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Perfect crystals are rare in nature. Many of the real materials contain crystal defects and chemical 
order/disorder including grain boundaries, dislocations, interfaces, surface reconstructions and point 
defects that disrupt the periodicity of the atomic arrangement and determine their properties and 
performance [1-3]. One prominent example is intermetallic compounds involving two or more atomic 
species, in which chemical order/disorder determines their mechanical, catalytic, optical, electronic and 
magnetic properties [4-6]. For instance, as-synthesized at room temperature, FePt nanoparticles and thin 
films with a near-1:1 composition have a chemically disordered fcc structure (A1 phase) [5,7,8]. When 
annealed at high temperatures, they undergo a transformation from an A1 phase to an ordered face-
centered tetragonal (L10) phase. Due to the chemical ordering and strong spin-orbit coupling [8], L10 
FePt exhibits extremely large magnetocrystalline anisotropy energy (MAE) and is among the most 
promising candidates for next-generation magnetic storage media [7]. However, although this material 
system has attracted considerable attention, a fundamental understanding of 3D chemical order/disorder, 
crystal defects and its magnetic properties at the individual atomic level remains elusive. 
 
Using atomic electron tomography (AET) [1,9-14], we determine the 3D coordinates of 6,569 iron and 
16,627 platinum atoms in an FePt nanoparticle to correlate the 3D atomic structure with material 
properties at the single-atom level [15]. We identify rich structural variety and chemical order/disorder 
including 3D atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and 
swap defects. We show for the first time that experimentally measured 3D atomic coordinates and 
chemical species with 22 pm precision can be used as direct input for first-principles calculations of 
material properties such as atomic magnetic moments and local magnetocrystalline anisotropy. This 
work not only opens the door to determining 3D atomic arrangements and chemical order/disorder of a 
wide range of nanostructured materials with high precision, but also will transform our understanding of 
structure-property relationships at a fundamental level [16]. 
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Figure 1. 3D determination of atomic coordinates, chemical species and grain structure of an FePt 
nanoparticle. a, Overview of the 3D positions of individual atomic species with Fe atoms in red and Pt atoms 
in blue. b, The nanoparticle consists of two large L12 grains, three small L12 grains, three small L10 grains and 
a Pt-rich A1 grain. c, Multislice images obtained from the experimental 3D atomic model along the [100], 
[010] and [001] directions, where several ‘L10 grains’ (magenta) appearing in the 2D images are deceptive 
structural information. Scale bar, 2 nm. [Ref. 15] 
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