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Multidimensional item response theory (MIRT) models have generated increasing interest in the
psychometrics literature. Efficient approaches for estimating MIRT models with dichotomous responses
have been developed, but constructing an equally efficient and robust algorithm for polytomous models has
received limited attention. To address this gap, this paper presents a novel Gaussian variational estimation
algorithm for the multidimensional generalized partial credit model. The proposed algorithm demonstrates
both fast and accurate performance, as illustrated through a series of simulation studies and two real data
analyses.
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There are a wide range of psychometric models for analyzing data in educational and psy-
chological surveys. Models including discrete and continuous latent factors have received great
attention due to repeated empirical evidence of adequate model fit and success of interpretation
that aligns with substantive theory. Among them, a variety of multidimensional item response the-
ory (MIRT) models (Reckase, 2009) have been proposed to account for various multidimensional
structures of the latent constructs. Within the family of MIRT models, one of the most stud-
ied models is the multidimensional two-parameter logistic model (M2PL) (Reckase, 2009) for
dichotomous response, as well as the multidimensional three-parameter logistic model (M3PL)
and Multidimensional Four-parameter Logistic Model (M4PL), which are often used when stu-
dents can guess the answer to the test item correctly (resulting in a lower asymptote in educational
measurement) or when the chance of answering an item correctly does not approach 1 (resulting in
a higher asymptote in psychopathology measurement). Moreover, the multidimensional graded
response model (Cai, 2010) and multidimensional (generalized) partial credit model (Yao &
Schwarz, 2006) have also been proposed to handle polytomous items. These models are regarded
as extensions of IRT models for dichotomous response in various ways to characterize latent
cognitive structures from more complicated datasets.
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In the IRT literature, the marginal maximum likelihood estimator (MMLE) is considered
to be a consistent and efficient approach for parameter estimation by maximizing the marginal
log-likelihood of item parameters (Bock & Aitkin, 1981; Bock et al., 1988). In particular, this
estimator is efficient in the asymptotic regime where the test length is small with a rather large
number of examinees, which is often the case in applications. However, integrating out the latent
ability for marginal likelihood evaluation is notoriously time-consuming, involving multidimen-
sional integrals whose computational complexity grows exponentially with the number of latent
dimensions. This results in great difficulties especially when the latent structure is complex or
within a domain of large dimension. Several methods have been proposed previously to deal
with this computational challenge, such as Gaussian quadrature methods (Bock & Aitkin, 1981;
Schilling & Bock, 2005), Laplace approximation methods (Lindstrom & Bates, 1988; Wolfinger
& O’connell, 1993; Andersson & Xin, 2021), Metropolis-Hastings Robbins-Monro algorithms
(Cai, 2010), stochastic expectation maximization (EM) algorithms (von Davier & Sinharay, 2010;
Zhang et al., 2020), and variational approximation methods (Rijmen & Jeon, 2013; Cho et al.,
2021; 2022). Among these, Gauss-Hermite quadrature approximation does not scale well to high-
dimensional scenarios, and Laplace approximation, which is closely related to variational method
(Opper & Archambeau, 2009), may suffer from numerical inaccuracies when dimensions get
high or when the likelihood function is in a skewed shape. Additionally, many variants of Laplace
approximations, though overcoming some deficiencies, suffer from inflexibility or may be hard
to implement (Ormerod &Wand, 2010). The methods based on Monte Carlo simulations such as
Metropolis-Hastings Robbins-Monro and stochastic EM algorithms, on the other hand, are more
robust but may be computationally inefficient. Notably, in addition to being numerically accurate
and computationally efficient, the variational method also provides good interpretability and the
variational distributions contain additional useful information (Blei et al., 2017).

Despite the extensive literature on estimation methods for models of dichotomous response
(Cai, 2010; Chen et al., 2019; Cho et al., 2021; Feuerstahler &Waller, 2014;Meng et al., 2020), lit-
tle attention has been given to the efficient and robust estimation of MIRT models for polytomous
responses (Bock et al., 1988; Kim & Wilson, 2020). In the paper, we propose a Gaussian vari-
ational expectation-maximization algorithm for the multidimensional generalized partial credit
model (MGPCM), which is both computationally efficient and numerically stable. The variational
method, first proposed in computer science and statistical learning, has since become an efficient
approach for large-scale computation in fields such as pattern recognition and document retrieval
(Titterington, 2004; Blei & Jordan, 2006). The application of the variational method in analyzing
statistical models has also received wide attention (Blei et al., 2017; Ormerod & Wand, 2010).
For instance, Ormerod and Wand (2012) adopted a Gaussian variational approximation approach
for the estimation of generalized linear mixed effects models. In the field of psychometrics and
educational measurement, variational methods have been used for efficient estimation of multi-
dimensional 1PL models (Rijmen & Jeon, 2013) and multidimensional 2/3PL models (Cho et
al., 2021), as well as analysis in cognitive diagnostic models (Yamaguchi & Okada, 2020; Oka
& Okada 2023). Motivated by Cho et al. (2021), in this paper, we generalize their method to the
estimation of MGPCM. This generalization is nontrivial because the MGPCM uses a generalized
logit link function that requires a completely new derivation of the variational lower bound to
fully enable closed-form parameter update in the EM algorithm.

The rest of the paper is organized as follows. Section1 provides a brief introduction to the
model. In Sect. 2, we introduce the polytomous Gaussian variational expectation-maximization
algorithm (pGVEM) and give its derivation. Section3 evaluates the performance of the pGVEM
algorithm compared to the traditional EM algorithm and other existing methods through a com-
prehensive simulation study. In Sect. 4, we apply the pGVEM algorithm to analyze data from an
international educational assessment database and a Big-Five personality assessment. Finally, in
Sect. 5, we conclude the paper and suggest potential future research directions.
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1. Model Setting

Generalized partial credit model (GPCM) (Muraki, 1992; Embretson & Reise, 2013), also
named as a compensatory multidimensional two-parameter partial credit model (M-2PPC) (Yao
& Schwarz, 2006), is a popular IRT model for polytomous responses. It allows for the assess-
ment of partial scores for constructed response items and intermediate steps that students have
accomplished on the path toward solving the items completely. Suppose we have N examinees
and J test items, with the random variable Yi j denoting the partial credit of person i’s response to
item j . For each item j , a j is a discrimination parameter that implies the strength of association
between latent trait and item responses. β jk is a threshold parameter that separates two adjacent
response categories. The partial credit model (Masters, 1982) is a special case of GPCM where
the discrimination parameter is fixed to be the same across different items. The item response
function of GPCM that characterizes the probability of a specific response is given by

Pr(Yi j = k|θi , a j , β jk) =
exp
[∑k

r=0 a j (θi − β jr )
]

∑K j
v=0 exp

[∑v
r=0 a j (θi − β jr )

] , (1.1)

where k = 0, 1, . . . , K j − 1 and K j is the number of differential partial credit scores for the j th

item.
The multidimensional generalized partial credit model (MGPCM) is a natural multidimen-

sional extension of GPCM. The main idea is replacing the uni-dimensional latent ability with a
D-dimensional vector, and each dimension represents a facet of the multidimensional construct
(i.e., science and literacy). Similarly, the discriminationparameters a j alsobecomeD-dimensional
vectors to reflect the discrimination power of item j with respect to each facet (i.e., dimension) of
the multidimensional construct θ . The threshold parameters stay the same as in uni-dimensional
models. Equation (1.1) therefore is updated as follows:

Pr(Yi j = k|θ i , a j , β jk) = exp{∑k
r=0(a

′
jθ i − β jr )}

∑K j−1
v=0 exp

{∑v
r=0(a

′
jθ i − β jr )

} . (1.2)

Here a′
jθ i indicates the inner product of a j and θ i as a′

jθ i = ∑D
d=1 a jdθid where a jd and θid

are the dth component of a j and θ i , respectively. With a slight re-parameterization, we have the
following item response function for MGPCM which we will use throughout the paper:

Pr(Yi j = k|θ i , a j , b jk) = exp(ka′
jθ i − b jk)

∑K j−1
v=0 exp(va′

jθ i − b jv)
. (1.3)

In Equation (1.3), b jk replaces
∑k

r=0 β jr in Equation (1.2) for each k = 0, 1, . . . , K j − 1. Note
that for model identification, we can only have K j −1 estimable threshold parameters, and hence
we fix b j0 = 0.

2. Gaussian Variational Approximation

2.1. Derivation of Algorithm

In this section,we describe the derivation of theGVEMalgorithm. In the following,we denote
the collection of item parameters by Mp being the total number of parameters to be estimated,
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932 PSYCHOMETRIKA

i.e., Mp = {a j ∈ R
D, b jk ∈ R : j = 1, . . . , J, k = 1, . . . , K j − 1} for MGPCM. As we

discussed above, the parameter b j0 is fixed as 0 for all j . To be consistent with the common
convention, we assume the latent vector θ follows a multivariate normal distribution of 0 mean
and covariance �θ with density function denoted by φ(·). The marginal probability of response
vector Y i = (Yi1, . . . ,Yi J )′ for person i is defined as follows

Pr(Y i |Mp) =
∫

θ i

J∏
j=1

K j−1∏
k=0

I(Yi j=k) Pr(Yi j = k|θ i , Mp)φ(θ i )dθ i

=
∫

θ i

J∏
j=1

K j−1∏
k=0

I(Yi j=k)
exp(ka′

jθ i − b jk)

∑K j−1
v=0 exp(va′

jθ i − b jv)
φ(θ)dθ i ,

where I(Yi j=k) is an indicator function equal to 1 if Yi j = k and zero otherwise, and therefore the
marginal log-likelihood function for all responses from the examinees is given by

l(Mp|Y) =
N∑
i=1

log Pr(Y i |Mp) =
N∑
i=1

log
∫

θ i

J∏
j=1

Pr(Yi j |θ i , Mp)φ(θ i )dθ i , (2.1)

where Y = (Y1, . . . ,Y N )′ is the N × J matrix of realized categorical responses.
Following the variational estimation literature (Blei et al., 2017; Cho et al., 2021), we first

derive a variational lower bound for MGPCM. We define K L{p(·)‖q(·)} as the Kullback-Leibler
divergence of probability distribution p and q. For an arbitrary probability density function q(·),
the marginal log-likelihood in Equation (2.1) has the following lower bound (Blei et al., 2017):

l(Mp|Y) =
N∑
i=1

∫

θ i

qi (θ i )dθ i log Pr(Y i |Mp)

=
N∑
i=1

∫

θ i

log
[ P(Y i , θ i |Mp)qi (θ i )

P(θ i |Y i , Mp)qi (θ i )

]
qi (θ i )dθ i

=
N∑
i=1

[ ∫

θ i

[
log P(Y i , θ i |Mp)

]
qi (θ i )dθ i

−
∫

θ i

[
log qi (θ i )

]
qi (θ i )dθ i + K L

{
qi (θ i )

∥∥P(θ i |Y i , Mp)
}]

≥
N∑
i=1

∫

θ i

[
log P(Y i , θ i |Mp)

]
qi (θ i )dθ i −

N∑
i=1

∫

θ i

[
log qi (θ i )

]
qi (θ i )dθ i . (2.2)

The last inequality holds if and only if the KL divergence between the variational distribution
qi (·) and the posterior distribution P(·|Y i , Mp) is 0, which indicates qi (θ i ) = P(θ i |Y i , Mp). In
the literature of variational inference, the right-hand side of Equation (2.2) is defined to be the
evidence lower bound (Blei et al., 2017), which is equivalent, up to a constant with respect to
q(·), to the KL divergence between the assumed variational distribution q(·) and the conditional
density of the latent variables given the observations.

In the following, we construct an approximation for the marginal maximum likelihood esti-
mator from the evidence lower bound. The primary objective is to identify a suitable distribution

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:18:52, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


CHENGYU CUI ET AL. 933

that can approximate the posterior distribution P(θ i |Y i , Mp). Motivated by this insight, we pro-
pose to construct an EM-type algorithm to compute the marginal maximum likelihood estimator.
In the E-step, we evaluate the expectation of the complete data log-likelihood, and the expectation
is taken with respect to the latent variables θ i under its variational probability density function
qi (·):

N∑
i=1

∫

θ i

log P(Y i , θ i |Mp)qi (θ i )dθ i ,

Here the density function qi (θ i ) is chosen to minimize the KL divergence K L{qi (θ i‖P(θ i |Y i ,

Mp)} as the best approximation to the posterior distribution. The second term in the evidence
lower bound is left out since it is irrelevant to item parameters. However, a problem with respect
to minimizing the KL divergence is that it is hard to find an explicit formula for the posterior distri-
bution of θ i with respect to the previous estimated item parameters M̂p, as it involves computing
D-dimensional integrals. Numerical methods, such as the Gauss-Hermite approximation, Monte
Carlo expectation-maximization, and stochastic expectation-maximization, are often used to pro-
vide fast approximation. Herein we adopt the Gaussian variational inference method. It is widely
accepted that the posterior distribution of the latent ability P(θ i |Yi , Mp) can be approximated by
a Gaussian distribution (Chang & Stout, 1993; Wang 2015), and hence we aim to find an optimal
qi (θ i ) in the family of Gaussian distribution while minimizing the KL divergence between qi (θ i )
and P(θ i |Y i , Mp). Since the posterior distribution can be expressed as

P(θ i |Y i , Mp) = P(Y i , θ i |Mp)

P(Y i |Mp)
,

we only need to evaluate P(Y i , θ i |Mp) to find a proper qi (·) as

K L{qi (θ i )||P(θ i |Y i , Mp)} = K L{qi (θ i )||P(θ i ,Y i |Mp)} + C.

Under the setting of MGPCM, the logarithm of joint distribution function of θ i and Y i is

log P(Y i , θ i |Mp) = log P(Y i |θ i , Mp) + logφ(θ i )

=
J∑

j=1

⎧
⎨
⎩

K j−1∑
k=0

I(Yi j=k)

⎡
⎣ka′

jθ i − b jk − log

⎛
⎝

K j−1∑
v=0

exp(va′
jθ i − b jv)

⎞
⎠
⎤
⎦
⎫
⎬
⎭+ logφ(θ i ).

(2.3)

The nonlinear softmax function, defined by fv(x) = exp(xv)/[∑n
k=1 exp(xk)] for an n-

dimensional vector x, is the main cause of the intractability of integral. To overcome this problem,
a variational lower bound based on the approximation to the softmax function is proposed and
by augmenting Equation (2.3) with variational parameters, the evidence lower bound can be
computed explicitlywithout resorting to numeric integration.Among themany approximations for
the softmax function, we adopt aOne-Versus-Each bound (Tisais, 2016), whichwell approximates
the softmax function and captures the model features. We start with the following inequality:
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fv(x) = exv

∑n
k=1 e

xk
≥

n∏
k=1,k �=v

exv

exv + exk
= 2

n∏
k=1

exv

exv + exk
. (2.4)

Denote by ki j the realized partial credit score for the response of the i th person for the j th item.
Then by applying bound (2.4) to (2.3), we have

log P(Y i , θ i |Mp) = logφ(θ i ) +
J∑

j=1

⎡
⎣

K j−1∑
k=0

I(Yi j=k) log
exp(xi jk)∑K j−1

v=0 exp(xi jv)

⎤
⎦

≥ logφ(θ i )+
J∑

j=1

⎧⎨
⎩

K j−1∑
k=0

I(Yi j=k)

⎡
⎣log 2+

K j−1∑
v=0

log
exp(xi jk)

exp(xi jv) + exp(xi jk)

⎤
⎦
⎫⎬
⎭

= logφ(θ i ) +
J∑

j=1

⎧⎨
⎩log 2 −

K j−1∑
k=0

log
[
1 + exp(xi jk − xi jki j )

]
⎫⎬
⎭ .

Here we denote xi jk = ka′
jθ i − b jk for short. We wish to draw attention to our selection of the

“One-Versus-Each bound.” It can be established for (2.4) that a strict inequivalence holds true
in all cases, except for the exceptional circumstance xv/xk → ∞ for all k �= v with at most
one exception. Additionally, the approximation is closest when xv is among the largest of all
xk . The idea of maximum likelihood estimation indicates that, when partial credit score Yi j is
recorded as ki j , ki j a′

jθ i − b jki j is the most likely to be the largest among all va′
jθ i − b jv for

v = 0, 1, . . . , K j − 1. Therefore the feature of the One-Versus-Each bound does fit well as an
approximation to the marginal maximum likelihood estimator.

Logistic sigmoid function (2.4) can be further approximated by a local variational approach:

log P(Y i , θ i |Mp) ≥ logφ(θ i ) +
J∑

j=1

⎧⎨
⎩log 2 −

K j−1∑
k=0

η(ξi jk)
[
(xi jk − xi jki j )

2 − ξi jk
2
]

−
K j−1∑
k=0

1

2
(xi jk − xi jki j − ξi jk) −

K j−1∑
k=0

log(1 + eξi jk )

⎫
⎬
⎭ ,

where ξ = {ξi jk}i, j,k are called variational parameters, which will be iteratively updated together
with item parameters in the M-step. Here the function η(x) is defined as (ex − 1)/[4x(ex + 1)]
(Jaakkola & Jordan, 2000). We use this local variational approximation for a suitable expectation
of log P(Y i , θ i |Mp) (i.e., given below in Equation (3.5)) that can be written as a quadratic form
with respect to θ i . This will facilitate the selection of qi (·) in the family of Gaussian distributions.

Next we substitute xi jk by ka′
jθ i − b jk and write the above lower bound of joint distribution

function as

log P(Y i , θ i |Mp) ≥
J∑

j=1

⎧
⎨
⎩−

K j−1∑
k=0

[
η(ξi jk)(k−ki j )

2θ ′
i a j a′

jθ i−2(k − ki j )η(ξi jk)(b jk−b jki j )a
′
jθ i

+1

2
(k − ki j )a′

jθ i + η(ξi jk)(b jk − b jki j )
2 − 1

2
(b jk − b jki j )

−η(ξi jk)ξi jk
2 − 1

2
ξi jk + log(1 + eξi jk )

]
+ log 2

}
+ logφ(θ i ),
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and therefore the expectation of the log-likelihood, which needs computing in the E-step, takes
the following form:

E(Mp, ξ) :=
∫

θ i

log P(Y i |θ i , Mp)qi (θ i )dθ i +
∫

θ i

logφ(θ i )qi (θ i )dθ i

≥
∫

θ i

J∑
j=1

{
log 2−

K j−1∑
k=0

[
η(ξi jk)(k−ki j )

2θ ′
i a j a′

jθ i−2(k−ki j )η(ξi jk)(b jk−b jki j )a
′
jθ i

+ 1

2
(k − ki j )a′

jθ i + η(ξi jk)(b jk − b jki j )
2 − 1

2
(b jk − b jki j )

− η(ξi jk)ξi jk
2 − 1

2
ξi jk + log(1 + eξi jk )

]}
qi (θ i )dθ i +

∫

θ i

logφ(θ i )qi (θ i )dθ i .

(2.5)

For a minimized KL divergence, qi (θi ) is selected as follows:

log qi (θ i ) ∝
J∑

j=1

K j−1∑
k=0

{
(k−ki j )

[
2η(ξi jk)(b jk−b jki j )−0.5

]
a′
jθ i−η(ξi jk)(k−ki j )

2θ ′
i a j a′

jθ i

}

−θ ′
i�

−1
θ θ i

2
.

As the choice of qi (·) has been confined in the Gaussian family, it suffices to give the update for
the mean and covariance matrix:

μi = �i ×
J∑

j=1

K j−1∑
k=0

(k − ki j )
[
2η(ξi jk)(b jk − b jki j ) − 1

2

]
aj ; (2.6)

�−1
i = �−1

θ + 2
J∑

j=1

K j−1∑
k=0

η(ξi jk)(k − ki j )
2a j a′

j . (2.7)

In each iteration, the item parameters and variational parameters ξi jk, a j , b jk are obtained from
the previous M-step and taken as the initial value if it is the first iteration.

For the M-step, the item parameters are chosen to maximize the above expectation of the
lower bound obtained by plugging Equation (2.6) and (2.7) into Equation (2.5):

E(Mp, ξ) ≥
N∑
i=1

J∑
j=1

log 2 +
N∑
i=1

J∑
j=1

K j−1∑
k=0

{
− η(ξi jk)(k − ki j )

2a′
j

[
�

(t)
i + (μ

(t)
i )(μ

(t)
i )′
]
a j

+ (k − ki j )[2η(ξi jk)(b jk−b jki j )−
1

2
]a′

jμ
(t)
i −η(ξi jk)(b jk−b jki j )

2+1

2
(b jk−b jki j )

+ η(ξi jk)ξi jk
2 + 1

2
ξi jk − log(1 + eξi jk )

}
− N

2
log |�(t)

θ | (2.8)

−
N∑
i=1

1

2
Tr{(�(t)

θ )−1[�(t)
i + (μ

(t)
i )(μ

(t)
i )′]

:= E(Mp, ξ). (2.9)
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Through maximizing the lower bound E(Mp, ξ), we can derive a new set of item parameters
that could potentially maximize the left-hand side. Updating the variational parameters helps to
prevent the iteration from leading to a smaller value of the target expectation by shrinking the
inequality too much when the right-hand side is maximized. The efficiency of this majorization-
maximization approach depends on the goodness of fit of the adopted softmax bound.

To maximize the lower bound on the expectation concerning the item parameters Mp and
variational parameters ξ , we employ a Gauss-Seidel scheme to handle the nonlinear terms regard-
ing the parameters. Each iterative update uses the most recently updated copies of the parameters.
The update is given as follows.

For each j = 1, . . . , J ,

a j = 1

2

⎡
⎣

N∑
i=1

K j−1∑
k=0

η(ξi jk)(k − ki j )
2(�i + μiμ

′
i )

⎤
⎦

−1

⎧⎨
⎩

N∑
i=1

K j−1∑
k=0

(k − ki j )

[
2η(ξi jk)(b jk − b jki j ) − 1

2

]
μi

⎫⎬
⎭ , (2.10)

with ξi jk , b jk from the last iteration or initialization andμi ,�i from E-step. Next for the threshold
parameters, for each j = 1, . . . , J, k = 1, · · · K j − 1,

b jk =
∑N

i=1[B1(i, j, k)I(k �=ki j ) + I(k=ki j )
∑K j−1

v=0,v �=k B2(i, j, v, k)]
2
∑N

i=1(η(ξi jk)I(k �=ki j ) + I(k=ki j )
∑K j−1

v=0,v �=k η(ξi jv))
, (2.11)

where

B1(i, j, k) = 2η(ξi jk)(k − ki j )a′
jμi + 0.5 + 2η(ξi jk)b jki j ;

B2(i, j, v, k) = −2η(ξi jk)(v − k)a′
jμi − 0.5 + 2η(ξi jv)b jv.

Here a j are from the previous step and μi , �i are from the previous E-step. Finally for the
variational parameters ξi jk , for each i = 1, . . . , I, j = 1, . . . , J, k = 0, · · · K j − 1, we have
update as

ξ2i jk = [(k − ki j )a′
jμi − (b jk − b jki j )]2 + (k − ki j )

2a′
j�i a j . (2.12)

with all other parameters obtained from the latest updates.
In the exploratory analysis where we do not have any prior information on the item factor

loadings, so the assumed covariance �θ is fixed as ID and later proper rotations (Browne, 2001)
are imposed to allow the factors to be correlated and thus allow for analysis of latent structures.
But for confirmatory factor analysis, we update the covariance as

�θ = 1

N

N∑
i=1

(�i + μiμ
′
i ). (2.13)

and scale its diagonal entries to be 1.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:18:52, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


CHENGYU CUI ET AL. 937

2.2. Standard Error Estimation

Computing standard errors (SEs) of the item parameter estimates is crucial for various appli-
cations, such as multidimensional computerized adaptive testing, item parameter calibration as
well as differential item functioning. Challenges arise in estimating SEs when dealing with a high-
dimensional latent domain and polytomous responses as inMGPCM.The commonly usedmethod
for estimating SEs is based on the approximated Fisher’s information matrix. However, taking the
inverse of a prohibitively large information matrix (due to high dimensions and long test length)
can be unstable when the sample size of the examinees is not large enough. An alternative numer-
ical approximation using Gaussian quadrature in EM estimation has been proposed (Cagnone &
Monari, 2013), but it is computationally expensive and sensitive to dimensionality. The supple-
mented expectation-maximization (SEM) algorithm has also been developed in the IRT literature
(e.g., Tian et al., 2013). However, in pilot simulations we found that none of these methods are
capable of providing stable estimations, especially when the dimension D and the number of cate-
gories K are large. Therefore, to estimate the standard errors of item parameters under the pGVEM
framework for MGPCM, we adopt a bootstrap approach that uses a resampling procedure. Boot-
strap is an efficient alternative when the standard SEs estimation is mathematically intractable
(Efron & Tibshirani, 1986). The resampling procedure avoids the direct computation of SEs.

The bootstrap procedure in the pGVEM framework is implemented as follows. First we
simulated B bootstrap datasets based on M̂p = {âj , b̂j } j estimated from the pGVEM scheme.
Then we apply the pGVEM method to estimate the item parameters for each of the bootstrap
datasets, denoted by M̂ (1)

p , . . . , M̂ (B)
p . The standard errors are estimated by

ŜEv =
√√√√ 1

B − 1

B∑
i=1

(v̂(i) − v̂)2,

where v denotes item parameter a jr or b jk and v̂(i) is its i th bootstrap estimate. Given that our
objective is to estimate SEs rather than the distributions of the estimators, in our study, we take
the number of bootstrap samples to be 50, which generates stable results numerically.

2.3. Determining Latent Dimension

In this section, we discuss how to select the appropriate number of latent dimensions. We
propose to use the information criterion such as AIC or BIC to compare themodel fit with different
dimensions. In the MGPCM, direct computation of the residual sum of squares is costly. So we
adopt the modified version of the information criterion where the expectation is replaced by its
lower bound given by (2.9):

AIC∗ = 2(‖ Â‖0 + ‖B̂‖0 + ‖nondiag(�̂θ )‖0/2) − 2E(M̂p, ξ̂), (2.14)

BIC∗ = log(N )(‖ Â‖0 + ‖B̂‖0 + ‖nondiag(�̂θ )‖0/2) − 2E(M̂p, ξ̂), (2.15)

where Â = (â1, . . . , âJ ) and B̂ = (b̂1, . . . , b̂J ) are assembled matrices of the discrimination
and threshold parameters, respectively, nondiag(�̂θ ) denotes the nondiagonal entries of �̂θ , and
the zero norm || · ||0 counts the number of nonzero entries of the assembled matrix. Here note that
the term ‖B̂‖0 does not increase with dimension D and it denotes the number of all effective b
parameters. In addition, since the covariance matrix �̂θ is symmetric with unit diagonal entries,
we count the effective number of parameters in �̂θ as ‖nondiag(�̂θ )‖0/2. The major advantage
of the proposed criteria is that the lower bound of expectation is readily obtained with the updated
item parameters and variation parameters, with no extra computation cost.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:18:52, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


938 PSYCHOMETRIKA

3. Simulation Studies

3.1. Study I

We conducted simulation studies to compare the empirical performance of the proposed
pGVEM algorithm with the EM algorithm with fixed quadrature, Metropolis-Hastings Robbins-
Monro (MHRM) algorithm (Cai, 2010), and the stochastic EM (StEM) for MGPCM, which are
implemented in the R package ‘mirt’ (Chalmers, 2012), in terms of mean squared error and bias
of the estimation together with their computational time. The simulations were conducted in
the exploratory factor analysis (EFA) scenario, where no constraints on the item factor loading
structure were imposed during the analysis. EFA is generally more computationally challenging
than confirmatory factor analysis. In our study, we assumed that the latent covariance matrix was
ID to remove scale and rotational indeterminacy, and no further assumptions on the structure of
the loading matrix A were made during the analysis.

After estimating the parameters by our pGVEM algorithm, we performed proper oblique
rotation to allow the factors to be correlated. Many methods, including varimax, direct oblimin,
quartimax, equamax, and promax (Browne, 2001; Hendrickson &White, 1964), are available for
factor rotation in the literature. In our simulation study, we applied promax rotation as it is one
of the most computationally efficient oblique rotation methods in large-scale factor analysis. For
the estimation implemented in the ‘mirt’ package, we use the built-in promax rotation to obtain
the estimation, and for the pGVEM estimation, we use the function promax in R, with default
m = 4, to perform the rotation after the iteration ends.

The manipulated conditions include: (1) sample size N = 200, 500; (2) test length J =
10, 20; (3) number of categories K = 3, 6; (5) low and high correlation among the latent traits;
(6) small- and large-scale loadings. For each condition, a total number of 100 replicated caseswere
simulated. In the context of partial credit models, it is noted that the scaling of loadings plays a
pivotal role in shaping the likelihood function. Specifically, when loadings are high and there exist
multiple categories for partial credit scoring, the following case usually occurs: The probability
of attaining the highest or lowest scores becomes disproportionately large. Consequently, this
dominance of extreme scores may result in insufficient records of intermediate scores, thereby
making the estimation of threshold parameters problematic. Therefore in the simulation studies,
we considered two cases: (1) low scale loading: Parameter a jr was simulated from Uni f (0.5, 1)
for all j = 1, . . . , J, r = 1, . . . , D; (2) high scale loading: Parameter a jr was simulated from
Uni f (1, 2) for all j = 1, . . . , J, r = 1, . . . , D. The threshold parameters b jk are simulated from
N (0, 1) for all j = 1, . . . , J and k = 1, . . . , K − 1. For the latent variables, they were simulated
from a multivariate normal distribution with 0 mean and covariance matrix �θ . The diagonal
entries were fixed as 1, and off-diagonal entries were generated from a uniform distribution
Uni f (0.1, 0.3) in the low correlation case and Uni f (0.5, 0.7) in the high correlation case. For
the responses generated from the simulated model parameters, we perform simulation only on
cases where for all j = 1, . . . , J and k = 0, · · · K − 1,

#{i | Yi j = k, i = 1, . . . , N } > 0.

Here # denotes the set counting operator. Skipping any itemwith all responses being 0 is necessary
since the threshold parameter linked to each category of this item cannot be identified within the
finite sample context. For the convergence criterion, the algorithmwas terminatedwhen the change
of all item parameters between two iterations dropped below a pre-specified threshold, i.e.,

1

J × D + J × K

J∑
j=1

[
D∑

r=1

(
a(t)
jr − a(t−1)

jr

)2 +
K−1∑
k=1

(
b(t)
jk − b(t−1)

jk

)2]
< 10−5. (3.1)
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The estimation errors are presented separately in the form of mean squared error and bias for
the discrimination and threshold parameters and the covariance matrix, averaged across the test
items:

Biasa = 1

J D

J∑
j=1

D∑
r=1

â jr − a jr , MSEa = 1

J D

J∑
j=1

‖a j − â j‖22;

Biasb = 1

J (K − 1)

J∑
j=1

K−1∑
k=1

b̂ jr − b jr , MSEb = 1

J (K − 1)

J∑
j=1

K−1∑
k=1

(b jk − b̂ jk)
2;

Bias� = 2

D(D − 1)

∑
l<h

�̂hl − �hl , MSE� = 2

D(D − 1)
‖�θ − �̂θ‖2F .

Note that here both the true and estimated discrimination parameters have been rotated by the
promax rotations. The number of Markov chain samples drawn in the MHRM algorithm was by
default 5, 000 in the R package “mirt.” The convergence criterion and optimizer were all set as
default in the ‘mirt’ package.

Under the setting of small-scale loadings (i.e., a jr ∼ Unif(0.5, 1)), Figs. 1 and 2 show the
MSE of the four estimation methods for 3-category and 6-category cases, respectively. Each box
represents the distribution of errors from 100 replications. We truncated the scale of the y-axis
of the plot to make it easier to compare the estimation precision across different scenarios. We
present the full version of the boxplots in Appendix B. Overall, our method provides more stable
and accurate estimates of the MGPCM, as seen from both figures. The observed results indicate
a reduced variability in estimation errors for the model parameters when comparing pGVEM
to the other methods. Both MHRM and StEM exhibit better stability and accuracy compared to
the standard EM algorithm. Notably, pGVEM demonstrates good stability, particularly evident
when the sample size N is 200. Additionally, it is noteworthy that as the number of categories
increases, the estimation of the threshold parameters becomes more challenging, an anticipated
result given that the model becomes more complicated for multicategory cases. Interestingly,
despite a decrease in accuracy, the proposed pGVEM method exhibits a comparatively modest
increase in variability in many cases compared with alternative methods, indicating the capability
of the pGVEMmethod to handle more complex scenarios. Furthermore, we present the bias of the
estimation using the four different methods in Figs. 3 and 4 for the considered cases. In general, the
bias observed in pGVEM estimation tends to be more moderate across various cases, particularly
with regard to the threshold parameter.

Under the setting of large-scale loadings (i.e., a jr ∼ Unif(1,2)), the MSE and bias results
are presented in Figs. 5, 6, 7, and 8. We can see from the simulation results that in this setting the
error of estimation gets larger in most cases. The reason is that high level of loading increases
the frequency of extreme scores, thus making the estimation more challenging. Yet pGVEM
still outperforms the other methods with the regime of small sample size or low correlation.
Furthermore, in terms of the recovery of the threshold parameter, pGVEM provides estimates
with less bias and error. It is noteworthy that in this scenario, it occurs more frequently that for
some item, there is no record of certain category from any individual, leading to us discarding such
cases from the analysis. This suggests that when dealing with multiple categories of responses,
the discrimination parameters may tend to be small for model interpretability.

In Fig. 9wepresent the averaged computation timeof the fourmethods under different settings
of sample size N and test length J . The results exhibit similarity across the cases, and for brevity,
we displayed the case where the discrimination parameters are simulated from Uni f (0.5, 1)
and correlation coefficient from Uni f (0.1, 0.3). We take a total number of 6 categories. It is
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Figure 1.
Mean squared error of the estimation for the multidimensional generalized partial credit model of 3 categories from
exploratory factor analysis with small-scale loadings using different methods.

obvious that, compared with pGVEM, the traditional EM algorithm is inefficient especially when
the sample size is large. Also, pGVEM is slightly faster than the stochastic EM algorithm and
achieves similar computation efficiency compared with MH-RM algorithm in the displayed case.
The computational efficiency of our pGVEMalgorithmmakes it possible to provide fast estimation
on large datasets.

The results of our study demonstrate the superiority of the pGVEM algorithm over the
traditional EM algorithm along with MH-RM and StEM in terms of parameter recovery and
computational efficiency. Specifically, the pGVEM algorithm achieves comparable, and in some
cases, superior parameter recovery compared to the other algorithms. Moreover, pGVEM gener-
ates fewer estimation outliers, particularly in situations where the sample size and test length are
large.

As a side check, we compared the pGVEM algorithm with the GVEM algorithm proposed
by Cho et al. (2021) for the special case of M2PL. The comparison was made under identical
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Figure 2.
Mean squared error of the estimation formultidimensional generalized partial creditmodel of 6 categories fromexploratory
factor analysis with small-scale loadings using different methods.

setting in this section, except for that we take K=2. The results, presented in Appendix B, indicate
that our algorithm performs similarly to Cho et al. (2021) with binary data. Overall, our findings
demonstrate that the pGVEM algorithm is a robust and efficient method for parameter recovery
for the MGPCM. It can also be applied to other models, including M2PL model, with similar
success. The results suggest that the pGVEM algorithm may be a valuable tool for researchers
seeking to analyze complex data structures efficiently and accurately.

3.2. Study II

We conducted simulation study II to assess the performance of the proposed bootstrap stan-
dard error (SE) estimation procedure.We explore the bootstrap estimation in themultidimensional
case with multiple categories. In the multidimensional case, as clarified in Sect. 2.2, we found that
the traditional methods (EM and MH-RM) exhibited instability and produced infeasible results
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Figure 3.
Bias of the estimation for the multidimensional generalized partial credit model of 3 categories from exploratory factor
analysis with small-scale loadings using different methods.

across numerous settings. Consequently, in this section, we focus on the bootstrap-based SE
estimates under the EM algorithm, MH-RM, and the proposed pGVEM algorithm.

The comparisons were conducted under the simulation setting similar to Simulation Study I
and the manipulated factors include sample size, test length, factor correlations, and the number
of categories. The empirical standard deviations of the estimated item parameters as

SEv = 1

R − 1

R∑
r=1

(v̂(r) − v)2

across replications per condition are considered as the approximations of true SEs for eachmethod.
Here v stands for item parameters to represent a jd or b jk , and v̂(r) is the estimated parameter in
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Figure 4.
Bias of the estimation for the multidimensional generalized partial credit model of 6 categories from exploratory factor
analysis with small-scale loadings using different methods.

the r th replicate. To assess the performance of the proposed method, we computed SE estimations
along with their bias and relative bias as follows:

Average SE = 1

J (D + K )

J∑
j=1

[
D∑

r=1

ŜEa jr +
K−1∑
k=1

ŜEb jk

]

Bias = 1

J (D + K )

J∑
j=1

[
D∑

r=1

ŜEa jr − SEa jr +
K−1∑
k=1

ŜEb jk − SEb jk

]

Relative Bias = 1

J (D + K )

J∑
j=1

[
D∑

r=1

(ŜEa jr −SEa jr )/SEa jr +
K−1∑
k=1

(ŜEb jk−SEb jk )/SEb jk

]
,

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:18:52, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


944 PSYCHOMETRIKA

0.00

0.25

0.50

0.75

1.00

a b Cor
N=200, J=10, K=3, Low Correlation

M
SE

0.00

0.25

0.50

0.75

1.00

a b Cor
N=200, J=10, K=3, High Correlation

M
SE

0.00

0.25

0.50

0.75

1.00

a b Cor
N=200, J=20, K=3, Low Correlation

M
SE

0.00

0.25

0.50

0.75

1.00

a b Cor
N=200, J=20, K=3, High Correlation

M
SE

0.00

0.25

0.50

0.75

1.00

a b Cor
N=500, J=10, K=3, Low Correlation

M
SE

0.00

0.25

0.50

0.75

1.00

a b Cor
N=500, J=10, K=3, High Correlation

M
SE

0.00

0.25

0.50

0.75

1.00

a b Cor
N=500, J=20, K=3, Low Correlation

M
SE

0.00

0.25

0.50

0.75

1.00

a b Cor
N=500, J=20, K=3, High Correlation

M
SE

Figure 5.
Mean squared error of the estimation for the multidimensional generalized partial credit model of 3 categories from
exploratory factor analysis with large-scale loadings using different methods.

providing a comprehensive assessment of the reliability and accuracy of the proposed bootstrap
methods. Here we present the SEs of a and b pooled together with the aim of showing the
effectiveness of our method compared with its alternatives. The results for a and b are similar
to the pooled ones. The variability of discrimination and threshold parameters has been well
illustrated in the previous study.

The results are shown in Fig. 10 for the low correlation setting and 11 for the high correlation
setting. In the multidimensional case, where most of the methods fail to estimate the SEs numer-
ically or from Fisher’s information matrix, the bootstrap method still generates stable results. In
comparison with bootstrap methods from alternative estimations, the pGVEM-based bootstrap
exhibits a lower bias. It is observed that when the sample size is 200, the pGVEM-based boot-
strap may slightly underestimate standard errors. Nevertheless, its overall performance remains
relatively strong across diverse settings.
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Figure 6.
Mean squared error of the estimation formultidimensional generalized partial creditmodel of 6 categories fromexploratory
factor analysis with large-scale loadings using different methods.

3.3. Study III

In this sectionwe conduct a simulation study to examine the performance of the proposedAIC
and BIC in determining the latent dimension. Considering the complexity of the model setting of
MGPCM, we explore the accuracy of factor identification in sample size N = 500, 800 and test
length J = 20, 40. We consider both low correlation settings (simulated from Uni f (0.1, 0.3))
and high correlation settings (simulated fromUni f (0.5, 0.7)) for dimensions D = 2, 3, 4. In each
configuration, a total number of 100 independent samples were generated and we recorded the
number of cases where the number of factors was correctly identified. Discrimination parameters
are generated from Uni f (1, 2).

Tables 1 and 2 present the correct estimation rates for the number of dimensions of 3 and 6
categories, respectively. The results indicate that an increase in sample size generally contributes
to higher correct estimation rates. We can also observe that a lower correlation generally leads to
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Figure 7.
Bias of the estimation for the multidimensional generalized partial credit model of 3 categories from exploratory factor
analysis with large-scale loadings using different methods.

higher correct estimation rates, especially when there are fewer categories and shorter test lengths,
as the latent structure may be more challenging to identify in such settings. Overall, we observe
that AIC performs slightly better in the case of K = 3 and BIC has an advantage in the regime of
K = 6. In conclusion, the proposed criterion is efficient in general, and with a larger sample size,
the model is more likely to be correctly identified. Our findings are also consistent with existing
studies under the MIRT model (Cho et al., 2021).
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Figure 8.
Bias of the estimation for the multidimensional generalized partial credit model of 6 categories from exploratory factor
analysis with large-scale loadings using different methods.

4. Real Data Analysis

4.1. Trend in International Mathematics and Science Study Dataset

In this section,wedemonstrate the application of the pGVEMalgorithmbyanalyzing a dataset
from the Trend in InternationalMathematics and Science Study (TIMSS) (Mullis &Martin, 2017;
Martin & Mullis, 2019; Fishbein et al., 2018; Martin et al., 2020). TIMSS provides reliable and
timely trend data on the mathematics and science achievement of US students compared to that
of students in other countries. The assessment consists of a large pool of mathematics and science
questions, which are divided into different blocks using the item matrix sampling design to
relieve response burden. Specifically, 14 booklets were assembled, and each student was required
to complete one of them. Different booklets may include the same items for linking. TIMSS 2019
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Figure 9.
Computational time comparison for four methods with K = 6: left side depicts J = 10, while the right side corresponds
to J = 20.

divided the test items into 28 blocks for each grade, with 13 mathematics items and 15 science
items. In the data of students in grade eight, each block contained 12 to 18 items. For our analysis,
we selected a mathematics and a science block that appeared in booklet 5 of grade 8. In the
mathematics block there were 2 polytomous items, and in the science there were 3. Of the 1,252
students who responded to these booklets, 918 students’ responses were completely recorded. In
this study, we only estimated the parameters using the data from these 918 students. Appendix C
provides details of the item code and corresponding test content. The IRT parameters provided in
the TIMSS assessment document (Martin & Mullis, 2019) were used as the true parameters, to
which our estimated parameters were compared.

It should be noted that in operational analysis of TIMSS, uni-dimensional IRT models were
used for math and science domains separately. When analyzing the items from math and science
domain separately, the modified information criterion in Equation (2.14) and (2.15) computed
under the EFA framework both attain the smallest value when the latent dimension is 1 (i.e.,
D = 1), which implies that both domains are essentially uni-dimensional under the generalized
partial credit model setting. However, according to the information criterion provided in the ‘mirt’
package (i.e., using its default EM algorithm), the latent dimension cannot be clearly decided. In
the following we display the parameters estimated by EM with fixed quadrature and pGVEM.
The results are as follows.

To show the results visually, we plot the estimated parameters, by EM and pGVEM, in
Figs. 12 and 13. Based on our analysis, it can be inferred that the b-parameters obtained from both
methods exhibit a significant level of proximity. Similarly, the a-parameters demonstrate close
values. However, it is worth noting that the estimates derived from the EM algorithm tend to be
slightly larger for the majority of the items.

To reveal the relation of latent ability across different domains, we estimate all 28 items
jointly. First, compute the modified information criterion in Equation (2.14) and (2.15) for the
setting of joint estimating the data from mathematics and science block, with results presented
in Table 3 and 4. From the results the optimal number of latent dimensions is 2. This result is
reasonable as math proficiency and science proficiency should emerge as two separate factors.
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Figure 10.
Standard error assessment of estimation for the multidimensional generalized partial credit model from exploratory factor
analysis using different methods with D = 3 in low factor correlation setting.
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Figure 11.
SE assessment of estimation for the multidimensional generalized partial credit model from exploratory factor analysis
using different methods with D = 3 in high factor correlation setting.
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Table 1.
Correct number of trials in determining the latent dimension, K = 3

Correctness Low correlation High correlation
D=2 D=3 D=4 D=2 D=3 D=4
AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

N = 500, J = 20 99 97 53 42 7 4 66 52 3 2 0 0
N = 500, J = 40 100 100 96 92 68 56 100 100 79 39 25 12
N = 800, J = 20 99 98 60 54 26 13 64 51 23 12 17 3
N = 800, J = 40 100 100 99 97 80 70 100 100 83 67 44 32

Table 2.
Correct number of trials in determining the latent dimension, K = 6

Correctness Low correlation High correlation
D=2 D=3 D=4 D=2 D=3 D=4
AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

N = 500, J = 20 9 29 72 87 89 87 37 75 85 85 39 32
N = 500, J = 40 6 38 25 75 61 76 10 18 40 96 86 90
N = 800, J = 20 28 48 90 94 91 85 77 91 92 88 41 33
N = 800, J = 40 34 62 46 71 58 87 31 43 79 98 93 92

Figure 12.
Comparison of discrimination parameters estimated from ‘mirt’ and pGVEM.

Yet the information criterion output from ‘mirt’ package again did not provide sensible results.
By assuming the latent dimension is 2, we present the results estimated by the two methods after
promax rotation in Fig. 14. The analysis of estimated parameters reveals a clear two-factor loading
structure as shown in Fig. 14. Notably, the second dimension emerges as primarily the students’
proficiency in solving mathematical problems, whereas the first dimension tends to measure
students’ science proficiency. This finding suggests that the two dimensions capture distinct but
interconnected aspects of overall cognitive ability. Moreover, we can infer that certain types of
questions are particularly effective in assessing students’ latent abilities in either mathematics
or science. These questions demonstrate a higher degree of typicality in evaluating students’
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Figure 13.
Comparison of threshold parameters estimated from ‘mirt’ and pGVEM.

Table 3.
Information criterion from ‘mirt’. The smallest value of each information criterion is given in bold

Dimension Math (AIC) Math (BIC) Sci (AIC) Sci (BIC) Joint (AIC) Joint (BIC)

1 12923.50 19087.96 13048.86 19256.74 31296.65 31735.79
2 12939.39 19022.30 13117.81 19263.41 31311.77 31765.61
3 12940.75 19027.24 13167.39 19335.86 31341.26 31861.50
4 12963.25 19039.05 13233.29 19410.39 31441.63 31966.93

Math, Sci, Joint denote, respectively, information criterion for math items, science items and the collection
of all items jointly.

Table 4.
Information criterion from pGVEM algorithm. The smallest value of each information criterion is given in bold

Dimension Math (AIC) Math (BIC) Sci (AIC) Sci (BIC) Joint (AIC) Joint (BIC)

1 13795.40 18533.71 13935.24 18697.66 31873.35 32172.33
2 14744.12 18809.71 14961.12 19060.46 31806.70 32162.33
3 15656.59 19630.67 15960.38 19977.87 32392.96 33000.55
4 16588.21 20575.46 16988.45 21028.75 33187.73 33964.10

Math, Sci, Joint denote, respectively, information criterion for math items, science items and the collection
of all items jointly.

competence within their respective domains. This insight underscores the importance of carefully
selecting assessment items that align with the targeted cognitive skills, as they offer a more
accurate reflection of students’ underlying abilities.

4.2. Big-Five Factor Personality Dataset

We further demonstrate the application of the pGVEM algorithm by analyzing a dataset from
the Big-Five personality assessment. The five-factor model (FFM) stands as the most widely
recognized and extensively used model in psychology for understanding and measuring person-
ality (Goldberg, 1992). This model provides a framework to capture the richness and complex-
ity of individual differences, assuming five domains that encompass a comprehensive spectrum
of personality traits. The five dimensions include Openness, Conscientiousness, Extraversion,
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Figure 14.
Jointly estimated discrimination parameters from ‘mirt’ and pGVEM.

Agreeableness, and Neuroticism (often referred to by the acronym OCEAN) (Costa & McCrae,
2008).

To measure the latent traits, various assessment tools have been developed to assess an
individual’s standing on the Big-Five dimensions (Wiggins & Trapnell, 1997; McCrae et al.,
1996; Goldberg et al., 1999). In our study, we employ the Big-Five Factor Markers derived from
the International Personality Item Pool (IPIP), a widely recognized instrument developed by
Goldberg (1992). The dataset is publicly available at http://openpsychometrics.org/tests/IPIP-
BFFM/. This dataset consists of responses from a substantial sample of 19,718 individuals, each
evaluated on thefifty-itemBig-FiveFactorMarkers. The IPIP consists of fifty items, each requiring
respondents to rate the extent to which they perceive each statement as true about themselves on

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:18:52, subject to the Cambridge Core terms of use.

http://openpsychometrics.org/tests/IPIP-BFFM/
http://openpsychometrics.org/tests/IPIP-BFFM/
https://www.cambridge.org/core


954 PSYCHOMETRIKA

Factor 1

Factor 2

Factor 3

Factor 4

Factor 5

E1 E2 E3 E4 E5 E6 E7 E8 E9E10N1 N2 N3 N4 N5 N6 N7 N8 N9N10A1 A2 A3 A4 A5 A6 A7 A8 A9A10C1 C2 C3 C4 C5 C6 C7 C8 C9C10O1 O2 O3 O4 O5 O6 O7 O8 O9O10
Item Code

Fa
ct

or
s

−1

0

1

2
Value

Heatmap of Loading Matrix

Figure 15.
Heatmap of loading matrix from Big-Five personality study.

Table 5.
Estimated correlation matrix of the 5 latent factors for the Big-Five dataset. The absolute values of correlations higher
than 0.1 are given in bold

F1 F2 F3 F4 F5

F1 1.000 0.237 0.529 0.459 0.030
F2 0.237 1.000 0.294 −0.098 0.031
F3 0.529 0.294 1.000 0.305 0.096
F4 0.459 −0.098 0.305 1.000 −0.213
F5 0.030 0.031 0.096 −0.213 1.000

a five-point scale. This scale ranges from 1 (Disagree) to 3 (Neutral) to 5 (Agree), providing a
nuanced and graded assessment across the five categories.

Under the setting of exploratory factor analysis, we fit the MGPCM using the proposed
pGVEM algorithm. The estimated factor loadings are represented in Fig. 15. The heatmap reveals
that each factor exhibits a distinct and salient association with the grouped items. Also, we can see
that not all latent factors have a positive influence on the overall rating—a phenomenon commonly
observed in personality tests (McCrae et al., 1996; Goldberg et al., 1999). A significant correlation
between Factor 1 and Factor 3 can be observed, as they both significantly impact responses to
the A-items. To further illustrate these relationships, we present the estimated correlation matrix
of the factors in Table 5. The largest correlation is between Factor 1 and Factor 3 with a value
of 0.529, which is consistent with our observation from Fig. 15. Overall, the estimated factor
structure aligns with existing literature, demonstrating the usefulness of the proposed method as
a computationally efficient tool to analyze large scale assessment data.
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5. Conclusion

In this paper, we proposed a new Gausssian variational estimation algorithm of polyto-
mous responses (namely, pGVEM) for the multidimensional generalized partial credit model
(MGPCM). The MGPCM is one of the most widely used models in cognitive assessment and
educational measurement for items that are scored polytomously, such as assigning partial scores
for intermediate correct steps. There are limited methods for an efficient estimation of MGPCM,
and it is shown that our pGVEM algorithm outperforms many existing approaches in that it is rel-
atively stable and much faster without resulting in much aberrant estimates or convergence issues.
When the sample size and test length are both large, our proposed variational lower bound seems
to approximate the target marginal likelihood closely. The computation efficiency is achieved
by replacing the intractable high-dimensional integral with a variational lower bound that con-
tributes to faster EM-type updates involving only small-scale linear equations. The simulation
study in Sect. 3 provides simulation evidence to support pGVEM in producing accurate parame-
ter estimates quickly, as compared to the traditional EM implementation of marginal maximum
likelihood estimators. The real data analysis demonstrates that our estimation scheme is capable
of extracting proper information about the latent variables.

Variational inference has emerged as a prominent and efficient methodology in the field of
psychometrics, particularly due to its ability to handle large-scale datasets with both accuracy and
computational efficiency. In addition to IRT models with continuous latent variables, Yamaguchi
and Okada (2020) recently proposed a variational Bayesian (VB) inference algorithm for the
saturated cognitive diagnosis models, which represents a notable advancement in scalable and
computationally efficient Bayesian estimation for discrete latent variable models. Oka and Okada
(2023) developed a scalable estimation algorithm for the DINA Q-matrix, which employs an
iteration scheme utilizing stochastic optimization and variational inference. Our method, on the
other hand, extends the literature on continuous latent variable estimation (Cho et al., 2021, 2022)
by considering multiple response categories. It is encouraging to further explore the relationship
of various variational approximation methods, which may lead to a more robust and flexible
estimation framework for many psychometric models.

There are also some other potential directions to extend the current work. First, as with many
nonconvex optimization problems, the efficacy of our algorithm may be influenced by the chosen
initial values. Instances where initial values deviate substantially from the actual parameters may
lead the algorithm to converge to local optima rather than the global one. Given the propensity for
variational approximations to yield multiple local optimal values, investigating the initialization
strategy for our estimation process warrants further exploration. Second, the current method of
determining the number of latent dimensions may not work for certain cases, especially when
the dimension is very high or there exists a high correlation between latent factors. Therefore, a
more accurate and robust model selection method that will work in these challenging scenarios
is needed.
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