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A NOTE ON THE ENTIRE CYCLIC COHOMOLOGY 
OF A FINITE DIMENSIONAL NONCOMMUTATIVE SPACE 

SLAWOMIR KLIMEK AND ANDRZEJ LESNIEWSKI 

ABSTRACT. We present sufficient conditions for entire cyclic cohomology to re­
duce to ordinary cyclic cohomology. These conditions are characteristic for finite di­
mensional (noncommutative) spaces. 

1. Introduction. Cyclic cohomology is an extension of de Rham cohomology to 
arbitrary (noncommutative) algebras. This cohomology plays a central role in noncom­
mutative differential geometry [C1 ] and has found important applications in ordinary dif­
ferential geometry, see e.g., [CGM]. It is believed that to handle infinite dimensional sit­
uations, like the noncommutative structures arising from supersymmetric quantum field 
theory, a different cohomological setup is relevant. This cohomology, called entire cyclic 
cohomology, was introduced in [C2] and further studied in [JLO], [KKL], [KL] and ref­
erences therein. 

In this note we address the problem of the relationship between entire cyclic coho­
mology and ordinary cyclic cohomology. We describe a set of sufficient conditions under 
which the two cohomologies are isomorphic. A typical sign of "finite dimensionality" 
in noncommutative differential geometry is that Hochschild cohomology of the corre­
sponding algebra vanishes beyond a certain dimension (known as the Hochschild co­
homological dimension). As a consequence of Connes' long exact sequence, the cyclic 
cohomology groups stabilize starting with this dimension, and the limiting groups cap­
ture all the cohomological information. The main result of this note shows that under 
some additional technical assumptions, these limiting groups are isomorphic to the en­
tire cyclic cohomology groups. 

The paper is organized as follows. In Section 2 we introduce the notion of an entire 
mixed complex. This is an entire version of the notion of a mixed complex of [K]. Ex­
amples of entire mixed complexes are the entire cyclic complex and its equivariant gen­
eralization. In Section 3 we formulate and prove the retraction theorem, which reduces 
entire cyclic cohomology to cyclic cohomology. Section 4 contains a simple application 
of the theorem, namely the computation of entire cyclic cohomology of the algebra of 
square matrices with complex entries. 
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2. Entire mixed complexes. 
(A). Let A: be a Banach algebra over C. Recall [J], [BD] that M is called a left Banach 
k-module, if (a) M is a complex Banach space; (/3) M is a left ^-module; (7) there is a 
constant D such that 

(2.1) ll*mll — D\\x\\ llmll> 
for all x e k, m e M. Let Crt, n — 0 ,1,2, . . . , be a sequence of left Banach ^-modules 
satisfying the following uniformity condition: There is a constant L such that the constant 
D is (2.1) can be chosen to be equal to Ln, for all x E k, m G Cn. 

Let bn\C
n —> Cn+l,n > 0, and#n: Cn —> Cn_1, n> 1, be continuoushomomorphisms 

of left Banach ^-modules obeying the following algebra: 

(2.2) bn+{bn = Bn-{Bn = fc„_i#n + £„+i£„ = 0. 

We can thus think of bn as a coboundary operator and of Bn as a boundary operator. We 
require also that there is a constant C such that 

(2.3) \\bn\\<Cn, « > 0 , 

and 

(2.4) ||£„|| < O i , n > l . 

(#). The entire mixed complex (C*, 3) is defined as follows. We consider the space C 
of all sequences/ = (/b,/i,/2, • • .)>/« £ C" s u c n m a t f° r all ^ > 0» 

(2.5) ll/ilU := 2Z v^ll/nll^'1 < oo. 

Observe that for x € k,xf \— (xfo,xf\,...), we have 

(2-6) ||x/||„ < \\f\\u,H\, 

Le.,xf G C. We set 

(2.7) WoJU'^Jn^.^ — iB^M^+B^^.Mn^Bn^n^^^ 

Then 3 is a continuous homomorphism of C into itself and obeys 

(2.8) 32 = 0. 

We now write C = Ce 0 C°, where C<? is the space of all sequences (/b J2 , . . . J2/,...)» 
and where C° is the space of all sequences (/i,/3,.. . ,/2/+i,. • •)• Then 3 induces two con­
tinuous homomorphisms 3: C° —• C*, and 3: Ce —>• C°. The complex 

(2.9) > c* -JU c° JL> c — 

is called an enft're mixed complex. We denote its cohomologies by //e and H°. 

(C). Let G be a finite group, and let k — R(G) be its group ring. Let A be a unital Banach 
algebra with a G-action. The equivariant entire cyclic complex (CQ(3L), 3) of [KKL] is 
then an example of an entire mixed complex. The special cases of G = {1} and G = Z2 
were discussed in [C2] and [JLO]. 
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3. The retraction theorem. 
(A). Let (C*,3) be an entire mixed complex. By (Q,3) we denote the subcomplex 
of (C*, d) consisting of cochains with finitely many non vanishing components (note that 
(Q, d) is a mixed complex in the sense of [K]). We equip Q with the topology of a direct 
sum. Let /: CQ —• C* denote the natural embedding. Clearly, id = di. A continuous k-
homomorphism r: C* —> CQ is called an approximate chain homomorphism, if there are 
continuous &-homomorphisms p: CQ* —•» C* and cr: C* —> CQ* such that 

(3.1) rd-dr=dp = ad. 

A continuous &-homomorphism r: C* —* (T0* is called 
ditions are satisfied: 

(a) r is an approximate chain homomorphism, 
(/?) there exist two continuous &-homomorphisms 

(3.2) / r - / = 3 s + f3, 

(7) there exist two continuous &-homomorphisms u, v: CQ —* CQ* such that 

(3.3) ri-I = du + vd. 

The following proposition is an immediate consequence of this definition. 

PROPOSITION 3.1. If there is a retraction between C* and Q, then H*(Q = H*(C6), 
algebraically and topologically. 

Below we formulate a set of sufficient conditions under which an entire mixed com­
plex C* can be retracted to Q. 

(B). Let (C*,d) be an entire mixed complex and let d(C*) denote the smallest integer 
such that for each n > d(C*) there is a fc-homomorphism Jn:C

n —> Cn~l with the fol­
lowing properties: 

(a) Jn is continuous and 

(3.4) \\Jn\\<K, 

uniformly in n, 

(/?) for n>d(C*\ 

(3.5) bn^\Jn + Jn+\bn — In, 

where /„ denotes the identity on Cn. 
If no such integer exists, we set d(C*) — oo. An immediate consequence of (3.5) is that 
the cohomologies of bn vanish for n > d(C*)-

The following theorem is the main result of this note. 

a retraction, if the following con-

s, t: C* -* C* such that 
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THEOREM 3.2. Let (C*, 9) be a mixed entire complex with d(C*) < oo. Then there 
exists a retraction r between ( C , d) and ( Q , 3). 

The rest of this section is devoted to the proof of this theorem. We proceed in steps. 

(C). Let r: C —• Q be defined as follows. For/ G C* we set 

10, i f n > n o , 

/n + E / > l ( - i y f i n + l / « + 2 • • • Bn+2j-lJn+2jfn+2j, if n = fl0 ~ 1, n 0 , 

/n, i f n < n 0 - l , 
where no = d(C*). We show that the series defining rf converges absolutely. Indeed, for 
n = no — 1, no, 

IKrA.ll < £(C*y(n + l)(i + 3) • • • (n + 2/ - DI^H 

< c(n!rl/2 E((*+zoo1 V I M < c(^r1/2r iu, 
where £ and 77 are constants. It is clear that (rf)n is a fc-homomorphism. Therefore, (rf)n G 
Cn. To simplify the notation we will sometimes suppress the subscripts and write 

(rf)n = ï2(-iy(Bjyfn+2j. 
j>0 

(D). We assert that r is an approximate chain homomorphism. For/ G C* we set 

f - ^j>o(-iy(BJyfn+2j, if n = n0, 
(3.7) (p/)n - < - Zj>0(-iy(BJy+lfn+2j+2, if n = no - 2, 

10, otherwise, 

and 

f - Xj>o(-mBjyfn+l+2j, if n = no + 1, 
(3.8) (af)n = - E7>o(-iy'(^+1/z+i+2> if n = no - 1, 

10, otherwise. 

Estimates similar to those of (C) show that (pf)n, (of)n G Cn. We assert that rd — dr = 
dp = ad. Clearly, (rdf)n - (drf)n = (dpf)n = {adf)n = 0, if |n - n0| > 1. If n = n0 - 1, 
then 

(3.9) (rdf)no^-(drf)no^ = J2(~iy(Bjybfno-2+2j^(-^(Bjybfno+2j = (ad /V- i . 

On the other hand, we can write (3.9) as 

-BJbfno + J2(-iy(Bjy(B - BJb)fno.,2j = -Bfno - bBJfno - Y;(-inBjybBJfno+2j. 

Using the identity 

(3.10) (BjybBJ = b{Bjy+\ 
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valid for j > 1, we can rewrite this expression as 

-Bfno-b^2(-iy(Bjy+lfno+2j = -Bj:(-iy(Bjyfno+2j-b^(-iy(Bjy+lfno+2j 
j>0 j>0 j>0 

= @Pf)no-U 

as asserted. If n — no, then 

(rd/)no - (drf)no = Y^(-iy(Bjybfno^+2j + Z(-iy(BjyBfno+l+2j 
j>0 />0 

(3.11) ^ 
-b^-mBjyfno-i+y. 

Using the identity 

(3.12) (Bjyb - b(Bjy = (Bjy~lB, 

valid for y > 1, we note that the first and third terms on the right side of (3.11) add up to 

^(-\y(Bjy-lBfno_l+2j = -^(-iy'(^yyB/no+1+27-, 

and thus (rdf)no - (drf)no = 0 = (dpf)no = (adf)no. Finally, let n = n0 + 1. Then 

(rdf)no+l - (drf)no+l = -bJ2(-iy(Bjyfn0+2j = O p / W i . 

On the other hand, using (3.10) we find that 

= -£(-! 
: (o-9/)no+i 

-bYX-mBjyf^ij = ~J2(-iy(BjyBfno+2+2j - £(- iy ' (£W„ 0 +2,-
7>0 y>0 ;>0 

as asserted. 

(E). Now we verify that / and r satisfy conditions (/?) and (7) of (A). To prove (3.2), we 
set for/ G C \ 

n i ^ ( A - J 0 ' i f / i < d ( C * ) - l , 
(J. u ; W „ - | ^l(-iyj(Bjy~lfn+2^u ifn > d(C), 

and 

n M Ï (tf\ - J 0 ' i f n < d ( C ) , 
( ' W)n "" i E y M t - i y A B / r V W - i . i f « > d (C) + I-

We assert that s and t are continuous fc-homomorphisms of C* into itself. Indeed, for 
n > d(C), 

II(sf)n\\ < E ^ - ' « ' ' ( B + 2)(n + 4) • • • (n + 2/)|lf»+?,--i || 

< ( n ! r , / V i : C y ' ( ( " + 2/-l)!) , / 2 |[/„+2 J-i | | , 
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where r\ and £ are constants. Choosing R > r/^1/2 we find that 

Y, (n\)l/2R"\\(sf)n\\ < E ( W E C ( ( « + 2 / - l)!)'/2|[/n+2,-i|| 
n>d(C) «>0 j>\ 

< const EC m / V!) 1 / 2 | i / m | | , 
m>0 

(3.15) | |s/ | |«< const \\f\\çi,2. 

As a consequence, s exists and is continuous. Similar estimates show the existence and 
continuity of t. It remains to show that the algebraic identity (3.2) holds. There is nothing 
to prove if n < d(C*) - 1. If n = d{C*) - 1, then 

((ds + td)f)n = (dsf)n = (Bsf)n 

= Yi-WiBJiUy = {{ir-W)n, 

as required. A similar calculation shows that the identity holds for n — d(C*). If n > 

d(C*), then 

((ds + td)f)n = b(sf)n^+B(sf)n+l + (t(bf))n + (s(Bf))n 

= ^2(-\ybj(Bfrlfn+2j~2 + Z(-\y(Bjyfn+2j 

+ E(-iywjy~lbfn+2j-2 + ^(-iy(Bjy-lBfn+2j. 

Shifting the summation index in the first and third sums we can rewrite this expression 
as 

-bjfn - jbfn + Y£-iy{-bJ(Bjy + (Bjy - j{Bjyb+j(Bjy-lB}fn+2j 

= -fn + Y,(-iyj{t>(Bjy - (Bjyb + (Bjy~l B}/n+2p 

which by (3.12) equals - /„ . But ((/r - /)/) = - /„ , for n > d(C\ and (3.2) is proven. 

To prove (3.3), we define u and v to be the restrictions of s and t to Q , respectively, 

and repeat the above arguments. 

(F). As an immediate consequence of Proposition 3.1 and Theorem 3.3, we obtain 
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COROLLARY 3.3. If(C,d) is an entire mixed complex with d(C*) < oo, then 

(3.17) H\C) = H\a\ 

algebraically and topologically. 

4. Application: entire cyclic cohomology of Mat#(C). 
(A). In this section we apply the retraction theorem to compute the entire cyclic co­
homology of the algebra A — Mat^(C) of N x N matrices with complex entries. Let 
(C*(fl), 9) denote the entire cyclic complex of A [C2]. 

LEMMA 4.1. d(C*(X)) = 1. 

PROOF. Let {Ea(3}, 0 < a, f3 < N, be the standard basis for Mat#(C), (Eap)a>p> := 

àaa'àpp' - Recall that 

(4.1) EapEa>p = 6pa>Eapr. 

We set for m, G MN(€) and n > 1, 

(4.2) (Jnfn)(m0,mu...,mn-i) := - J ] (mo)apfn(Eoa,E1p,mu . •. ,mn_i). 
^ <*,/3,7 

Clearly 

|(y/„)(m0,mi,...,mn_i)| < ~I]]Cll/àll l l ^ l l |ZKmo)a^7/3|| ]1 IKI 
7 a 1 </<#!-1 

<<w„n n IHI. 
i < / • < « - 1 

uniformly in n. We assert that (3.5) is satisfied for all n > 1. Indeed, 

(bn-lJJn +Jn+\bnfn)(jno,mU • • • , mn) 

= Y, (-iy(Jnfn)(mo, • • •, mjntj+u . . . , mn) 
0<j<n-l 

(4 3) 
+ (-l)n(Jnfn)(mnmo,mu...,mn-i) 
+ TT S (^o)ap(b,fn)(Eorf,Eip,mu...,mn) 
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= TT Z (mom\)apfn(EorhElf3,mu . . . ,m„) 

+ 77 Z Z (mo)apfn(Eai,E1[3, m\,..., m/m/+i,...,ra„) 
^ 1 < / < « - 1 «,/3,7 

+ T ^ - 1 ) " Z (mnmo)a$fn(EalE1(j,mu . . . ,mn) 

+ TT Z (rnç))apfn(Eal,E1(5,mx,... ,m„) 
^ a,/3,7 

~ 77 Z (mo)aiifn(Eca,E1p,murn2,... ,m„) 
^ a,/3,7 

+ - Z (—i)7"4"1 J2(m^a(rfn(Ecn,E1[5,mu...,mjmj+u...,mn) 

+ - , ( - l ) n + 1 Z (rno)apfn(mnEal,E1(3,mu... ,m„_i). 
^ a,/3,7 

Using (4.1) we derive the following identities: 

(4.4) — ^ (m0)af3EalE1(3 = m0, 
^ a,/3,7 

(4.5) 5Z (mo)apfn(Eal, Eyp, m\,m2,...,mn)= ^ (m0mi)a(ifn(Eal, £7/3, m2 , . . . , m„), 
a,/3,7 a,/3,7 

(4.6) 
Z (m0)apfn(mnEal,E1(5,mu-.. ,m„_i) = ]T (mnm0)apfn(Eal,Eip,m[,.. .,m„_i). 

ar,/3,7 a,/3,7 

As a consequence of these identities, the right side of (4.3) equals/n(rao, mi , . . . , mn) and 
the lemma is proven. 

(B). The above lemma allows us to compute H*(C(^L)). 

PROPOSITION 4.2. For « ^ N > 1, 

/r(c(MaW(C))) ^ C , 

//°(c(Mato(C))) ^0. 

PROOF. By Corollary 3.4, the entire cyclic cohomology of Matw(C) is isomorphic to 
the ordinary cyclic cohomology //C*(Mat#(C)V It is, however, well known that 
HC2n(MztN(C)) ^ C, and//C2n+1(Matyv(C)) ^ 0. 
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