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Baker-Type Estimates for Linear Forms in
the Values of g-Series

Keijo Vddndnen and Wadim Zudilin

Abstract. 'We obtain lower estimates for the absolute values of linear forms of the values of general-
ized Heine series at non-zero points of an imaginary quadratic field I, in particular of the values of
g-exponential function. These estimates depend on the individual coefficients, not only on the maxi-
mum of their absolute values. The proof uses a variant of classical Siegel’s method applied to a system
of functional Poincaré-type equations and the connection between the solutions of these functional
equations and the generalized Heine series.

1 Introduction

Let I denote the field of rational numbers or an imaginary quadratic field. In the
present paper we are interested in linear independence measures for the values of the
function

0 q—sn(n—l)/Z .
(1) P(2) = 1+;{P(l):})(qfl)...fp(q*(nfl))z ’

where s is a positive integer, g is an integer in I with |g| > 1, and the polynomial
P(z) € l[z] of degree < s satisfies the conditions P(0) # 0 and P(q~*) # 0 for
k=0,1,.... Two interesting special cases are the Tschakaloff function [Tsch]

Tq(Z) _ Zq—n(nJrl)/ZZn
n=0

and the g-exponential function

n

ad z ad z
FO =Y oy - L )

There are many results on linear independence measures of the values of T,(z),
for these we refer to [Bu]. Already Stihl [St] was able to obtain linear independence
measure for the values of ¢(z), if P(z) = (1 — a1z) - - - (1 — a;z) with non-zero a; € 1
and t < s. From Bézivin [Be] we obtain linear independence of the values of ¢(z)
also in the case degP = s, in particular, of the values of E,(z), but his proof is based
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on Borel-Dwork-type rationality criteria, see [A], and is not quantitative (at least
until now). The first quantitative linear independence measure for the values of gen-
eral ¢(z) was obtained in [Va2]. This paper uses Siegel’s method applied to a system
of functional equations of Poincaré-type and the connection between the solutions
of these functional equations and ¢(z) applied already in [AKV]. Another essential
ingredient is the use of Padé-type approximations of the second kind for these solu-
tions.

A variant of Siegel’s method can be used to get for the values of Siegel E- and
G-functions, a linear independence measure depending not only on the maximum of
the absolute values of the coefficients but on individual coefficients. Baker [Ba] was
the first to obtain such a result for the values of exponential function, and there are
a lot of later works of this type, see, e.g., [Fel, Fe2, Ma, Val, So, Zu]. Such measures
are not known for the values of g-series, and our aim in the present work is to give a
linear independence measure depending on individual coefficients of the linear form
in the values of ¢(z). Our approach is mainly based on the ideas used in [Va2] and
[So]. More precisely, we prove the following general result.

Theorem 1  Suppose that oy, . . ., oy, are non-zero elements of | satisfying o; # aqu,
I € 7, for alli # j. Further, suppose that either degP(z) < sor degP(z) = s and
a; #Pq i =1,...,m;n = 1,2,..., where P; is the leading coefficient of P(z).
Then for any given € > 0, there exists a positive constant C = C(¢) such that for all

integersly, Iy, . . ., Ly, of I, not all zero, we have
(2) o + Lip(a) + - + L) > C(Iy -+ Iy) 7197,
wherel; = max{1, |l;|},i=1,...,m, and
4spt +4(s+2)py + (s + 17
(. s) = 250 (s+2)po + (s +17)
4p0 — 13m
with
13m 13m\2 13m(s+2)+s+17
(3) pozpo(m,s)=T+ (T) + 1 .
s

Easy verification shows that
um+1,s) — pu(m,s) < 13s and pu(l,s) < 15s+5 form > 1lands>1,

hence p(m,s) < 13ms+2s+5forallm > 1ands > 1.

As a special corollary of Theorem 1, in which the exponent on the right of (2)
can be sharpened, we have the following result for the values of the g-exponential
function.

Theorem 2 Suppose that oy, . . ., oy, are non-zero elements of | satisfying o # —q",
i=1,....myn=12,...,and a; # aqu, 1€ 7, foralli # j. Then there exists a
positive constant C' such that for all integers Iy, 11, . . ., L, of I, not all zero, we have

(4) Iy + hEy(ar) + -+ - + LuEg(u)| > C'(Iy - - - I,,) = G4m+10/2,
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Theorems 1 and 2 improve the corresponding results of [Va2] in the case of archi-
median valuation and the field I. Our theorems also partly sharpen the results of
[St] when t < s. We also note that it would be possible to consider non-integral
q € 1, if the denominator is sufficiently small in comparision to |q|, but for the sake
of simplicity we assume that g is an integer.

Remark 3 As shown in Section 6 below, the exponent on the right of (2) in The-
orem 1 can be also sharpened for the values of the Tschakaloff function. Namely,
assuming that non-zero elements ay, . .., a,, of I satisfy o # «;q', 1 € Z, for all
i # j, with some positive constant C’’ we have the estimate

(5) |ZO + ll Tq(al) t--t lmTq(am)| > C//(l_l e l_m)_(17m+9)/23

where Iy, I, ..., l, are any non-trivial integers of I. But the estimate (5) is weaker
than the earlier results obtained by using explicit Padé approximations (see [Bu, St]).

2 A Difference Equation

We shall consider the g-difference equation
(6) az f(z) = P(2) f(qz) + Az),

where s is a positive integer, o € Il is non-zero, and P(z), Q(z) € ll[z] satisfy P(0) # 0,
Q(z) # 0,and t = degP < s. Let us write an analytic solution (at z = 0) f(z) of (6)
as a power series

fla)=> f.2"

v=0

By denoting
t u
P)=> P, Q=) 97
i=0 i=0

and using (6) we then obtain

t
(7) fpoq” I/Z_Zipiquiifl/—i_Ql/a UZO,I,...,S—I,

i=1

t
Toqyfu == afu—s - Z (-Piqyiifl/—i - QI/7 1% Z S,

i=1

where we agree that f, = 0 forall v < 0 and Q, = 0 for all v > u. By (7) it follows
that

(8) F, =P g P, € 2], P, Qiq], v =0,1,...,
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and the degree of F, with respect to o, P;,Q; is < v + 1 and with respect to g is
< v(v+1)/2. Furthermore the recursive formulae (7) also imply, as proved in [AKV],

that
) [l < Cr,
where C; (as also C,,Cs, ... later) is a positive constant depending on s, g, « (or o

later), P(z) and Q(z) (or Q;(z) later). We also note that by using (6) the function f(z)
can be continued meromorphically to C.
The functional equation (6) implies

—sn(n 1)/2 —n
Z 22 ) gy,
Plzq=1) - - Plzg™™)

if P(zg™%) # 0,k =1,2,.... f Q(z) = —P(z), then f(q) = ¢(a) in (1), and thus
we can consider linear independence of (1), . . ., ¢(cu,) by considering a system of
difference equations of the type(6). In particular,

(i) s=1,P>2) =q—z
gives the g-exponential function E,(z), while
(i) s=1,P(@)=¢q

gives the Tschakaloff function T;(z). Note that in these two cases we have

v—1
(10) F,=qa[](a+q)) in(@),
j=1

F, = qa” in (ii).

Still another consequence of the difference equation is the iteration equation
(11) (az')*q* f(zq7%) = Xi(z,q) f(2) + Yi(z, q),
where (see [AKV, Lemma 3])
k .
Xk(Z, q) — qsk(k+1)/2+uk H ‘:P(Zqij)
=1

is independent of o and Q(z), and

k k

Yk(Z, q) _ Z(oéZS)jf1qS(k(kJrl)/Z*j(j*l)/2)+qu(Zq7j) H .:P(qul)
j=1 I=j+1

Further, we have

(12) [Xi(z, )| < Chlql* 7 max{1, [},
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3 An Analytic Construction

Let oy, ..., a, € land consider a system
(13) ;7 fi(z) = P(2) fi(qz) + Qi(2), i=1,...
of difference equations, where Q;(z) € l[z], Q;(z) # 0. Let

o0
ﬁ(z):zﬁyzy’ i:1,...,m,
v=0

151

’m7

be the analytic (at z = 0) solution of (13). We shall construct Padé-type approxima-

tions of the second kind for these functions.

Letny, .. ., n, be positive integers, N = ny+- - -+n,,, and choose §,0 < § < 1/m,
such that
(14) n; >0N, i=1,...,m.

We are looking for a polynomial

puz
(15) P(z) = Z pu(p— 1)/2
p= 0
with integer coefficients p,, € I, such that forall i = 1, ..., m the expansion

P(2)fi(z) = Y qud*
k=0

satisfies the conditions g;x = 0fork=N+1,N+2,... N+n; —

0o k

fivPr—v k
P(z)ﬁ(z)=2 Z P = h—r—1)27
0

= v=0
v>k—N

k:0 O

|\/t

k
> Fiqu—y
Z Z fP qk(kfl)/2+u(ufk+1)

[6N] — 1. We have

k

5,

where, analogously to (8), F;, = Py*'g"@+V/2f, . Thus the condition g = 0 for

k > N is equivalent to
k

(16) Y P a" T Eype, = 0.

v=k—N
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We now choose natural numbers A and B in such a way that the numbers Ac;
and the coefficients of BP(z) and BQ;(z) fori = 1, ..., m are integers in [. Multiply-
ing the equation (16) by (AB?)* we thus obtain a linear equation in P, with integer
coefficients from |l satisfying, by (8) and (9),

|C0€fﬁC1€I’1tS| < C4 II\Trlgx<k{ ‘q‘u (v+1)/2+(v+1) (k—v } < Ck|q|k /2

We need the condition gjx = 0fork=N+1,N+2,...,N+n; — [0N] — 1, and for
these k we have

k<N+n—6N=N+(N—-n;, —--+—#j_; —fjy; — - — ) — ON
< 2N — moON
by (14). Thus the absolute values of the coefficients are bounded by

Cé\7|q|(2N7m(5N)z/2.

The number of linear equations g;; = 0 is equal to
Z(n, [6N] — 1) = N — m([0N] + 1),

and the number of indeterminates p, is N + 1. Therefore Siegel’s lemma (see, e.g.,
[Sh, Chapter 3, Lemma 13]) yields the existence of integers p,, € I, not all zero, such
that

(2 — mé)*(1 — md)
2mé '

(17) b <CYl"™N, 4 =) =

By using (10), we see that in the special cases (i) and (ii) we can replace v,(d) in (17)

by

; (3 —2md)(1 — md) i 1
(18) A0 (8) = - and AV(6) = (@),
respectively.

Let us define
N
Qi(z) = Zqikzk, i=1,...,m.
Since, for k < N,
k k v(k—v)

o fiquﬂ/ ka vq
qik = Z m Z Tyﬂ k(k—1)/2+v

v=0 v=0

https://doi.org/10.4153/CMB-2005-013-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2005-013-5

Baker-Type Estimates for Linear Forms in the Values of q-Series 153

it follows that the polynomials
qN(NJrl)/Z(ABZ)NJrIQi(Z)

have integer coefficients in .
By (9) and (17), for all kK > N, the following estimates hold:

fka v k+1 ~N| 71 N 1
|sz\ *’ Z q(k D k—v— 1)/2 <C C |q|’) ‘ Z ‘q‘k v)(k—v—1)/2
v=k—N

< Chlg"™".

By defining
Ri(z) = P(2) fi(z) = Qi(2),  i=1,...,m,

we then obtain, for all |z| < (2Cg) ™},
(19) mmﬁZwkM“wagwww,
k=N

where N; = N+n; — [6N],i=1,...,m
We have thus proved the following

Lemma 4 There exists a polynomial

a puz
o "
P(z) = gD/ #0
pn=0

with integers p,, € I satisfying (17) such that the polynomials
qN(Nfl)/ZP(Z)’ qN(N+1)/2(ABZ)N+1Qi(Z)
have integer coefficients in | and the forms R;(z) satisfy the estimates (19) for all |z| <

(2Cg)~ L

4 An Iteration Process

Let
Py(z) = P(2), Qui(2) = Qi(2), Roi(2) = Ri(2),

and define further
(20) Pj(z) =2'Pj_1(q2), Qji(2) = —a; ' (P(2)Qj_1,i(q2) + Qi(2)Pj_1(q2)) ,
wherei=1,...,m,j=1,2,.... If

Rji(z) = Pi(2) fi(2) — Qji(2),
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then from the functional equations (13) it follows that
(21) Rji(z) = o 'P(2)Rj_1;(qz), i=1,....m, j=12,....

We are interested in the determinant

Py(z) Qui(z) ... Qom(2)
A(z) = det Pi(z) Qulz) ... Qim(2)
Pu(@ Q@) ... Qunl@
Py(z) Roi(z) ... Rom(2)
— (—1)" - det Pi(z) Ru(z) ... Riu(2)
Pu(®) Ron(2) ... Rom(@)

Assume now that none of the functions f;(z) is a polynomial and that o; # « qu,
1€ Z,foralli # j. Furthermore, let & # 0 be an element of I satisfying P(aq~*) # 0
fork=1,2,.... Then (see [Va2, Lemma 3]) A(z) # 0. Since

ord,—gA(z) > N;y+---+N,, > (m+1)N — méN

and
deg, A(z) < (m+ N + s@,

where S = max{s, deg Q;(z) }, we deduce that for each p > md, there exists an integer
k satisfying (see [Va2, Section 5])

(22) (p—mé)N—S@ <k <pN
and
(23) Aag™) #0.

Let us take

Dk _ (AB)NH(AIB)mAgHsqu(NH)/2+k(N+5m),

A; and A, are nonzero rational integers such that A ¢ land Ay« are integers in I.
By Lemma 1 and the recursions (20) it then follows that the numbers

DiPi(aq™ ), DQjiaq™)
are integers in I. Furthermore, by (15), (17) and (20),

24)  [Pjlag™®)| =g/ 2aq 7} [Plag’ ™) < CRlg"™Y, j=0,1,....m,
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and by (19) and (21),
(25) \Rﬁ(aq*k” = |Ot,47j‘.P(o¢q7k) . ~T(aq7k+j*1)| |R,‘(aqj*k)|

< CNJgmN RN =01

J1,...,m

3

if 2Cslal |q|™ < |qI*.
We now denote 4 = max;<;<,{deg Qi(z)} and use (11) to obtain

(26) i = (@ia’)'q"Rjilaqg™)
= Xi(ar, @)Pj(aq ") fil@) + (Yi(a, 9Pj(aq ™) — (i) g Qji(aq™™))
=: pjfila) — gji.
Assume now that k satisfies (22) and (23). Let
rii = (BA)Ditji =: pjfila) — qji.

Then all p;, g;; are integers in I and by the above consideration and (25) and (26) we
obtain

|r]_i| < CII\;|q|N2(71+1/2)—(p—m6)N(Nf—N) < C%|q|72N2_(”_m5)N”f,
(27)

1
Y2 =708, p) = n(d) + 7 +d(p — md),
provided that |g|*~"N > C13, and by the estimates (12) and (24) we have

20 p) N2
‘pj‘ < Cﬁ|q|N (y1+1/2+p+sp /2) _ Cﬁ|q| 3N’ 7

(28) )
Y3 =700, p) =) +p+ 5(1 +5p?).

Finally, we note that

Po dqo1 .- Gom
(29) det | P A oo im
pm le Qmm

— ((BA;)ka) mHXk(a, q)A(aq*k)(q“as)mk H ai-‘ £ 0.
i—1

5 A Number-Theoretical Result

We shall require a more useful notation py = p — md. Suppose that

m(y +1/2)
1—m§
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Then
1 1
po —my2 = po — M(% t3 —5P0) = po(1 —md) — M(% + 5) > 0.

Next take an arbitrary number € > 0 satisfying

€ < Po — My
2m

so that we have py — m(7y, + 2¢) > 0, and define
)\0 = max{ 671 log‘ql max{Zm, Clz, C14}, 1+ 671(77’[ + l)po, m+ po_l log‘ql C13} .

Then, for any A > Ay, we have

(30) max{2m, C15,C14} < |q|,
(31) (m + 1)p0 < 6()\ - 1)7
(32) Cis < |g*=™.

Set Ly = |g|(0—m02+2) and consider an arbitrary linear form
(33) C=lh+hfila)+ -+ Lnfm(a),

with integc_er coefficients I; € 1, not all zero, satisfying the condition L = L1, >
Ly, where [; = max{1, |l;|} fori = 1,...,m. Define

(34) N\ = log¢ Y
po — m(yy + 2€) 0

(thanks to the definition of Ly) and

(35)

loglq‘l_i+)\2(’}/2+2e)
ni:{ ], 1=1,...,m.

PoA

Since _
" log, I + A2(7y; + 2€) log, L+ mA2 (7, + 2¢)

Z PoA PoA A

i=1

we deduce that
(36) A—m<N=m+---+n, <A\
In addition,

log, I + M2(v, + 2¢)
. 8|q| b 72 _1>’yz+2€

A—1
’ PoA )

N 1 N
>p— = (71+—+6p0)— > 0N
Po 2 Po
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as required.
We now choose k satisfying (22) or equivalently, (23) and

poN — s@ < k< (po+ md)N.

For the given linear form (33) there exists, by (29), an index j € {0, 1,...,m} such
that
A=hpj+hLgp+ - +1l.qjm #O0.

Since A is an integer in I, we have |[A| > 1. By denoting for brevity p = pj, i = q;i
and r; = rj;, we then obtain by (27), (28), (30) and (36)

N2 " 2
|pl < Clilg[™™ < |q| 9,

;| < Cﬁ\q\”/zNz’poN”f < |q|("/2+f)/\2*/70()\*m)”1;
note that we may use (27) by (32) and (36). Since

l_i < |q|/)0/\(n,-+l)—/\2('yz+26)

by (35), we obtain foralli = 1,...,m
l_i‘ri| < |q|—6)\2+p0)\(n,'+1)—p0()\—m)n,'

— 2 —
< |q| EN“+po A +pomA _ |>\( eA+(m+1)po)

lq
<lgI™® by (3D)

1
<. (by (30)).

By the relation

pl=hp+hpfila) +---+1L,pfna)
=hp+h(n+q)+-+L(rm+qm)
=A+hr+- -+ lutm
we thus derive an inequality

m m 1

mo 1
> - E 7l >1 = E P _ Z.
|p€| = |A‘ |11T1| >1 - ll|7’,| > 1 2 = 5

i=1 i=1

Finally, using the definition (34) of A we obtain

> (2p)" > %‘q‘—mﬂw _ %L—(v3+e>/<pn—m(~/z+zs>)_

Since € > 0 is arbitrary, we can state the final result in the following form (we set
dp = md).
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Theorem 5 Suppose that none of the functions f1(z), ..., fu(z) is a polynomial and
that o; # g, 1 € Z, foralli # j. Let v # 0 be an element of 1 satisfying P(aq ") #
0,k=1,2,.... Let

50Po

2—380)*(1 =46 1
m 72(507/)0):71"'—"'77

’71(50) = 26, ) B

1
Y3(00, po) = Y1 + 0o + po + 5(1 +5(80 + po)?) ,

where 0 < &y < 1, pg > 0 and, in addition,

m(y1 + 1/2).

>
Po 1— &

Then for any €y > 0, there exists a positive constant Co = Cy(e) such that for any
integers Iy, Iy, . . ., L, of 1, not all zero, there holds the inequality

o+ hfilc) + -+ + Iy fn()| > Co - (Iy - - - L) /(=)=
where [; = max{1, |l;|} fori = 1,...,m.

Remark 6 From the above proof we can see that the construction used here does
not work in the p-adic case. For the p-adic case it is obviously necessary to change
the construction in such a way that the dependence on the individual #; is in the
polynomials Q; instead of the forms R; (see [Val]).

6 Proof of Theorems 1 and 2

In the proof of Theorem 1 we use the fact fi(q) = ¢(ay) if Qi(z) = —P(2), 1 =
1,...,m (see Section 2). By the assumptions of Theorem 1 it follows that the corre-
sponding fi(z) ¢ ll[z], for the details we refer to[AKV]. Thus we may apply Theorem
3 to get a result with

Y3 - 4 — 750(1 — 50) - 58 + 250p0 + 505(50 + po)z
po—my,  28(1—3g)py — m(4 — 78 + 502 — &3)

(38)

instead of p(m, s). We now choose dg = 1/2; then py = po(m, s) given in (3) admits
the minimum value p(m, s) for the above expression (38) (in the case o = 1/2).
This proves Theorem 1.

Theorem 2 and Remark 1 follow by noting that the choices (i) and (ii) give the
functions E,(z) and T,(z), respectively. Thanks to (18), we may replace 7;(do) in
(37) by
(3 —260)(1 — do)

(@) _
M (60) = 25,

in the case (i) and by
ii 1
7" (d0) = 57(8)
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in the case (ii). Next take (58” =2/5, (5(()ﬁ) = 1/3 and the corresponding values pg) (m),
pg‘)(m) that minimize the exponent 3 /(py — m;). Let u¥(m) and p (m) denote
the minimal exponents. It follows easily that

pP1)=17.14--- and pVm+1)—pV(m) < 12 form > 1,

p(1)=12.98--- and pWm+1)— pPm) < 8.5 form > 1,

and as a consequence we arrive at the desired estimates (4) and (5). The proof of
Theorem 2 and Remark 1 is complete.

Remark 7 Taking 68” = 4/9 we arrive at the better exponent 11.79m + 5.27 for
m > 10in (4).
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