger outer radius and an increased
number of plates. This may reduce practical applicability and increase optimisation time.
Therefore, it is not addressed in this paper.

We assumed a constant outer radius (R = 5.0) and mass (γ = 0.05). When the outer
radius is small, the performance is insufficient. However, increasing the outer radius
does not necessarily improve the performance. At present, R = 5.0 is the minimum
size to achieve cloaking; however, for practical use, this annulus is too large compared
with the inner cloaked domain. It is necessary to explore more practical sizes, such as
by incorporating active control (e.g. Euvé et al. 2024). Heavy mass could give better
performance. However, the density ratio to water is a limitation in design.

We developed the cloak based on the inlet-and-scattering-wave cancellation as
the transformation-based cloak cannot be achieved for ocean waves. The coordinate
transformation method is independent of wave frequency (Pendry et al. 2006). In many
cases, anisotropic medium properties are realised using homogenisation methods (e.g.
Zareei & Alam 2015; Dupont et al. 2016), and the homogenised performance can be
maintained over a frequency band as long as the microstructure is sufficiently smaller
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Figure 6. (a) Inlet wave energy factor Finlet against wavenumber k0. (b) Scattered-wave energy WS against
wavenumber k0. Both panels are plotted on a semi-log graph. The annuli are optimised at k0 = 1.0.

than the wavelength (Iida & Umazume 2020). Therefore, the transformation-based cloak
is broadband. In addition, the physical interpretation is clear because this cloak is achieved
by bending wave rays so that they bypass the inner cloaked domain. The present cloak,
however, is currently limited to a single frequency as mentioned above. Moreover, the
underlying mechanism of this cloak is not explicit because it involves a combination
of various wave phenomena, such as reflection, refraction, trapping and superposition.
Looking at supplementary movie 2, different behaviours are observed inside and outside
R = 2.5: outside region (2.5 � R � 5.0), waves propagate as if they bypass the inner
domain, which is similar to the transformation-based cloak; inside region (1.0 � R � 2.5),
there are nodes and anti-nodes as if standing waves, which is a similar result to the wave
shield (see supplementary movie 1). We do not expect this structure to be the unique
solution to achieve the cloak; however, it may be insightful to theoretically describe the
ocean wave cloak in the future. In any case, similar to the cloaking factor (Porter &
Newman 2014), we expect the inlet wave energy factor to even contribute to studies of
transformation-based cloaks and breakwaters as an important metric.
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Figure 7. Wave drift force Fx acting on the annulus against wavenumber k0 (semi-log graph).

We only demonstrated the potential of the wave shield and the cloak through numerical
simulations based on the thin-plate assumption. Since this model assumes that the annulus
only moves vertically in contact with the water surface, the annulus does not move in
any other direction. However, in reality, motions in other modes (such as surge and
sway) would be also induced. Therefore, a fully three-dimensional simulation is necessary
for a detailed analysis. In addition, model experiments are also demanded to verify its
feasibility. Although we assumed a closed annulus to simplify the problem, an opening is
necessary for access to the inner domain. The influence of such an opening should also be
investigated.

4. Conclusion
We presented the floating annuli that are used as a wave shield and a cloak. The annulus
consists of L horizontal concentric annular plates, and each plate is elastic and thin. Based
on the linear potential flow theory, the inlet wave energy factor is defined to estimate the
calmness of the free surface within the inner domain of the annulus. From the sensitivity
studies of flexural rigidities to the inlet wave energy factor and scattered-wave energy
in the case of two plates, we found that minimising them is in trade-off. The flexural
rigidity of each plate was designed to achieve the wave shield and the cloak, respectively.
The numerical simulations demonstrated that the calm free surfaces are created within
the inner domains of the optimised annuli. In addition, the cloak successfully suppressed
the outgoing scattering waves, and the cloaking condition was accomplished. It was also
shown that the wave drift force acting on the cloak can be almost zero. Since the annuli are
axisymmetric, the performances are omnidirectional. These annuli could protect marine
structures from ocean waves. We believe this would expand the possibility of ocean space
utilisation.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.106.
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Appendix A. Boundary conditions

The coefficients amn , b(�)
mn , c(�)

mn and dmn in (2.5), (2.6) and (2.7) are unknown. By
truncating the infinite series of azimuthal and radial modes to orders M and N ,
the number of unknown coefficients becomes 2(N + 1) + 2L(N + 3). To solve these
unknown coefficients, the same number of boundary conditions are required. Here, we
consider the following boundary conditions.

(i) Matching conditions of the velocity potential between the outer free surface and the
plate (N + 1 equations).

(ii) Matching conditions of the radial derivative of the velocity potential between the
outer free surface and the plate (N + 1 equations).

(iii) Matching conditions of the velocity potential between adjacent plates ((L − 1)

(N + 1) equations).
(iv) Matching conditions of the radial derivative of the velocity potential between

adjacent plates ((L − 1)(N + 1) equations).
(v) Matching conditions of the wave elevation between adjacent plates (L − 1

equations).
(vi) Matching conditions of the radial derivative of the wave elevation between adjacent

plates (L − 1 equations).
(vii) Matching conditions of the bending moment between adjacent plates (L − 1

equations).
(viii) Matching conditions of the shear force between adjacent plates (L − 1 equations).

(ix) Free-free beam conditions; zero bending moment and shear force (four equations).
(x) Matching conditions of the velocity potential between the inner free surface and the

plate (N + 1 equations).
(xi) Matching conditions of the radial derivative of the velocity potential between the

inner free surface and the plate (N + 1 equations).

The boundary conditions (i) to (ix) are the same as those used by Iida et al. (2023), and
details of equations are shown in the reference. Here, we only show the new boundary
conditions (x) and (xi) as follows.

(i) Matching conditions of the velocity potential between the inner free surface and the
plate (N + 1 equations):

dm0 Jm(k0)A0q +
N∑

n=1

dmn Im(kn)Anq = b(�)
m0 Jm

(
μ

(�)
0

)
B(�)

0q +
N∑

n=−2,n �=0

b(�)
mn Im

(
μ(�)

n

)
B(�)

nq

+ c(�)
m0 H(�)

m

(
μ

(�)
0

)
B(�)

0q +
N∑

n=−2,n �=0

c(�)
mn Km

(
μ(�)

n

)
B(�)

nq . (A1)

(ii) Matching conditions of the radial derivative of the velocity potential between the inner
free surface and the plate (N + 1 equations):

dm0k0 J′
m(k0)A0q +

N∑
n=1

dmnkn I′m(kn)Anq

= b(�)
m0μ

(�)
0 J′

m

(
μ

(�)
0

)
B(�)

0q +
N∑

n=−2,n �=0
b(�)

mnμ
(�)
n I′m(μ

(�)
n )B(�)

nq

+c(�)
m0μ

(�)
0 H(�)′

m
(
μ

(�)
0

)
B(�)

0q +
N∑

n=−2,n �=0
c(�)

mnμ
(�)
n K′

m(μ
(�)
n )B(�)

nq . (A2)

1008 A8-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.106


T. Iida

Note that q = 0, 1, . . . , N and Anq and B(�)
nq are given based on the eigenvalue matching

method as

Anq =
∫ 0

−h
fn(z) fq(z)dz, B(�)

nq =
∫ 0

−h
F (�)

n (z) fq(z)dz. (A3)
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