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Abstract

Signature-based representations of the reliability functions of coherent systems with
independent and identically distributed component lifetimes have proven very useful
in studying the ageing characteristics of such systems and in comparing the performance
of different systems under varied criteria. In this paper we consider extensions of these
results to systems with heterogeneous components. New representation theorems are
established for both the case of components with independent lifetimes and the case of
component lifetimes under specific forms of dependence. These representations may
be used to compare the performance of systems with homogeneous and heterogeneous
components.
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1. Introduction

The notion of system signatures was introduced by Samaniego [25] as a useful tool in
providing a characterization of the class of coherent systems which satisfy the IFR (increasing
failure rate) closure property for systems with independent and identically distributed (i.i.d.)
component lifetimes. The signature of a coherent system whose n components have i.i.d.
lifetimes was defined as the n-dimensional probability vector whose ith element is si = P(T =
Xi:n), where T denotes the lifetime of the system and (X1:n, . . . , Xn:n) is the vector of order
statistics of the component lifetimes X1, . . . , Xn ∼ F . The distribution F is assumed to be
continuous with support set (0,∞). Under the i.i.d. assumption on component lifetimes, the
signature vector s = (s1, . . . , sn) is a distribution-free measure of the system’s design. The
system’s reliability function F̄T (t) = P(T > t) may be represented as

F̄T (t) =
n∑
i=1

si F̄i:n(t), (1.1)
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Representations of systems with heterogeneous components 857

where F̄i:n(t) = P(Xi:n > t). The monograph by Samaniego [26] provides an extensive survey
of system signatures and their applications.

Since (1.1) may also be written as

F̄T (t) =
n∑
i=1

si

n∑
j=n−i+1

(
n

j

)
{F̄ (t)}j {F(t)}n−j ,

we may express the reliability of the system at time t through the reliability polynomial h(p)
(see [2, p. 21]) given by

h(p) =
n∑
i=1

si

n∑
j=n−i+1

(
n

j

)
pj (1 − p)n−j , (1.2)

where p = F̄ (t). This polynomial may also be written in the form h(p) = ∑n
i=1 dip

i , where
d = (d1, . . . , dn) is generally called the system’s domination vector (see [27]). Explicit
formulae for the relationships d = g(s) and s = g−1(d) connecting the signature and
domination vectors may be found in [26]. In the sequel, we will utilize the reliability polynomial
h(p) primarily in the form (1.2). The coefficients of this polynomial depend only on the system
structure. The polynomial h(p) is strictly increasing for p ∈ (0, 1), with h(0) = 0 and
h(1) = 1.

The representation in (1.1) continues to hold when the components are dependent with a joint
exchangeable distribution; see [22] and the references therein. It also holds for mixed systems,
that is, for stochastic mixtures of coherent systems (see [26]). However, this representation is
not necessarily true when the component lifetimes have different distributions, as demonstrated
in Example 5.1 of [22].

Other useful representations for coherent systems with exchangeable components are

F̄T (t) =
n∑
i=1

aiF̄1:i (t) (1.3)

and

F̄T (t) =
n∑
i=1

biF̄i:i (t), (1.4)

where F̄1:i (t) = P(X1:i > t) and F̄i:i (t) = P(Xi:i > t) are the reliability functions of
the series system lifetime X1:i = min(X1, . . . , Xi) and the parallel system lifetime Xi:i =
max(X1, . . . , Xi), respectively. The vectors of coefficients a = (a1, . . . , an) and b =
(b1, . . . , bn), which depend only on the system structure, are called minimal and maximal
signatures, respectively; see [19]. While some of the elements of a and b may be negative, the
vectors obey the constraints

∑n
i=1 ai = 1 and

∑n
i=1 bi = 1, respectively. When the component

lifetimes are i.i.d., representation (1.3) reduces to

F̄T (t) =
n∑
i=1

ai{F̄ (t)}i ,

where F̄ is the common reliability function of the components. However, representations
(1.3) and (1.4) do not necessarily hold when the components have different distributions, as
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demonstrated in Example 5.1 of [22]. Related work on system signatures includes [4], [5], [9],
[10], [11], [14], [15], [20], [29], and [30].

Few representation results have been obtained in the literature for coherent systems with
heterogeneous components. Generalized mixture representations based on minimal path sets
and minimal cut sets were obtained by Esary and Proschan [7] (see also [2, p. 26]) in the case
of independent components. Also, in this case, some comparison results were obtained in [14]
and [21]. In the case of dependent heterogeneous components, representations and bounds for
k-out-of-n systems (order statistics) were obtained in [24, Chapter 5], and comparisons between
parallel and series systems were given in [17] and [18].

In this paper, representations similar to those in (1.1), (1.3), and (1.4) are obtained for coher-
ent systems with heterogeneous components. We consider the case of independent components
in Section 2 and the case of dependent components in Section 3. These representations allow
us to compare the performance of a given system under differing assumptions on component
lifetimes—i.i.d. lifetimes and independent but heterogeneous lifetimes. We also use these
representations to obtain some ordering properties.

Throughout the paper, when we say that a function g is increasing or decreasing, we mean
that g(x) ≤ g(y) or g(x) ≥ g(y) for x ≤ y, respectively.

2. Signature representations for systems with independent components

Let T = φ(X1, . . . , Xn) be the lifetime of a coherent system with independent component
lifetimes X1, . . . , Xn with respective reliability functions F̄1, . . . , F̄n, each assumed to be
continuous and with supports contained in (0,∞), where φ is the structure function of the
system (see [2]). If X1:n < · · · < Xn:n are the order statistics obtained from X1, . . . , Xn then
it is evident that P(T = Xi:n) depends on the distributions ofX1, . . . , Xn. While the reliability
function of T may still be written as a sum similar to that in (1.1), that is, as

F̄T (t) =
n∑
i=1

P(T = Xi:n)P(Xi:n > t | T = Xi:n),

this representation is not useful in the analysis and comparisons of systems due to the dependence
of P(T = Xi:n) and P(Xi:n > t | T = Xi:n) on both {F̄i , i = 1, . . . , n} and φ. In what follows,
we will develop an alternative representation of F̄T which, quite unexpectedly, relies on the
system’s distribution-free signature vector s (generally defined under an i.i.d. assumption on
component lifetimes) defined in the previous section, notwithstanding the fact that the system
under study is assumed to have heterogeneous rather than identical components. Under the
i.i.d. assumption on component lifetimes, the signature of a coherent system does not depend
on the common component lifetime distribution and may be computed as si = |Ai |/n! for
i = 1, . . . , n, where |Ai | is the cardinality of the set Ai of permutations σ of the set {1, . . . , n}
such that φ(X1, . . . , Xn) = Xi:n whenever Xσ(1) < · · · < Xσ(n) (see [26]).

If a coherent system with lifetime T has independent components then its reliability function
can be written as

F̄T (t) = H(F̄1(t), . . . , F̄n(t)), (2.1)

where H(p1, . . . , pn) is a multinomial expression (called the structure reliability function in
[7]) which is linear in each pi and whose coefficients depend only on the system’s design. In
analogy with (1.2), at a fixed time t , the reliability of the system at time t may be written as
H(p1, . . . , pn), where pi = F̄i(t) for i = 1, . . . , n. This polynomial is strictly increasing
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in (0, 1)n and is such that H(0, . . . , 0) = 0 and H(1, . . . , 1) = 1. Clearly, the reliability
polynomial in (1.2) is simply h(p) = H(p, . . . , p). Using representation (2.1), we can extend
representation (1.1) as follows.

As defined above, the signature of a coherent system is a ‘topological invariant’ which can
be treated without reference to the stochastic behavior of the system’s components. While it is
generally defined in terms of the order statistics of an i.i.d. sample from a common component
distribution F , the signature vector depends solely on the system’s design and does not depend
on the distribution of component lifetimes. For example, the signature vectors of all four-
component systems are displayed in [26] (see also [14] and [29]). It is true that the application
and interpretation of system signatures have largely been restricted to the case of systems with
i.i.d. component lifetimes. For example, the representation of a system’s reliability function
in terms of the system’s signature, as in (1.1), requires the assumption of i.i.d. component
lifetimes. The following result shows that the signature of a given system may be used in
an analogous fashion in representing the reliability function of the system when component
lifetimes are independent but not homogeneous. The representation is seen to involve a single
distribution G that is functionally dependent on the individual lifetime distributions of the
system’s components as well as on the system’s design.

Theorem 2.1. Consider an n-component system with signature vector s = (s1, . . . , sn), and let
h and H be the system’s reliability polynomial and structure reliability function, respectively.
Suppose that the lifetimesX1, . . . , Xn of the components of this system are independent but are
not identically distributed, withXi having the continuous distribution functionFi and reliability
function F̄i = 1 − Fi for i = 1, . . . , n. Then the reliability function of the system lifetime T
may be expressed as

F̄T (t) =
n∑
i=1

siḠi:n(t), (2.2)

where Ḡi:n(t) = P(Yi:n > t) and Y1:n < · · · < Yn:n are the order statistics obtained from the
i.i.d. random variables Y1, . . . , Yn with common reliability function

Ḡ(t) = h−1(H(F̄1(t), . . . , F̄n(t))). (2.3)

Proof. Recall that the reliability polynomial h is a strictly increasing continuous function
in (0, 1) with h(0) = 0 and h(1) = 1. Hence, its inverse function h−1 in (0, 1) exists and is
also strictly increasing in (0, 1) with h−1(0) = 0 and h−1(1) = 1. We also know that H is a
strictly increasing continuous function in (0, 1)n with H(0, . . . , 0) = 0 and H(1, . . . , 1) = 1.
Hence, the function Ḡ defined by (2.3) is right continuous and decreasing in t with Ḡ(0) = 1
and Ḡ(∞) = 0, and is therefore a proper reliability function. If a system with signature s has
components with i.i.d. lifetimes with the common distribution G whose reliability function is
as given in (2.3), then it follows from (1.2) that the system’s reliability function is given by
h(Ḡ(t)). We thus find from (1.1) that this reliability function may be represented as

h(Ḡ(t)) =
n∑
i=1

siḠi:n(t).

Finally, we note from (2.3) that we have

h(Ḡ(t)) = H(F̄1(t), . . . , F̄n(t)),

and, hence, due to (2.1), (2.2) holds.
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This theorem can be used to obtain ordering properties similar to those given in [11] and
[22], but for systems with heterogeneous components. We consider the following stochastic
orders. LetX and Y be two random variables with respective absolutely continuous distribution
functions F andG, hazard rate functions rF = F ′/(1−F) and rG = G′/(1−G), and reversed
hazard rate functions r̄F = F ′/F and r̄G = G′/G. Then the following statements hold:

(i) X is said to be less than Y in the stochastic order (written as X ≤st Y ) when F ≥ G;

(ii) X is said to be less than Y in the hazard rate order (written as X ≤hr Y ) when rF ≥ rG;

(iii) X is said to be less than Y in the reversed hazard rate order (written as X ≤rh Y ) when
r̄F ≤ r̄G.

The main properties of these orders can be found in [28, Chapter 1]. To obtain our ordering
results, we need the following lemma, which is a direct consequence of Theorems 4.5 and 5.5
of [3].

Lemma 2.1. Let T and T ∗ be the lifetimes of two coherent systems with the same structure,
reliability polynomial h, and i.i.d. components having common reliability functions F̄ and F̄ ∗,
respectively.

(i) If F̄ ≤hr F̄
∗ and xh′(x)/h(x) is decreasing, then T ≤hr T

∗.

(ii) If F̄ ≤rh F̄
∗ and (1 − x)h′(x)/(1 − h(x)) is increasing, then T ≤rh T

∗.

Theorem 2.2. Let T and T ∗ be the lifetimes of two coherent systems with signatures s =
(s1, . . . , sn) and s∗ = (s∗1 , . . . , s∗n), and both with independent component lifetimes. Let h and
h∗ be their reliability polynomials, and let H and H ∗ be their structure reliability functions.
Let Ḡ and Ḡ∗ be the reliability functions defined in (2.3).

(i) If Ḡ ≤st Ḡ
∗ and s ≤st s∗, then T ≤st T

∗.

(ii) If Ḡ ≤hr Ḡ
∗, s ≤hr s∗, and either xh′(x)/h(x) or x(h∗)′(x)/h(x) is decreasing, then

T ≤hr T
∗.

(iii) If Ḡ ≤rh Ḡ
∗, s ≤rh s∗, and either (1−x)h′(x)/(1−h(x)) or (1−x)(h∗)′(x)/(1−h∗(x))

is increasing, then T ≤rh T
∗.

Proof. The proof of (i) is immediate from Theorem 2.1.
We prove (ii) by assuming that xh′(x)/h(x) is increasing. The proof of the other case is

similar. Then we have

F̄T (t) =
n∑
i=1

siḠi:n(t) (from Theorem 2.1)

≤hr

n∑
i=1

siḠ
∗
i:n(t) (from Ḡ ≤hr Ḡ

∗ and Lemma 2.1)

≤hr

n∑
i=1

s∗i Ḡ∗
i:n(t) (from s ≤hr s∗)

= F̄T ∗(t) (from Theorem 2.1),

where the last inequality holds by Theorem 1.B.14 of [28].
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The proof of (iii) can be obtained in a similar way by using Lemma 2.1(ii) and Theorem 1.B.52
of [28].

Example 2.1. If we consider the coherent system with lifetime T = max(min(X1, X2),

min(X3, X4)) and corresponding signature s= (0, 2
3 ,

1
3 , 0) (see system number 10 in Table 3.2

of [26, p. 25]), then its reliability function is given by

F̄T (t) = P(max(min(X1, X2),min(X3, X4)) > t)

= P({min(X1, X2) > t} ∪ {min(X3, X4) > t})
= P(min(X1, X2) > t)+ P(min(X3, X4) > t)− P(X1:4 > t)

= F̄1(t)F̄2(t)+ F̄3(t)F̄4(t)− F̄1(t)F̄2(t)F̄3(t)F̄4(t)

= H(F̄1(t), F̄2(t), F̄3(t), F̄4(t)),

whereH(p1, p2, p3, p4) = p1p2+p3p4−p1p2p3p4. Also, h(p) = 2p2−p4 and its minimal
signature is a = (0, 2, 0,−1). Then,

h−1(x) =
√

1 − √
1 − x

and the reliability function defined in (2.3) is

Ḡ(t) =
√

1 −
√

1 − F̄1(t)F̄2(t)− F̄3(t)F̄4(t)+ F̄1(t)F̄2(t)F̄3(t)F̄4(t) . (2.4)

In general, we know that h(p) is a strictly increasing polynomial inp ∈ [0, 1] from h(0) = 0
andh(1) = 1, and, hence, its inverse functionh−1(x) exists for x ∈ [0, 1]. However, the explicit
computation of h−1(x) is not always as easy as in the preceding example. In general, numerical
methods must be employed to obtain an approximation of Ḡ.

Note that the reliability function Ḡ in (2.3) is a function such that

H(Ḡ(t), . . . , Ḡ(t)) = H(F̄1(t), . . . , F̄n(t)).

This reliability function is related to the well-known concept of mean function associated with
a real-valued function (see [6], [8, p. 65], and [18]), which is defined as follows.

Definition 2.1. If ψ : S ⊆ R
n → R is a real-valued function, a mean function of ψ in S is a

function mψ : R
n → R such that

ψ(x1, . . . , xn) = ψ(z, . . . , z)

for all (x1, . . . , xn) ∈ S, where z = mψ(x1, . . . , xn).

Clearly, a mean function of ψ exists when its diagonal section δ(z) = ψ(z, . . . , z) is
continuous, infx∈S ψ(x) = infz∈D δ(z) and supx∈S ψ(x) = supz∈D δ(z), where D = {z ∈
R : (z, . . . , z) ∈ S}. Moreover, the mean function is unique when the preceding properties hold
and δ(z) is strictly monotone inD. For example, if ψ(x1, x2, x3) = x1x2x3 then δ(z) = z3 and
its unique mean function in R

3 is mψ(x1, x2, x3) = (x1x2x3)
1/3. However, the mean function

in R
2 of ψ(x1, x2) = x1x2 does not exist.

Note that the mean function mH in [0, 1]n of the structure reliability function H of an
n-component system always exists since its diagonal section h(z) = H(z, . . . , z) is a strictly
increasing polynomial in [0, 1] with h(0) = 0 and h(1) = 1. Moreover, it is given by

mH(x1, . . . , xn) = h−1(H(x1, . . . , xn))
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and satisfies mH(z, . . . , z) = z. Hence, the reliability function defined in (2.3) satisfies

Ḡ(t) = mH(F̄1(t), . . . , F̄n(t)).

Thus, this reliability function Ḡ(t) can appropriately be called the mean reliability function
associated with the system and the component reliability functions.

For example, in the case of a series system, the mean function of H is the geometric mean

mH(x1, . . . , xn) = (x1 · · · xn)1/n.
For the parallel system, the mean function is

mH(x1, . . . , xn) = 1 − [(1 − x1) · · · (1 − xn)]1/n.

For the system considered in Example 2.1, the mean function is

mH(x1, x2, x3, x4) =
√

1 − √
1 − x1x2 − x3x4 + x1x2x3x4 ,

and its mean reliability function is as given in (2.4).
Note that, from Theorem 2.2, the mean reliability function defined in (2.3) provides a

vehicle for comparing the performance of a system whose components have i.i.d. lifetimes
with distribution F and the same system with components whose lifetimes are independent but
have heterogeneous distributions.

Next, we extend representations (1.3) and (1.4) to systems with heterogeneous components.
The result is given in the following theorem and it is an immediate consequence of Theorem 2.1.
First, we need to extend the definition of minimal and maximal signatures to systems with
heterogeneous components as follows. IfT is the lifetime of a coherent system with independent
components, we define the minimal and maximal signatures a = (a1, . . . , an) and b =
(b1, . . . , bn) of T as the minimal and maximal signatures of a system with the same structure
as T but with i.i.d. component lifetimes with common reliability function Ḡ(t). It is useful to
note once again that these signatures do not depend on the component distributions and that
they can be obtained from the system signature s = (s1, . . . , sn).

Theorem 2.3. If T is the lifetime of a coherent system with independent component lifetimes
X1, . . . , Xn, and minimal and maximal signatures a = (a1, . . . , an) and b = (b1, . . . , bn),
then

F̄T (t) =
n∑
i=1

aiḠ1:i (t) (2.5)

and

F̄T (t) =
n∑
i=1

biḠi:i (t),

where Ḡ1:i (t) = Ḡi(t) and Ḡi:i (t) = 1 −Gi(t) for i = 1, . . . , n, Ḡ is as given in (2.3), and
G = 1 − Ḡ.

Let us consider an application of this theorem. Since the reliability polynomial may be
written as h(p) = ∑n

i=1 aip
i , (2.5) can alternatively be expressed as

F̄T (t) =
n∑
i=1

ai{Ḡ(t)}i . (2.6)
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Recall that the coefficients ai are real numbers such that
∑n
i=1 ai = 1 and, therefore, F̄T is a

generalized mixture. Then, (2.6) shows that the class of all reliability functions of coherent
systems withn independent components is included in the class of generalized mixtures obtained
from powers Ḡi of a reliability function Ḡ for i = 1, . . . , n. Hence, the asymptotic behavior
(when t → ∞) of the ageing measures of T can be determined from the results established in
[12], [13], and [16]. For example, from the results in [16], it is known that if the components
are independent then the hazard rate function rT of the system satisfies

lim
t→∞

rT (t)

rG(t)
= i,

where rG is the hazard rate function associated with G = 1 − Ḡ and i = min{j : aj �= 0}.

3. Signature representations for systems with dependent components

In this section we extend the representations based on signatures given in the preceding
section to coherent systems with component lifetimes that may be dependent. Let T =
φ(X1, . . . , Xn) be the lifetime of a coherent system with structure function φ and with compo-
nent lifetimes (X1, . . . , Xn). The dependence between component lifetimes can be represented
by the joint reliability (or survival) function

F̄ (x1, . . . , xn) = P(X1 > x1, . . . , Xn > xn).

Using Sklar’s celebrated theorem (see [23, p. 46]), this reliability function can be written as

F̄ (x1, . . . , xn) = K(F̄1(x1), . . . , F̄n(xn)), (3.1)

where F̄i is the reliability function ofXi andK is the survival copula. It is well known that the
survival copula can be obtained from the distributional copula (i.e., the copula used to represent
the joint distribution function) and vice versa.

For our purposes, we will also need the well-known representation of the lifetime of a
coherent system based on its minimal path sets (see [2, p. 12]). A set P ⊆ {1, . . . , n} is a path
set of a coherent system if the system works when all the components in P work. A path set
P is a minimal path set if it does not contain other path sets. If T is the lifetime of a coherent
system with minimal path sets P1, . . . , Pk , then

T = max
j=1,...,k

XPj ,

where XPj = mini∈Pj Xi is the lifetime of the series system with components in Pj for
j = 1, . . . , k (see [2, p. 12]). Hence, it follows from the inclusion-exclusion formula (see [1]
and [19]) that the reliability function of the system can be expressed as

F̄T (t) =
k∑
j=1

F̄Pj (t)−
∑
i<j

F̄Pi∪Pj (t)+ · · · + (−1)k+1F̄P1∪···∪Pk (t), (3.2)

where F̄P is the reliability function of the series system lifetime XP = mini∈P Xi . Note that
P1 ∪ · · · ∪ Pk = {1, . . . , n}. Furthermore, F̄P can be written as

F̄P (t) = F̄ (tP ),

where tP = (x1, . . . , xn) with xi = t for i ∈ P and xi = 0 for i /∈ P . Taking into account this
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representation for series system reliability functions and using Sklar’s representation (3.1) for
the survival copula, (3.2) can be written as

F̄T (t) = W(F̄1(t), . . . , F̄n(t)), (3.3)

where

W(x1, . . . , xn) =
k∑
j=1

K(xPj )−
∑
i<j

K(xPi∪Pj )+ · · · + (−1)k+1K(xP1∪···∪Pk )

and xP = (z1, . . . , zn) with zi = xi for i ∈ P and zi = 1 for i /∈ P . In particular, if the
components are independent then the functionW is equal to the structure reliability functionH .
If the system is a series system thenW is equal to the survival copula K . However, in general,
W is neither a polynomial nor a copula and it depends both on the system structure and on the
survival copula (i.e., the dependence structure between the components). However, it should
be noted that W does not depend on the component (marginal) distributions. We will refer to
the function W = W(φ,K) as the structure-dependence function.

For example, let us consider the system with lifetime T = min(X1,max(X2, X3)) with
minimal path sets P1 = {1, 2} and P2 = {1, 3}. Then, (3.1) and (3.2) yield

F̄T (t) = F̄{1,2}(t)+ F̄{1,3}(t)− F̄{1,2,3}(t)
= F̄ (t, t, 0)+ F̄ (t, 0, t)− F̄ (t, t, t)

= K(F̄1(t), F̄2(t), 1)+K(F̄1(t), 1, F̄3(t))−K(F̄1(t), F̄2(t), F̄3(t))

= W(F̄1(t), F̄2(t), F̄3(t)),

where
W(x1, x2, x3) = K(x1, x2, 1)+K(x1, 1, x3)−K(x1, x2, x3).

In particular, if the components are independent,K is the product copula (i.e.,K(x1, x2, x3) =
x1x2x3 for 0 ≤ xi ≤ 1 and i = 1, 2, 3), and

W(x1, x2, x3) = x1x2 + x1x3 − x1x2x3 = H(x1, x2, x3).

Now, we are ready to state the first representation theorem for coherent systems with
heterogeneous dependent components.

Theorem 3.1. If T = φ(X1, . . . , Xn) is the lifetime of a coherent system with component
lifetimes X1, . . . , Xn having survival copula K and structure-dependence function W with
right-continuous increasing mean functionmW , then T is equal in law to T ∗ = φ(Y1, . . . , Yn)

with identically distributed component lifetimes Y1, . . . , Yn with joint reliability function

P(Y1 > x1, . . . , Yn > xn) = K(ḠW (x1), . . . , ḠW (xn)), (3.4)

where
ḠW (t) = mW(F̄1(t), . . . , F̄n(t)). (3.5)

Proof. Using the facts thatmW is a right-continuous increasing function,W(0, . . . , 0) = 0,
andW(1, . . . , 1) = 1, we note that ḠW in (3.5) is a proper reliability function. Then, by using
the fact that mW is the mean function of W we obtain

F̄T (t) = W(F̄1(t), . . . , F̄n(t)) = W(ḠW (t), . . . , ḠW (t)) = F̄T ∗(t),

where T ∗ is the lifetime of the system under consideration when its component lifetimes are
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identically distributed with joint reliability function as in (3.4), with T representing this same
system with dependent component lifetimes governed by K and W .

Note that when K is the product copula (i.e., the components are independent), then the
function ḠW in (3.5) coincides with the function Ḡ in (2.3). Moreover, the function mW
exists and it is an increasing continuous function when the copula is absolutely continuous with
support [0, 1]n. As mentioned above, the existence and properties of the mean functionmW are
related to the concept of the diagonal section usually applied to copulas. The diagonal section
associated to the function W is defined as

δW (t) = W(t, . . . , t).

If W is the structure-dependence function associated with a coherent system then δW (t) is an
increasing function with δW (0) = 0 and δW (1) = 1. If δW is a continuous function then

δ−1
W (x) = inf{t : δW (t) > x}

is an increasing right-continuous function. Then,

mW(x1, . . . , xn) = δ−1
W (W(x1, . . . , xn))

is a mean function of W . Moreover, mW is right continuous and increasing. Hence,

ḠW (t) = mW(F̄1(t), . . . , F̄n(t))

is a proper reliability function with support included in [0,∞).
We can obtain additional signature representations when the survival copulaK is exchange-

able. A copula (or a function) K is exchangeable if

K(x1, . . . , xn) = K(xσ(1), . . . , xσ(n))

for any permutation σ of the set {1, . . . , n}. The new representation result is then as follows.

Theorem 3.2. If T is the lifetime of a coherent system with signature s = (s1, . . . , sn) and with
component lifetimes X1, . . . , Xn having an exchangeable copulaK and structure-dependence
function W with right-continuous increasing mean function mW , then

F̄T (t) =
n∑
i=1

siḠi:n(t), (3.6)

where Ḡi:n(t) = P(Yi:n > t) and Y1:n < · · · < Yn:n are the order statistics obtained from the
random variables Y1, . . . , Yn with joint reliability function as in (3.4).

Proof. Note that from Theorem 3.1 we know that T is equal in law to a coherent system with
component lifetimes having the joint reliability function in (3.4). Also, if K is exchangeable
then the reliability function in (3.4) is also exchangeable. Moreover, we know that represen-
tation (3.6) holds in the case of systems with component lifetimes having joint exchangeable
distributions; see [22]. Hence, we obtain the desired result.

As a consequence, we obtain the following ordering property.

Theorem 3.3. Let T and T ∗ be the lifetimes of two coherent systems with signatures s =
(s1, . . . , sn)and s∗ = (s∗1 , . . . , s∗n), and with component lifetimes having the same exchangeable
survival copula K . If s ≤st s∗, both systems satisfy the assumptions of Theorem 3.2, and the
reliability functions ḠW and ḠW ∗ defined by (3.5) are such that ḠW ≤ ḠW ∗ , then T ≤st T

∗.

Proof. The proof follows from Theorem 3.2 and Theorems 6.B.14 and 6.B.23 of [28].
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Using the preceding result, we can obtain similar representations based on series or parallel
systems as follows.

Theorem 3.4. If T is the lifetime of a coherent system with minimal and maximal signatures
a = (a1, . . . , an) and b = (b1, . . . , bn), respectively, and with component lifetimesX1, . . . , Xn
having an exchangeable copulaK and structure-dependence functionW with right-continuous
increasing mean function mW , then

F̄T (t) =
n∑
i=1

aiḠ1:i (t) (3.7)

and

F̄T (t) =
n∑
i=1

biḠi:i (t), (3.8)

where Ḡ1:i (t) = P(Y1:i > t), Ḡi:i (t) = P(Yi:i > t), Y1:i = min(Y1, . . . , Yi), Yi:i =
max(Y1, . . . , Yi), and the random variables Y1, . . . , Yn have the joint reliability function in
(3.4).

The proof is similar to that of Theorem 3.2. It is proved in [22] that representations (3.7)
and (3.8) hold in the case of systems with component lifetimes having joint exchangeable
distributions.

The next representation result shows that the lifetime of a coherent system with dependent
components is equal in law to the lifetime of a system with the same structure but with i.i.d.
components.

Theorem 3.5. If T is the lifetime of a coherent system with signature s = (s1, . . . , sn) and with
component lifetimes X1, . . . , Xn having structure-dependence function W , then

F̄T (t) =
n∑
i=1

siḠi:n(t),

where Ḡi:n(t) = P(Yi:n > t) and Y1:n < · · · < Yn:n are the order statistics obtained from the
i.i.d. random variables Y1, . . . , Yn with common reliability function

G̃(t) = h−1(W(F̄1(t), . . . , F̄n(t))),

where h is the reliability polynomial.

The proof is immediate from (3.3) and the definition of the reliability polynomial. This result
proves that if in some inferential procedures we only have information about the lifetimes of the
system (i.e., a sample T1, . . . , Tm of system lifetimes), then we cannot distinguish between a
system with dependent components and the system with the same structure and i.i.d. components
with common reliability function G̃. For further comments on such identifiability issues, see [4].

Finally, it should be mentioned that all the preceding mixture representations can also be
obtained for mixed systems.
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