Proceedings of the Edinburgh Mathematical Society (2014) **57**, 575–587 DOI:10.1017/S0013091513000709

UNIFORM BANDS

JUSTIN ALBERT AND FRANCIS PASTIJN

Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI 53233, USA (justin.albert@marquette.edu; francis.pastijn@marquette.edu)

(Received 16 March 2012)

Abstract A semigroup B in which every element is an idempotent can be embedded into such a semigroup B', where all the local submonoids are isomorphic, and in such a way that B and B' satisfy the same equational identities. In view of the properties preserved under this embedding, a corresponding embedding theorem is obtained for regular semigroups whose idempotents form a subsemigroup.

Keywords: band; uniform band; orthodox semigroup; bisimple semigroup; variety

2010 Mathematics subject classification: Primary 20M19 Secondary 20M07; 20M17; 20M18

1. Introduction

We follow the notation and terminology of [2, 3, 13, 14, 25]. In the following, we recall the relevant facts.

A band B is a semigroup in which each element is an idempotent. The class of all bands forms a variety B of semigroups. A subvariety of B is also an equational class, that is, consists of all the bands that satisfy a given set of equational identities. The lattice $\mathcal{L}(B)$ of subvarieties of B is countable and completely distributive; we refer the reader to [25] for further references and an explicit description of the lower part of $\mathcal{L}(B)$. A semigroup Sis said to be *regular* if for every $a \in S$ there exists $a' \in S$ such that aa'a = a, and a regular semigroup S is said to be an *orthodox semigroup* if the set E(S) of idempotents of S forms a subsemigroup of S. An orthodox semigroup S is called *fundamental* if the equality on S is the only congruence on S that separates the elements of E(S). An *inverse semigroup* S is an orthodox semigroup for which the set E(S) of idempotents is a semilattice. A semigroup S is called *bisimple* if $S \times S$ is Green's \mathcal{D} -relation on S. In particular, a bisimple semigroup is *simple*, that is, has no non-trivial ideals.

If B is a band, then we define the so-called natural partial order \leq on B, for $e, f \in B$, by $f \leq e$ if ef = f = fe. Given $e \in B$, the set $eBe = \{ege \mid g \in B\}$ forms a subsemigroup of B, and $eBe = \{f \in B \mid f \leq e\}$. Such a subsemigroup eBe of B is called a *local submonoid* of B, because e is the identity element of the band eBe. We define the equivalence relation \mathcal{U}_B on B, for $e, g \in B$, by $e\mathcal{U}_Bg$ if eBe and gBg are isomorphic (as bands). A partial

© 2014 The Edinburgh Mathematical Society

J. Albert and F. Pastijn

isomorphism of B is an isomorphism $eBe \mapsto gBg$ for $e, g \in B$ with $e\mathcal{U}_Bg$. The band B is said to be uniform if $\mathcal{U}_B = B \times B$, that is, if all local submonoids are isomorphic. If there exists an automorphism of B that maps $e \in B$ to $g \in B$, then the restriction to eBe of this automorphism is a partial isomorphism of eBe onto gBg. So, if the band B has a transitive automorphism group, it is, in particular, uniform. A band is uniform if and only if it is the band of idempotents of some bisimple orthodox semigroup (see [8–11] and [23, Chapter 6]).

Every semigroup can be embedded into a bisimple semigroup [28] (see also [3, §8.6]), and every inverse semigroup can be embedded into a bisimple inverse semigroup [29]. In fact, every inverse semigroup can be embedded into a bisimple inverse semigroup that has no non-trivial congruences [16]. In particular, every semilattice can be embedded into a uniform semilattice, and every fundamental inverse semigroup can be embedded into a bisimple fundamental inverse semigroup. As the abstract states, we generalize the latter results for orthodox semigroups: we show that every orthodox semigroup S can be embedded into a bisimple orthodox semigroup S' such that the bands E(S) and E(S')generate the same band variety. Following the results of [20], we obtain an embedding of any semilattice into a uniform semilattice that preserves several structural properties. The technique of embedding presented there is an inspiration for the construction that follows.

2. An embedding of bands

Let *B* be a band. We denote by B^0 the band *B* with an *extra* zero adjoined: $0 \notin B$, and a0 = 0a = 0 for every $a \in B^0$. $\mathbb{N} = \{0, 1, ...\}$ is the set of natural numbers and \mathbb{Z}^+ is the set of positive integers.

The power $(B^0)^{\mathbb{N}\times B}$ consists of all the mappings $\alpha \colon \mathbb{N} \times B \to B^0$ endowed with the pointwise multiplication, which we denote by '.'; for any $\alpha_1, \alpha_2 \in (B^0)^{\mathbb{N}\times B}$, $\alpha_1 \cdot \alpha_2 \in (B^0)^{\mathbb{N}\times B}$ is such that, for any $(i, e) \in \mathbb{N} \times B$,

$$(i,e)(\alpha_1 \cdot \alpha_2) = ((i,e)\alpha_1)((i,e)\alpha_2)$$

is the product of $(i, e)\alpha_1$ and $(i, e)\alpha_2$ in B^0 . We let B_1 be the set of all $\alpha \in (B^0)^{\mathbb{N} \times B}$ satisfying the following conditions:

- (1) (i) $(0, e)\alpha = (0, g)\alpha$ for all $e, g \in B$,
 - (ii) $(i, e)\alpha \leq e$ in B^0 for all $e \in B$, $i \in \mathbb{Z}^+$,
 - (iii) $(i, e)\alpha \neq e$ for only finitely many $(i, e) \in \mathbb{Z}^+ \times B$.

It is easy to see that $(B^0)^{\mathbb{N}\times B}$ is a band, and that B_1 is a subband of $(B^0)^{\mathbb{N}\times B}$. For every $e \in B^0$, we let $\epsilon_e \in B_1$ be defined by

$$(0,g)\epsilon_e = e \quad \text{for every } g \in B, (i,g)\epsilon_e = g \quad \text{for every } (i,g) \in \mathbb{Z}^+ \times B.$$

$$(2.1)$$

Recall that a subset A of B_1 is said to be a *filter* of B_1 if

$$\alpha \in A, \ \beta \in B_1, \ \alpha \leqslant \beta \quad \text{in } (B_1, \leqslant) \quad \Rightarrow \quad \beta \in A.$$

Lemma 2.1.

(i) The mapping

$$\iota_1 \colon B \mapsto B_1$$
$$e \to \epsilon_e \tag{2.2}$$

is an embedding of bands.

- (ii) For every $e \in B^0$, $\epsilon_e B_1 \epsilon_e$ consists of the $\alpha \in (B^0)^{\mathbb{N} \times B}$ such that
 - (a) $(0, e)\alpha = (0, g)\alpha \leq e$ in B^0 for every $g \in B$,
 - (b) $(i,g)\alpha \leq g$ for every $(i,g) \in \mathbb{Z}^+ \times B$,
 - (c) $(i,g)\alpha \neq g$ for only finitely many $(i,g) \in \mathbb{Z}^+ \times B$,

(iii) $B\iota_1$ is a filter of B_1 .

Proof. The proof follows a routine verification. We provide some details concerning (iii). Therefore, let $e \in B$, let $\alpha \in B_1$, and suppose that $\epsilon_e \leq \alpha$ in B_1 . Let $(0, e)\alpha = (0, g)\alpha = f$ for all $g \in B$. Then, $e = (0, e)\epsilon_e \leq (0, e)\alpha = f$ in B^0 , whence $f \in B$. Furthermore, for every $(i, g) \in \mathbb{Z}^+ \times B$, $g = (i, g)\epsilon_e \leq (i, g)\alpha$, whereas $D_{(i,g)\alpha} \leq D_g$ in B^0/\mathcal{D} . It follows that $(i, g)\alpha = g$ for every $(i, g) \in \mathbb{Z}^+ \times B$. Thus, $\alpha = \epsilon_f \in B\iota_1$. \Box

Lemma 2.2.

(i) For every $e \in B$, let the mapping $\varphi_e \colon \epsilon_e B_1 \epsilon_e \to \epsilon_0 B_1 \epsilon_0$ be given, for $\alpha \in \epsilon_e B_1 \epsilon_e$, by

$$\begin{array}{ll} (0,g)(\alpha\varphi_e)=0 & \text{for every } g\in B, \\ (i,e)(\alpha\varphi_e)=(i-1,e)\alpha & \text{for every } i\in\mathbb{Z}^+, \\ (i,g)(\alpha\varphi_e)=(i,g)\alpha & \text{for every } i\in\mathbb{Z}^+ \text{ and } g\neq e \text{ in } B. \end{array}$$

Then, φ_e is a partial isomorphism that maps $\epsilon_e B_1 \epsilon_e$ isomorphically onto $\epsilon_0 B_1 \epsilon_0$.

- (ii) Let $\theta: eBe \mapsto gBg$ be a partial isomorphism of B. The partial isomorphism $\iota_1^{-1}\theta\iota_1: \epsilon_e(B\iota_1)\epsilon_e \mapsto \epsilon_g(B\iota_1)\epsilon_g$ of $B\iota_1$ can then be extended to a partial isomorphism $\theta_1: \epsilon_e B_1\epsilon_e \mapsto \epsilon_g B_1\epsilon_g$.
- (iii) $(B\iota_1) \times (B\iota_1) \subseteq \mathcal{U}_{B_1}$.

Proof. (i) Using Lemma 2.1 (ii), one routinely verifies that for every $\alpha \in \epsilon_e B_1 \epsilon_e$ we have that $\alpha \varphi_e \in \epsilon_0 B_1 \epsilon_0$. We prove that φ_e is one-to-one. If $\alpha_1, \alpha_2 \in \epsilon_e B_1 \epsilon_e$ and $(i, e)\alpha_1 \neq (i, e)\alpha_2$ for some $i \in \mathbb{N}$, then $(i+1, e)(\alpha, \varphi_e) \neq (i+1, e)(\alpha_2 \varphi_e)$, and if $(i, g)\alpha_1 \neq (i, g)\alpha_2$ for some $i \in \mathbb{Z}^+$ and $g \neq e$ in B, then $(i, g)(\alpha_1 \varphi_e) \neq (i, g)(\alpha_2 \varphi_e)$. We next prove that φ_e is onto. Therefore, let $\beta \in \epsilon_0 B_1 \epsilon_0$. Define $\alpha \in (B^0)^{\mathbb{N} \times B}$ by

$$\begin{array}{ll} (0,g)\alpha = (1,e)\beta & \text{for every } g \in B, \\ (i,e)\alpha = (i+1,e)\beta & \text{for every } i \in \mathbb{N}, \\ (i,g)\alpha = (i,g)\beta & \text{for every } i \in \mathbb{Z}^+ \text{ and } g \neq e \text{ in } B. \end{array}$$

One verifies that $\alpha \in \epsilon_e B_1 \epsilon_e$ and $\alpha \varphi_e = \beta$. We conclude that φ_e is a bijection of $\epsilon_e B_1 \epsilon_e$ onto $\epsilon_0 B_1 \epsilon_0$.

In order to prove (i) it suffices to prove that φ_e is a band homomorphism. Therefore, let $\alpha_1, \alpha_2 \in \epsilon_e B_1 \epsilon_e$ and calculate $(\alpha_1 \cdot \alpha_2) \varphi_e$ and $(\alpha_1 \varphi_e) \cdot (\alpha_2 \varphi_e)$: for any $g \in B$,

$$(0,g)((\alpha_1 \cdot \alpha_2)\varphi_e) = 0$$

= 00
= (0,g)((\alpha_1\varphi_e) \cdot (\alpha_2\varphi_e));

for any $i \in \mathbb{Z}^+$,

$$(i, e)((\alpha_1 \cdot \alpha_2)\varphi_e) = (i - 1, e)(\alpha_1 \cdot \alpha_2)$$
$$= (i, e)((\alpha_1\varphi_e) \cdot (\alpha_2\varphi_e));$$

and, for every $i \in \mathbb{Z}^+$ and $g \neq e$ in B,

$$(i,g)((\alpha_1 \cdot \alpha_2)\varphi_e) = (i,g)(\alpha_1 \cdot \alpha_2)$$

= $(i,g)((\alpha_1\varphi_e) \cdot (\alpha_2\varphi_e)).$

Therefore, $(\alpha_1 \cdot \alpha_2)\varphi_e = (\alpha_1 \varphi_e) \cdot (\alpha_2 \varphi_e)$, and we conclude that φ_e is a partial isomorphism of B_1 .

(ii) For the partial isomorphism $\theta \colon eBe \mapsto gBg$ of B, define $\theta_1 \colon \epsilon_e B_1 \epsilon_e \mapsto \epsilon_g B_1 \epsilon_g$, for $\alpha \in \epsilon_e B_1 \epsilon_e$, as follows: $\alpha \theta_1$ is given by

$$(0,g)(\alpha\theta_1) = ((0,g)\alpha)\theta \quad \text{for every } g \in B, (i,g)(\alpha\theta_1) = (i,g)\alpha \quad \text{for every } i \in \mathbb{Z}^+, \ g \in B.$$

$$(2.3)$$

Using Lemma 2.1 (ii), one routinely verifies that θ_1 is a partial isomorphism of B_1 . Furthermore, if $\epsilon_f \in \epsilon_e B_1 \epsilon_e$, that is, $f \in eBe$, then

$$(0,g)(\epsilon_f \theta_1) = ((0,g)\epsilon_f)\theta = f\theta \quad \text{for every } g \in B,$$

$$(i,g)(\epsilon_f \theta_1) = (i,g)\epsilon_f = g \quad \text{for every } i \in \mathbb{Z}^+, \ g \in B;$$

thus, $\epsilon_f \theta_1 = \epsilon_{f\theta}$. Therefore, θ_1 extends $\iota_1^{-1} \theta \iota_1$.

(iii) From (i) it follows that $\epsilon_e \mathcal{U}_{B_1} \epsilon_0$ for every $e \in B$. Therefore, $(B\iota_1) \times (B\iota_1) \subseteq \mathcal{U}_{B_1}$.

For any band B, we let \underline{T}_B be the set of partial isomorphisms of B. We consider the sequence of bands

$$B = B_0, B_1, \dots, B_j, B_{j+1}, \dots, \quad j < \omega,$$
(2.4)

and the embeddings $\iota_{j+1}: B_j \to B_{j+1}$, where, for every $j < \omega, B_{j+1}$ is obtained from B_j in the same way as B_1 was obtained from B, as in the foregoing discussion, and the embedding ι_{j+1} is defined along the same lines as $\iota_1: B \to B_1$, which was given by (2.2). We thus obtain a direct family of bands $B_j, j < \omega$, and we let B' be the direct limit

579

of this direct family (in the sense of [7, §21]). For notational convenience, we identify B_j with $B_j\iota_{j+1}$ for every $j < \omega$. When doing so, we have that $B' = \bigcup_{j < \omega} B_j$ is a band and the B_j , $j < \omega$, form a chain of subbands of B'. In the following we also consider the sequence of sets

$$\underline{T}_B = \underline{T}_{B_0}, \underline{T}_{B_1}, \dots, \underline{T}_{B_i}, \underline{T}_{B_{i+1}}, \dots, \quad j < \omega,$$
(2.5)

of partial isomorphisms of the respective bands in (2.4). For any $j < \omega$, $\theta_j \in \underline{T}_{B_j}$, we denote by $\theta_{j+1} \in \underline{T}_{B_{j+1}}$ the partial isomorphism obtained from θ_j in the same way as θ_1 was obtained from θ in (2.3). In view of the identification of B_j with $B_j \iota_{j+1}$ mentioned in the preceding paragraph, we have $\theta_j \subseteq \theta_{j+1}$ by Lemma 2.2 (ii).

If K is an algebraic class of bands that is closed under adding an extra zero, subdirect powers, direct limits (see [7, §§ 20,21]), and $B \in K$, then the band B' constructed from B as described above also belongs to K. This is, in particular, the case if K is a variety of bands that contains the variety of semilattices.

Theorem 2.3. Every band B can be embedded into a uniform band B' such that B and B' generate the same band variety.

Proof. If B is a rectangular band, we take B = B' and the result follows. We henceforth assume that B is not a rectangular band. The variety K generated by B then contains the variety of all semilattices. Let B' be constructed from B as described in this section. Since B is a subband of B', it follows from the remark made in the preceding paragraph that B and B' generate the same band variety K.

Let $e, g \in B'$. There exists $j < \omega$ such that $e, g \in B_{j-1}$. By Lemma 2.2 (iii) there exists a $\theta_j \in \underline{T}_{B_j}$ that maps $eB_j e$ isomorphically onto $gB_j g$. Consider the sequence of partial isomorphisms

$$\theta_j \subseteq \theta_{j+1} \subseteq \dots \subseteq \theta_{j+k} \subseteq \theta_{j+k+1} \subseteq \dots, \quad k < \omega, \tag{2.6}$$

where, for each $k < \omega$, $\theta_{j+k} \in \underline{T}_{B_{j+k}}$ and θ_{j+k+1} is obtained from θ_{j+k} as θ_1 was obtained from θ in (2.3). Set $\theta'_j = \bigcup_{k < \omega} \theta_{j+k}$. Then, $\theta'_j : eB'e \to gB'g$ is a partial isomorphism of B', whence $e\mathcal{U}_{B'}g$. We conclude that B' is uniform.

We conclude this section with some additional properties that are satisfied by the embedding of the band B into the band B', as in Theorem 2.3.

Theorem 2.4. Let B and B' be bands, as in Theorem 2.3. The following then hold.

- (i) If B is not a rectangular band, then B' is countably infinite if B is finite, and, otherwise, B and B' have the same cardinality.
- (ii) B is a filter of B'.
- (iii) Every endomorphism γ of B can be extended to an endomorphism γ' of B' such that End B → End B', γ → γ' is an embedding of endomorphism monoids that induces an embedding Aut B → Aut B' of automorphism groups.

J. Albert and F. Pastijn

(iv) Every congruence ρ on B is the restriction to B of a congruence ρ' on B' such that $\operatorname{Con} B \mapsto \operatorname{Con} B'$, $\rho \to \rho'$ embeds the congruence lattice of B as a complete sublattice of the congruence lattice of B'.

Proof. (i) This property is guaranteed by $\S 2(1)$ (iii).

(ii) This property follows from Lemma 2.1 (iii).

(iii) In the following we adopt the notation of Lemma 2.1. For $\gamma \in \text{End} B$, let $\iota_1^{-1}\gamma\iota_1: \epsilon_e \to \epsilon_{e\gamma}$ be the corresponding endomorphism in $B\iota_1$. This endomorphism of $B\iota_1$ can be extended to the endomorphism γ_1 of B_1 , where, for every $\alpha \in B_1$, $\alpha\gamma_1$ is given by

 $(0,g)(\alpha\gamma_1) = ((0,g)\alpha)\gamma$ for every $g \in B$ such that $(0,g)\alpha \neq 0$, $(i,g)(\alpha\gamma_1) = (i,g)\alpha$ otherwise.

It should be clear that $\operatorname{End} B \mapsto \operatorname{End} B_1$, $\gamma \to \gamma_1$ is an embedding of endomorphism monoids. If we adopt the convention that B is identified with its isomorphic image $B\iota_1$, then $\gamma \subseteq \gamma_1$ for every $\gamma \in \operatorname{End} B$. We note that if $\gamma \in \operatorname{Aut} B$, then $\gamma_1 \in \operatorname{Aut} B_1$; thus, $\operatorname{Aut} B \mapsto \operatorname{Aut} B_1$, $\gamma \to \gamma_1$ is an embedding of automorphism groups.

We now consider the sequence (2.4) of bands B_j , $j < \omega$, whose direct limit is B', and the corresponding sequence

End
$$B = \text{End } B_0$$
, End B_1, \ldots , End B_j , End $B_{j+1}, \ldots, j < \omega$.

of endomorphism monoids. For any $j < \omega$ and $\gamma \in \text{End } B$, we construct the $\gamma_j \in \text{End } B_j$, $j < \omega$, inductively using

 $\gamma_0 = \gamma,$

and, for any $j < \omega$, γ_{j+1} is constructed from γ_j as γ_1 is constructed from γ .

We thus obtain a sequence of endomorphisms

$$\gamma = \gamma_0 \subseteq \gamma_1 \subseteq \cdots \subseteq \gamma_j \subseteq \gamma_{j+1} \subseteq \cdots, \quad j < \omega,$$

and we set $\gamma' = \bigcup_{j < \omega} \gamma_j$. One verifies that $\gamma' \in \operatorname{End} B'$, and $\operatorname{End} B \mapsto \operatorname{End} B'$ is an embedding of endomorphism monoids.

(iv) The proof of (iv) follows the same lines as the proof of (iii). We only indicate here how to construct $\rho_1 \in \text{Con } B_1$ from a given $\rho \in \text{Con } B$. For $\alpha_1, \alpha_2 \in B_1$ we set $(\alpha_1, \alpha_2) \in \rho_1$ if and only if

$$\begin{array}{ll} ((0,g)\alpha_1,(0,g)\alpha_2) \in \rho & \text{for every } g \in B \text{ with } (0,g)\alpha_1 \neq 0 \neq (0,g)\alpha_2, \\ (i,g)\alpha_1 = (i,g)\alpha_2 & \text{otherwise.} \end{array}$$

Following our procedure for constructing the uniform band B' from the band B, one can set up a faithful functor from the category of bands to the category of uniform bands in a straightforward way. We refrain from exploring this line of investigation here.

3. An embedding of orthodox semigroups

For any band B, we adopt the notation of § 2: B_1 is the band constructed from B as in §2(1), and we once more adopt the convention that in the sequence of bands (2.4) we have $B = B_0$ and $B_j \subseteq B_{j+1}$ for every $j < \omega$, and $B' = \bigcup_{j < \omega} B_j$. Corresponding to the sequence (2.4) is the sequence (2.5) of sets of partial isomorphisms of the respective bands of (2.4). For every $j < \omega$, $\theta_j \in \underline{T}_{B_j}$, let $\theta_{j+k} \in \underline{T}_{B_{j+k}}$, $k < \omega$, as in the sequence (2.6), and as in the proof of Theorem 2.3 we set $\theta'_j = \bigcup_{k < \omega} \theta_{j+k} \in \underline{T}_{B'}$, a partial isomorphism of $B' = \bigcup_{k < \omega} B_k$. In particular, any $\theta = \theta_0 \in \underline{T}_B = \underline{T}_{B_0}$ extends to a partial isomorphism $\theta' = \cup \theta_j \in \underline{T}_{B'}$.

We recall some facts of [9]. We prefer to use the notation and basic results of [23, Chapter 6]; in this paper we use the more conventional notation \underline{T}_B instead of the notation $\underline{\Phi}_B$ that was used in [23].

For any $e, g \in B_j, j < \omega$,

$$\pi_j(e,g) \colon egeB_j ege \mapsto gegB_j geg$$
$$d \to gdg \tag{3.1}$$

is a partial isomorphism of B_j .

Lemma 3.1. Let $e, g \in B_j$ and $\pi_j(e,g) \in \underline{T}_{B_j}$ as in (3.1). For any $k < \omega$, define $\pi_{j,k}(e,g), k < \omega$, inductively using that $\pi_{j,k+1}(e,g)$ is obtained from $\pi_{j,k}(e,g)$ as $\theta_1 \in \underline{T}_{B_1}$ is obtained from $\theta \in \underline{T}_B$ in (2.3). Then, $\pi'(e,g) = \bigcup_{k < \omega} \pi_{j,k}(e,g) \in \underline{T}_{B'}$, where

$$\begin{aligned} \pi'(e,g) \colon egeB'ege \mapsto gegB'geg \\ d \to gdg. \end{aligned}$$

Proof. The proof easily follows from an inductive argument and the details of (2.3).

Let $j < \omega$ and $\sigma_j, \theta_j \in \underline{T}_{B_j}$, where

$$\sigma_j \colon eB_j e \mapsto fB_j f, \qquad \theta_j \colon gB_j g \mapsto hB_j h \tag{3.2}$$

for some $e, f, g, h \in B_j$. We defined a product \circ on \underline{T}_{B_j} by

$$\sigma_j \circ \theta_j = \sigma_j \pi'(f, g) \theta_j = \sigma_j \pi_j(f, g) \theta_j, \qquad (3.3)$$

where in the right-hand side of (3.3) juxtaposition denotes a composition of partial oneto-one transformations.

With the notation introduced above, we have the following lemma.

Lemma 3.2. For any $j, k < \omega$ and $\theta_j \in \underline{T}_{B_j}$, let $\theta_{j,k} \in \underline{T}_{B_{j+k}}$ be inductively defined using

 $\theta_{j,0} = \theta_j,$ $\theta_{j,k+1} \in \underline{T}_{B_{j+k+1}}$ is obtained from $\theta_{j,k} \in \underline{T}_{B_{j+k}}$ as θ_1 is obtained from θ as in (2.3). J. Albert and F. Pastijn

Then,

582

$$\frac{\tau_{j,k} \colon \underline{T}_{B_j} \mapsto \underline{T}_{B_{j+k}}}{\theta_j \to \theta_{j,k}}$$
(3.4)

is an embedding of $(\underline{T}_{B_i}, \circ)$ into $(\underline{T}_{B_{i+k}}, \circ)$.

Proof. The proof follows from Lemma 3.1, the details of (2.3) and the definition (3.3). \Box

Lemma 3.3. With the notation of Lemma 3.2, for $j < \omega$, $\theta_j \in \underline{T}_{B_j}$, $\theta'_j = \bigcup_{k < \omega} \theta_{j,k}$. Then,

$$\frac{\underline{\tau}_{j}' \colon \underline{T}_{B_{j}} \mapsto \underline{T}_{B'}}{\theta_{j} \to \theta_{j}'} \tag{3.5}$$

is an embedding of $(\underline{T}_{B_j}, \circ)$ into $(\underline{T}_{B'}, \circ)$, where the product \circ is defined on $\underline{T}_{B'}$ as follows: for $\sigma', \theta' \in \underline{T}_{B'}$, with

$$\sigma' \colon eB'e \mapsto fB'f, \quad \theta' \colon gB'g \mapsto hB'h \quad \text{for some } e, f, g, h \in B',$$
$$\sigma' \circ \theta' = \sigma'\pi'(f, g)\theta'. \tag{3.6}$$

Proof. The proof follows from Lemma 3.1 and a direct verification.

We note here that the algebras $(\underline{T}_{B_{j+k}}, \circ)$ and $(\underline{T}_{B'}, \circ)$ mentioned in Lemmas 3.2 and 3.3 are in fact orthodox semigroups (see [23, Theorem 4.3]). From Lemmas 3.2 and 3.3 we then have the following corollary.

Corollary 3.4. For any $j < \omega$, the direct limit of the direct system of orthodox semigroups $(\underline{T}_{B_{j+k}}, \circ)$, $k < \omega$, given by (3.4), is an orthodox subsemigroup of $(\underline{T}_{B'}, \circ)$, and the mapping (3.5) embeds each orthodox semigroup $(\underline{T}_{B_j}, \circ)$ isomorphically into the orthodox semigroup $(\underline{T}_{B'}, \circ)$.

For any $j < \omega$ and $\sigma_j, \theta_j \in \underline{T}_{B_j}$ as in (3.2) we set

$$\sigma_j \kappa_j \theta_j \iff e \mathcal{R}g, f \mathcal{L}h \text{ in } B_j \quad \text{and} \quad \pi_j(e,g) \theta_j = \sigma_j \pi_j(f,h)$$

$$(3.7)$$

(see [23, (1.7)]). Similarly, for any $\sigma', \theta' \in \underline{T}_{B'}$ as in (3.3), we set

$$\sigma'\kappa'\theta' \iff e\mathcal{R}g, f\mathcal{L}h \text{ in } B' \text{ and } \pi'(e,g)\theta' = \sigma'\pi'(f,h).$$
 (3.8)

Again, juxtaposition in the right-hand sides of (3.7) and (3.8) denotes a composition of partial one-to-one transformations. By [23, Theorem 4.1], the κ_j , $j < \omega$, and κ' defined above are congruence relations whose idempotent classes form rectangular bands, and so the canonical homomorphisms

$$\kappa_{j}^{\natural} \colon \underline{T}_{B_{j}} \to \underline{T}_{B_{j}} / \kappa_{j} = T_{B_{j}}, \quad j < \omega, \\ \kappa'^{\natural} \colon \underline{T}_{B'} \to \underline{T}_{B'} / \kappa' = T_{B'}$$

$$(3.9)$$

are homomorphisms of orthodox semigroups. As in [23], for each $j < \omega$, we call \underline{T}_{B_j} the augmented hull of B_j and $T_{B_j} = \underline{T}_{B_j}/\kappa_j$ the hull of B_j . Similarly, $\underline{T}_{B'}$ is the augmented hull of B' and $T_{B'} = \underline{T}_{B'}/\kappa'$ is the hull of B'.

For $j < \omega$ and $\sigma_j \in \underline{T}_{B_j}$, use the notation $\bar{\sigma}_j = \sigma_j \kappa_j^{\natural}$, and for $\sigma' \in T_{B'}$ use $\bar{\sigma}' = \sigma' \kappa'^{\natural}$. From [23, Theorem 1.5] it then follows that, for $j < \omega$,

$$B_j \mapsto E(T_{B_j}), \qquad e \to \overline{\pi_j(e,e)},$$
(3.10)

and also

$$B' \mapsto E(T_{B'}), \qquad e \to \overline{\pi'(e,e)}$$
 (3.11)

are isomorphisms of bands. Here, we use the conventional notation, where E(S) denotes the set of idempotents of the semigroup S. Note that, for any $j < \omega$, and $e \in B_j$, $\pi_j(e, e)$ is the identity transformation on eB_je , whereas, for every $e \in B'$, $\pi'(e, e)$ is the identity transformation on eB'e.

Using Lemmas 3.1, 3.2, 3.3 and the notation used therein, and the definitions of κ_j , $j < \omega$, and κ' in (3.7), (3.8), we obtain, in sequence, the following.

Lemma 3.5. For any
$$j, k < \omega$$
,

(i) for every
$$\sigma_j, \theta_j \in \underline{T}_{B_j}$$
,

$$\sigma_{j,k}\kappa_{j+k}\theta_{j,k}\iff \sigma_{j,k+1}\kappa_{j+k+1}\theta_{j,k+1}$$

(ii) for every $\sigma_j, \theta_j \in \underline{T}_{B_j}$,

$$\sigma_j \kappa_j \theta_j \iff \sigma'_j \kappa' \theta'_j,$$

(iii)

$$\frac{\underline{T}_{B_{j}} \xrightarrow{\underline{\tau}_{j,k}} \underline{T}_{B_{j+k}}}{\left| \begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ T_{B_{j}} \xrightarrow{\tau_{j+k}} T_{B_{j+k}} \end{array}\right|} \begin{array}{c} \theta_{j} \xrightarrow{\underline{\tau}_{j,k}} \theta_{j,k} \\ \downarrow \\ \kappa_{j}^{\natural} \downarrow \\ \downarrow \\ \eta_{j} \xrightarrow{\tau_{j,k}} \overline{T}_{B_{j+k}} \end{array} \qquad (3.12)$$

and

are commuting diagrams.

We therefore have the following corollary.

Corollary 3.6. For any $j < \omega$, the direct system of orthodox semigroups $T_{B_{j+k}}$, $k < \omega$, given by (3.12) is an orthodox subsemigroup of $T_{B'}$, and the mapping τ'_j given by (3.13) embeds T_{B_j} isomorphically into $T_{B'}$.

We mention the following intermediate result for clarity.

Proposition 3.7. Let *B* be a band that is not a rectangular band and let *S* be any fundamental orthodox semigroup such that E(S) = B is the band of idempotents of *S*. Let *B'* be the band constructed from *B* as in Theorem 2.3. Then, *S* can be embedded into the orthodox semigroup $T_{B'}$ that is bisimple and fundamental, where *B* and $B' \cong E(T_{B'})$ generate the same band variety.

Proof. We set $B = B_0$ as in (2.4). Following Corollary 3.6, with j = 0, T_B can be embedded into $T_{B'}$. Since $B = B_0 \cong E(T_B)$ and $B' \cong E(T_{B'})$ via (3.10) and (3.11), we have that $E(T_B)$ and $E(T_{B'})$ generate the same band variety by Theorem 2.3. By [23, Theorem 1.5], there exists an idempotent separating homomorphism of S into T_B that induces the isomorphism (3.10) of bands (for j = 0). This homomorphism is one-to-one, since S is assumed to be fundamental. Thus, S embeds isomorphically into $T_{B'}$. The orthodox semigroup $T_{B'}$ is bisimple and fundamental by [23, Lemmas 1.8 and 6.4]. \Box

The proof of the following theorem refers to the primary references, but it may be useful to instead consult the survey paper [21], or [24].

Theorem 3.8. Let S be an orthodox semigroup. Then, S can be embedded into an orthodox semigroup S' that is bisimple and such that the bands E(S) and E(S')of idempotents of S and S' generate the same band variety. Moreover, if S is not a rectangular group, then S' can be chosen to be fundamental.

Proof. If S is a rectangular group, then take S' = S. We henceforth assume that S is not a rectangular group, that is, the variety of bands generated by E(S) contains the variety of all semilattices. By Proposition 3.7 it suffices to embed the given orthodox semigroup S into a fundamental orthodox semigroup S_0 whose band $B = E(S_0)$ generates the same band variety as E(S). The following device will do.

We let \mathcal{Y} be the least inverse congruence on the orthodox semigroup S as described in [14, § 6.2]. We next embed S/\mathcal{Y} into a fundamental inverse semigroup I: this can, for instance, be done using the Vagner–Preston representation that embeds S/\mathcal{Y} isomorphically into an appropriate symmetric inverse semigroup (see [14, Chapter 5, Theorem 5.1.7 and Exercise 22]). We may as well assume that S and I are disjoint, and we let $\varphi: S \to I$ be the homomorphism that results from the composition of the canonical homomorphism \mathcal{Y}^{\natural} and the embedding of S/\mathcal{Y} into I. We let S_0 be the strong composition (Płonka sum) of S and I using φ (see [25, § I.8.7] and [26,27]): $S_0 = S \cup I$ and the multiplication on S_0 extends those given on S and I, and, for $s \in S$, $i \in I$, $si = (s\varphi)i$ and $is = i(s\varphi)$ as in I. The band $B = E(S_0)$ of idempotents of S_0 is the strong composition of the band E(S) and the semilattice E(I) using the band homomorphism $\varphi|_{E(S)}$. Since we assumed that the variety generated by E(S) contains the variety of all semilattices, it follows from [25, Lemma I.8.8] or [26] that E(S) and $B = E(S_0)$ generate the same band variety.

It remains to show that S_0 is a fundamental orthodox semigroup. Let μ be the greatest idempotent separating congruence on S_0 . By [4] it suffices to show that if $a \in S_0$, $a \neq a^2$, belongs to a maximal subgroup of S_0 that has $e \in E(S_0)$ as its identity element, then

a cannot be μ -related to e. This is surely the case if $e \in E(I)$, since I is fundamental. Otherwise, $a, e \in S$, and we let $a^{-1} \in S$ be the inverse of a in the maximal subgroup of S that contains a and e, and $a \neq e$. From the description of \mathcal{Y} in [14, §6.2] it follows that φ isomorphically embeds the maximal subgroup of S containing a, a^{-1} and $e = aa^{-1} = a^{-1}a$ into the maximal subgroup of I that has identity element $e\varphi$. In particular, $e\varphi \neq a\varphi$, where $a\varphi$ and $a^{-1}\varphi = (a\varphi)^{-1}$ are mutually inverse elements in the maximal subgroup containing $e\varphi$ as its identity element. Since I is fundamental, there exists $f \leq e\varphi \leq e$ in $B = E(S_0)$ such that $f \neq (a^{-1}\varphi)f(a\varphi) = a^{-1}fa$, and, therefore, a is not μ -related to e, as required (see the description of μ in [12, §4] or [23, (1.58)]). \Box

4. Final remarks

Many of the results obtained so far find their analogues in other settings. We only give an outline of the required proofs. Let S be a regular semigroup, let E(S) be its set of idempotents, and define a partial operation \circ on E(S) as follows: for $e, f \in E(S), f \circ e$ is defined if and only if $\{e, f\} \cap \{ef, fe\} \neq \emptyset$, and if this the case, then $f \circ e = fe$. Here, the products ef and fe are as in the given regular semigroup S. As in [17] we call $(E(S), \circ)$ the *(regular) biordered set* of S.

There are at least two natural settings where we can extend the partial operation \circ on E(S) to a binary operation \wedge on E(S) as follows.

- (1) If S is a regular semigroup whose idempotents generate a completely regular semigroup, then, for $e, f \in E(S), f \wedge e = (fe)^0$ is the identity of the maximal subgroup of S that contains fe.
- (2) If, for every $e \in E(S)$, eSe is an inverse semigroup, then $f \wedge e$ is the unique inverse of ef that belongs to fSe (see $[1, \S 2], [22, \S 5], [23, \S 4.1]$ and [18]).

In (1) we call S a solid regular semigroup and $(E(S), \wedge)$ a regular solid idempotent algebra, and in (2) we call S a locally inverse semigroup and $(E(S), \wedge)$ a pseudo-semilattice. It was shown that the classes of regular solid idempotent algebras and of pseudo-semilattices each form a variety [1,18]. The lattice of varieties of pseudo-semilattices was investigated extensively in [19]. The variety of bands is a subvariety of the variety of regular solid idempotent algebras; unlike the variety of all bands, the latter variety has a lattice of subvarieties that is of the power of the continuum (see the final remarks of [22, § 5]).

If (B, \wedge) is a binary algebra as in (1) or (2), and S is a regular semigroup that has B as its biordered set, then, for every $e \in B$,

$$(e \wedge B) \wedge e = \{(e \wedge f) \wedge e \mid f \in B\}$$
$$= e \wedge (B \wedge e)$$
$$= \{e \wedge (f \wedge e) \mid f \in B\}$$
$$= E(eSe)$$
$$= \{f \in B \mid f \leqslant e\}$$
$$= \{f \in B \mid e \wedge f = f = f \wedge e\}$$

is a subalgebra of (B, \wedge) , which we denote by $e \wedge B \wedge e$. We call (B, \wedge) uniform if, for every $e, g \in B$, we have that $e \wedge B \wedge e \cong g \wedge B \wedge g$. Following the procedure of §2 step by step, we obtain the following analogue of Theorem 2.3.

Theorem 4.1. Every regular solid idempotent algebra (pseudo-semilattice) (B, \wedge) can be embedded into a regular solid idempotent algebra (pseudo-semilattice) (B', \wedge) that is uniform, and such that B and B' generate the same variety.

The analogue of Theorem 2.4 also holds true.

For the binary idempotent algebras (B, \wedge) considered above, again let \underline{T}_B be the set of partial isomorphisms of B, that is, isomorphisms of the form $e \wedge B \wedge e \to g \wedge B \wedge g$ for $e, g \in B$, and, in analogy with (3.3), define a product \circ on \underline{T}_B as follows: for $\sigma, \theta \in \underline{T}_B$, where $\sigma: e \wedge B \wedge e \to f \wedge B \wedge f$ and $\theta: g \wedge B \wedge g \to h \wedge B \wedge h$,

$$\sigma \circ \theta = \sigma \pi (f \land (g \land f), g \land f) \pi (g \land f, (g \land f) \land g) \theta.$$

$$(4.1)$$

In analogy with (3.7), then define the (congruence) relation κ on \underline{T}_B and set $T_B = \underline{T}_B/\kappa$. Then, T_B is a fundamental regular semigroup and the analogue of (3.10) yields an isomorphism of binary algebras: T_B is a solid regular (locally inverse) semigroup if and only if B is a regular solid idempotent algebra (pseudo-semilattice); moreover, T_B is bisimple if and only if B is uniform (use [17, Proposition 3.6 and Theorems 4.12, 5.2], and [23, § 4.1], or [12]).

Following the same reasoning that leads to Proposition 3.7, we can then prove the following.

Proposition 4.2. Every solid regular (locally inverse) semigroup S that is fundamental can be embedded into a solid regular (locally inverse) semigroup S' that is fundamental and bisimple, such that $(E(S), \wedge)$ and $(E(S'), \wedge)$ generate the same variety.

Thus, for instance, from [5,6], [15] or [30] it follows that the free completely regular semigroup on a countably infinite set of generators is fundamental and can therefore be embedded into a solid regular semigroup that is bisimple and fundamental. In order to prove the analogue of Theorem 3.8, one needs to prove that every solid regular (locally inverse) semigroup S can be embedded into such a fundamental regular semigroup S'such that $(E(S), \wedge)$ and $(E(S'), \wedge)$ generate the same band variety. In other words, the device used in the proof of Theorem 3.8 needs to be modified. We do not elaborate any further on this here.

References

- 1. R. BROEKSTEEG, A concept of variety for regular biordered sets, *Semigroup Forum* **49** (1994), 335–348.
- 2. A. H. CLIFFORD AND G. B. PRESTON, *The algebraic theory of semigroups, I* (American Mathematical Society, Providence, RI, 1961).
- 3. A. H. CLIFFORD AND G. B. PRESTON, *The algebraic theory of semigroups*, *II* (American Mathematical Society, Providence, RI, 1967).
- 4. R. FEIGENBAUM, Regular semigroup congruences, Semigroup Forum 17 (1979), 373–377.
- 5. J. A. GERHARD, Free completely regular semigroups, I, J. Alg. 82 (1983), 135–142.

- 6. J. A. GERHARD, Free completely regular semigroups, II, J. Alg. 82 (1983), 143–156.
- 7. G. GRÄTZER, Universal algebra (Springer, 1979).
- 8. T. E. HALL, On regular semigroups whose idempotents form a subsemigroup, *Bull. Austral. Math. Soc.* **1** (1969), 195–208.
- 9. T. E. HALL, On orthodox semigroups and uniform and anti-uniform bands, J. Alg. 16 (1970), 204–217.
- T. E. HALL, On regular semigroups whose idempotents form a subsemigroup: addenda, Bull. Austral. Math. Soc. 3 (1970), 287–288.
- 11. T. E. HALL, Orthodox semigroups, Pac. J. Math. 39 (1971), 677–686.
- 12. T. E. HALL, On regular semigroups, J. Alg. 24 (1973), 1–24.
- J. M. HOWIE, An introduction to semigroup theory, London Mathematical Society Monographs, Volume 7 (Academic, 1976).
- J. M. HOWIE, Fundamentals of semigroup theory, London Mathematical Society Monographs, Volume 12 (Clarendon, Oxford, 1995).
- J. KAĎOUREK AND L. POLÁK, On the word problem for free completely regular semigroups, Semigroup Forum 34 (1986), 127–138.
- H. LEEMANS AND F. PASTIJN, Embedding inverse semigroups in bisimple congruence-free inverse semigroups, Q. J. Math. (2) 34 (1983), 455–458.
- K. S. S. NAMBOORIPAD, Structure of regular semigroups, I, Memoirs of the American Mathematical Society, Volume 22, Number 224 (American Mathematical Society, Providence, RI, 1979).
- K. S. S. NAMBOORIPAD, Pseudosemilattices and biordered sets, I, Bull. Belg. Math. Soc. Simon Stevin 55 (1981), 103–110.
- L. OLIVEIRA, Varieties of pseudosemilattices, PhD thesis, Marquette University, Milwaukee (2004).
- 20. F. PASTIJN, Uniform lattices, Acta Sci. Math. (Szeged) 42 (1980), 305-311.
- F. PASTIJN, Congruences on regular semigroups: a survey, in *Proceedings of the 1984 Mar*quette conference on semigroups, pp. 159–175 (Marquette University, Milwaukee, 1984).
- 22. F. PASTIJN, The idempotents in a periodic semigroup, Int. J. Alg. Comput. 6 (1996), 511–540.
- F. J. PASTIJN AND M. PETRICH, Regular semigroups as extensions, Research Notes in Mathematics, Volume 136 (Pitman, Boston, MA, 1985).
- F. PASTIJN AND M. PETRICH, Congruences on regular semigroups, Trans. Am. Math. Soc. 295 (1986), 607–633.
- 25. M. PETRICH, Lectures in semigroups (Wiley, 1977).
- J. PLONKA, On a method of construction of abstract algebras, Fund. Math. LXI (1967), 183–189.
- J. PŁONKA, Sums of direct systems of abstract algebras, Bull. Polish Acad. Sci. Math. XV(3) (1967), 133–135.
- G. B. PRESTON, Embedding any semigroup in a D-simple semigroup, Trans. Am. Math. Soc. 93 (1959), 351–355.
- N. R. REILLY, Embedding inverse semigroups in bisimple inverse semigroups, Q. J. Math. (2) 16 (1965), 183–187.
- P. G. TROTTER, Free completely regular semigroups, Glasgow Math. J. 25 (1984), 241– 254.