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A DIAGNOSTIC FACET STATUS MODEL (DFSM) FOR EXTRACTING
INSTRUCTIONALLY USEFUL INFORMATION FROM DIAGNOSTIC ASSESSMENT
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Modern assessment demands, resulting from educational reform efforts, call for strengthening diag-
nostic testing capabilities to identify not only the understanding of expected learning goals but also related
intermediate understandings that are steppingstones onpathways to learninggoals.Anaccurate andnuanced
way of interpreting assessment results will allow subsequent instructional actions to be targeted. An appro-
priate psychometric model is indispensable in this regard. In this study, we developed a new psychometric
model, namely, the diagnostic facet status model (DFSM), which belongs to the general class of cognitive
diagnostic models (CDM), but with two notable features: (1) it simultaneously models students’ target
understanding (i.e., goal facet) and intermediate understanding (i.e., intermediate facet); and (2) it models
every response option, rather thanmerely right or wrong responses, so that each incorrect response uniquely
contributes to discovering students’ facet status. Given that some combination of goal and intermediate
facets may be impossible due to facet hierarchical relationships, a regularized expectation–maximization
algorithm (REM) was developed for model estimation. A log-penalty was imposed on the mixing propor-
tions to encourage sparsity. As a result, those impermissible latent classes had estimatedmixing proportions
equal to 0. A heuristic algorithm was proposed to infer a facet map from the estimated permissible classes.
A simulation study was conducted to evaluate the performance of REM to recover facet model parameters
and to identify permissible latent classes. A real data analysis was provided to show the feasibility of the
model.
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1. Introduction

The “Every Student Succeeds Act” emphasizes that “High-quality assessments are essential
to effectively educating students, measuring progress, and promoting equity.” For such assess-
ments to scaffold learning, they should provide actionable diagnostic information (Kluger &
DeNisi, 1996; Pellegrino et al., 2001) such as learners’ mastery of learning goals and related inter-
mediate understandings. According to theories of conceptual change and constructivism, accurate
and reliable information about both aspects of student understanding (hereafter called “facets,”
which represents psychological constructs such as knowledge states, conceptual understandings,
etc.) is key to targeted instruction. Unfortunately, current assessment approaches have largely
remained rooted in a summative paradigm, with scoring rubrics that predominantly gradate per-
formance (i.e., right/wrong, or partial credit) (Dadey, 2017; Lanting, 2000; Underwood et al.,
2018).

A plethora of online learning platforms have emerged aiming for better-differentiated and
more responsive instruction both in the classroom and at a distance. But the quality of a respon-
sive, adaptive system hinges on an embedded assessment architecture providing feedback at a
sufficiently fine-grain size. Assessments constructed under a formative paradigm and grounded
in research on learner cognition would much better serve the needs of various stakeholders (e.g.,
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teachers, students, parents). However, questions remain as to how to strengthen the diagnostic
capabilities of such assessments for generating amore nuanced, yet robust profile of student learn-
ing that produces actionable information. An appropriate psychometric model is indispensable
in this regard. In the past two decades, cognitive diagnostic modeling (CDM) has emerged as a
flexible tool to extract diagnostic information from assessments and its application has been on the
rise in various domains (Bradshaw & Templin, 2014; Morphew et al., 2018; Tjoe & de la Torre,
2014) . CDMs can provide a profile on every learner, pinpointing their mastery status on multiple
attributes. However, existing CDMs have limited capability for modeling both goal and interme-
diate understandings, handling ultra-large number of attributes, and identifying intricate attribute
relationships. This paper aims to develop (1) a psychometric model to identify learners’ mastery
of goal attributes (i.e., accurate understanding, practice, etc.) and their intermediate thinking (i.e.,
intuitive, alternative, partial understanding, etc.) and (2) a statistical learning method to identify
relations among attributes. Together these will enhance the diagnostic power of assessment and
support targeted instructions (DiBello et al., 2015) .

1.1. A Facets Approach to Instruction and Learning

In the realm of research on learner cognition and learning sciences, the knowledge in pieces
(KiP) theory presumes that when faced with a new task, learners draw on relevant pieces of knowl-
edge and reasoning to construct their understanding (diSessa, 2017) . Taking this “fragmented”
stance (diSessa, 1993) , the theory assumes that students’ ideas consist ofmany quasi-independent
elements. Conceptual change (i.e., learning), therefore, involves learners picking and choosing
the most productive ideas and refining them to create normative concepts (diSessa, 2014a) rather
than abandoning entire ideas as a coherent whole. In this view, students’ naïve ideas are resources
for learning to develop scientific understanding instead of roadblocks to conceptual change (Min-
strell, 1989, 1991) . The KiP perspective holds strong implications for instruction. First, KiP has
a small enough grainsize of analysis to allow the tracking of individual learning so instructional
design can benefit from formative feedback (diSessa, 2014b; Kapon & diSessa, 2012) . Second,
KiP acknowledges complex contextuality, advocating that students need to be exposed to multiple
contexts so that their knowledge can be developed in each. The knowledge a learner draws on
may be productive in one context but problematic in another context. One example is the notion
of “property” which physics learners commonly apply to both force and energy (e.g., “One cart
colliding with a second stopped cart gives [suggesting transfer of property] some force of motion
to the second cart.”) But whereas regarding force as a property of matter is problematic to fully
understand forces and motion (FM), it is productive in the learning about energy.

Facets initially emerged from classroom research of learner’s conceptual understanding in
physics. What started as a list of interesting alternative ideas and reasoning related to core physics
concepts, was eventually organized, roughly ranked (in terms of degrees of instructional fric-
tion) and formalized into facet clusters. Most facets are paraphrases or slight abstractions of
student expressions of their conceptual understanding as recorded in the classroom and through
the research of others focused on conceptual learning in science. In brief, a “facet” is an individ-
ual piece or a construction of several pieces of knowledge or reasoning strategies that the learner
uses to explain a phenomenon or solve a problem. Some pieces reflect accurate understanding
(i.e., goal facets) while others (i.e., intermediate facets) may be alternative intuitive ideas, partial
conceptions, or even useful ideas misapplied in a context. In some literature, intermediate facets
are sometimes referred to as “misconceptions,” which originate from students’ prior learning and
lived experience with the world or in the classroom (Smolleck & Hershberger, 2011; Thompson
& Logue, 2006) . For instance, in Newtonian mechanics, students’ intermediate understanding
of force and motion is formed by their everyday experiences in the physical world (Clement,
1987) . In this paper, we use “intermediate facet” and “misconceptions” interchangeably as they
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are treated the same in psychometric models, although the former carries the asset-based connota-
tions. A Facets approach to assessment and instruction is a good starting point for the development
of robust diagnostic assessment (Minstrell, 1991, 1992, 2000; Minstrell et al., 2015) .

In contrast, the “attribute” in CDM is a generic term that represents psychological constructs
including skills, knowledge states, cognitive processes, and rules. One subtle difference is that
different condensation rules might be more appropriate for attributes vs. facets. For instance, the
DINAmodel, the most frequently studied among CDMs, assumes a conjunctive rule, i.e., students
need to master all the required attributes to answer an item correctly. This is most appropriate
if considering attributes as skills and rules. For example, in order to respond correctly to the
problem “4 5/7–1 4/7”, students need to master two skills: basic fraction subtraction, as well
as separating out the whole number subtraction from fraction subtraction. On the other hand,
facets represent small identifiable units of knowledge/reasoning that are building blocks of core
knowledge within a content domain. As a result, an “additive” rather than conjunctive rule may
be more appropriate, as it represents how different pieces/blocks of knowledge combine to build
complete understanding of a particular concept.

Although mathematically we do not differentiate facets from attributes, they have different
philosophical orientations and hence differ in their formative value for instruction. Attributes,
primarily rooted in a summative paradigm of assessment, are useful for describing mastery or
non-mastery of skills that constitute the highest stage of learning. However, they reveal little
to nothing about the pathways (of conceptual development) leading to that mastery. Therefore,
while attributes can reveal students’ static state of skill mastery to inform the general focus of
subsequent instruction, they are less useful for pinpointing specific conceptual needs or for really
promoting conceptual development. In contrast, facets stem from a formative paradigm, aimed at
revealing the dynamics of conceptual learning and places of instructional opportunity. Moreover,
recent studies have shown that both goal and intermediate understandings may coexist (Stavy et
al., 2006) , even after a conceptual change has occurred or when a student responds correctly to an
assessment item (Foisy et al., 2015; Potvin et al., 2015; Vosniadou & Verschaffel, 2004) . Being
aware of the pieces of understanding that students are drawing together to explain a phenomenon
or solve a problem is essential to providing instruction and feedback that are responsive to learners’
needs.

1.2. Psychometric Models for Scoring

Currently, facet-based assessments are scored by computing subscores, that is, tallying the
number of times a student chooses an option that measures each facet. However, this approach
not only ignores the inherent probabilistic nature of students responding to items but is also
unreliable when a facet is measured by a small number of items (Cizek et al., 2004; Haberman et
al., 2009; Tate, 2004) . Since measurement errors are rarely reported for subscores, the decisions
made therefrom may be invalid if errors are large. Alternatively, ordered multiple-choice (OMC)
scoring (Briggs et al., 2006; Hadenfeldt et al., 2013) is a psychometrically better justified,
flexible tool that overcomes these limitations. With OMC, each response option is linked to
discrete, developmental levels of student understanding. Using the attribute hierarchy method
(AHM), one can map out the facet mastery profile of each student with goal facets lined up along
a linear hierarchy defined by the learning progression. However, the linear hierarchy assumption
of OMC scoring is overly restrictive as it precludes the possibility that students may hold multiple
intermediate facets simultaneously. In addition, certain intermediate facets may be at the same
developmental levels such that strictly ordering them along a liner progression is too simplistic.
In fact, research has shown that certain learning progressions, such as “forces and motion” in
physics, are hard to map using the AHM framework (Alonzo & Steedle, 2009) . Instead, CDM
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Table 1.
Three different modeling frameworks for modeling learning.

Framework Foundation Pros (no shading) and Cons
(shaded in gray)

Knowledge space theory
(Doignon & Falmagne, 1999)

Mathematical set theory Adaptively assess student
knowledge and provide advice
for further study

Deterministic theory that does
not naturally account for
stochastic human behavior

Does not provide item
characteristic information

Rule space model (Tatsuoka,
1983, 2009)

Pattern recognition Non-parametric
Difficult to make item level
inferences due to the aggregate
nature of the process

Only allows for
non-compensatory attribute
relationships

Cognitive diagnostic models Statistical measurement model Probabilistic and flexible (i.e.,
accommodate dichotomous and
polytomous responses, as well
as dichotomous, polytomous,
and continuous attributes)

Allows for statistical check of
model data fit; allows for
data-driven estimation of
attribute relationships

Requires sophisticated
estimation algorithm for
complex models

Requires high computation
power for models with large
number of attributes

is a more versatile psychometric tool than AHM, allowing facets to connect more freely to reflect
complex, and potentially nonlinear, learning pathways.

Table 1 compares CDM with two other popular modeling frameworks for diagnostic assess-
ment: knowledge space theory, and the rule space model wherein AHM is located. Compared
with these, CDM is not only capable of handling the probabilistic nature of human behaviors
such as allowing slipping and guessing but is also immensely flexible to accommodate various
cognitive processes (e.g., compensatory vs. conjunctive) and outcome spaces (e.g., dichotomous,
polytomous, and nominal).

Within the CDM framework, we propose a new model, namely, the diagnostic facet status
model (DFSM), which will handle nominal outcome space to maintain the information encapsu-
lated in each response option. Meanwhile, it will also provide a fuller cognitive profile that covers
both goal and intermediate facets. Existing CDMs (see Table 2) can only accommodate one of
these two flexibilities. Specifically, the widely used generalized deterministic input noisy ‘and’
gatemodel (GDINA, de la Torre, 2011) and loglinear CDMmodel (Henson et al., 2009) only han-
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Table 2.
Unique features of DFSM compared to other CDMs.

CDM approach A B C D E

Generalized Deterministic Input Noisy ‘And’ Gate model (GDINA); Loglinear CDM Y Y Y
Scaling Individuals and Classifying Misconceptions (SICM) Y Y
Multiple choice-DINA Y Y Y
Generalized diagnostic classification model for MC option-based scoring (GDCM-MC) Y Y Y
Simultaneously identifying skills and misconceptions model (SISM) Y Y Y
DFSM Y Y Y Y Y

A. model goal facets; B. model intermediate facets; C. scale well to large number of facets using efficient
algorithm; D. model option level response (i.e., nominal response); and E. explore facet relationships.

The graph at right shows the net force (sum of all the forces) on the block during different time intervals as Jahmelia moves 
the block across the table. When was the block moving at constant speed?

A. From 0 to 2 minutes, when the net force is 10.
B. From 2 to 4 minutes, when the net force is decreasing.
C. From 4 to 6 minutes, when the net force is 0.
D. Both from 0 to 2 minutes and 4 to 6 minutes when the net force is constant

Figure 1.
An example item from “Forces and Motion” Unit.

dles goal facets and dichotomously (i.e., right or wrong) or polytomously scored responses (i.e.,
partial credits); the scaling individuals and classifying misconception (SICM, Bradshaw & Tem-
plin, 2014) model models option level responses and only intermediate facets; the multiple-choice
DINAalsomodels option level responses but only goal facets; the simultaneously identifying skills
and misconceptions model (SISM, Kuo et al., 2018) models both goal and intermediate facets but
at item level instead of option level hence it is only suitable for dichotomously scored items. One
notable exception is the generalized diagnostic classification model for multiple choice option-
based scoring (GDCM-MC, DiBello et al., 2015), which satisfies the needs of modeling goal and
intermediate facets at item optional level. However, GDCM-MC requires a three-value coding
scheme per response option, placing higher requirements on experts and hence a greater chance of
human-coding errors. Furthermore, GDCM-MC is estimated by Bayesian Markov chain Monte
Carlo (MCMC) algorithm, which does not scale well to large numbers of facets. DFSM requires
less complicated coding of a Q-matrix and has more compact parameterization which affords use
of the faster expectation–maximization (EM) algorithm. As detailed in the next section, the EM
algorithm with a proper penalty term scales well to high-dimensional space.

2. Method

Before introducing DFSM, we first present an example item that motivates the proposal of
DFSM. Figure1a provides an example item from a topic of “Explaining constant speed” in the
“Forces andMotion (FM)” unit in Diagnoser1 (Thissen-Roe et al., 2004) , which is a set of online
assessment and instruction tools designed to elicit and develop students thinking to arrive at deeper
conceptual understanding. Figure1 provides an example item from a topic of “Explaining constant
speed” in the “Forces and Motion (FM)” unit. Figure2a presents the definitions of facets from

1http://www.diagnoser.com/
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(a) Definition of facets
Topic: Explaining constant speed (within Forces & Motion unit)
1 Correct interpretation of Force vs. Time graph
2 An object moving at a constant speed in one direction indicates 

all forces are balanced
1

A constant of one variable implies constant of another variable
2 An object moving at constant speed indicates an unbalanced force 

in the direction of motion
3 Excess force gets smaller and smaller (and may even be used up)

(b) Option-facet mapping for the 
example item

OPTION
A 1 1
B 1 1
C 1 1
D 1 1

Figure 2.
Illustration of facet definition and option-to-facet mapping.

this FM topic, and Fig. 2b shows the mapping of item response options from the example item to
the defined goal and intermediate facets. As shown, option C is the correct answer for this item,
and this option measures both the goal facets but none of the intermediate facets. In contrast, all
distractors measure one or multiple intermediate facets and some (or none) goal facets.

2.1. Diagnostic Facet Status Model (DFSM)

DFSM models the log-odds of student i with a facet profile,
(
αi ,β i

)
, choosing a distractor

of item j against a correct answer, as follows:

log

(
P

(
xi j = k

)

P
(
xi j = K

)

)

= λ j,0 + λ j,1

[
h

(
αi ,q

g
j,k

)
− h

(
αi ,q

g
j,K

)]T + λ j,2h
(
β i ,q

p
j,k

)T
, (1)

where k = 1, .., K denotes different response options and K is the correct response without loss
of generality. λ j,0 is the intercept representing the logit of selecting a distractor over a correct
response for someone with none of the facets. If λ j,0 = 0, then the probability of selecting the
key is the same as selecting any other distractors, i.e., any response option has an equal chance
to be selected. If λ j,0 < 0, then the chance of selecting the key for students with none of the
facets is higher than that of selecting any other distractors, and smaller λ j,0 leads to a higher
probability of selecting the key, hence it implies that the item is easy. In contrast, if λ j,0 > 0,
then the probability of selecting the key is lower than that of selecting any of the distractors.
λ j,1 and λ j,2 are row vectors of slopes quantifying the effect of having additional goal and
intermediate facets on the logit. They are constrained to be positive. Larger slopes indicate better
discrimination, i.e., the probability of endorsement pattern will differ more for students with and
without the relevant facets.qgj and qp

j are the binary vectors denoting the mapping of response

k on goal and intermediate facets, respectively. Both λT
j,1h

(
αi ,q

g
j,k

)
and λT

j,2h
(
β i ,q

p
j,k

)
are

linear combinations of facet main effects and interactions.
In Eq.1, if only the main effects are considered, the term λT

j,1h
(
αi ,q

g
j,k

)
can be spelt out as

∑G

m=1
λ j,1,mq

g
j,k,mαi,m (2)

where G is the total number of goal facets, λ j,1,m is the main effect due to αm . Similar forms are

used forλT
j,2h

(
β i ,q

p
j,k

)
as well. We constrain all coefficients λ to be non-negative, which means

a student with more goal facets not matched with the response option will be less likely to choose
a distractor over the correct option, whereas a student with more matched problematic facets will
be more likely to choose a distractor. Comparing Eq.2 to the LCDMmodel or the GDINAmodel,
note that we do not include an intercept term. This is because the intercept is absorbed in λ j,0 in
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Eq.1 automatically. Like in GDINA and LCDM, both λT
j,1h

(
αi ,q

g
j,k

)
and λT

j,2h
(
β i ,q

p
j,k

)
can

also include interaction terms among facets as needed.
Given the logit form defined in Eq.1, the conditional probability that a student i with a facet

profile,
(
αi ,β i

)
, chooses distractor option k for item j is

P(Xi j = k|αi ,β i ,λ j )

=
exp

(
λ j,0+λ j,1

[
h
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g
j,k

)
− h

(
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g
j,K

)]T
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(
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β i ,q

p
j,k

)T
) , (3)

whereas the conditional probability that a student i chooses a correct response option for item j
is

P(Xi j = K |αi ,β i ,λ j )

= 1

1 + ∑K−1
k=1 exp

(
λ j,0+λ j,1

[
h

(
αi ,q

g
j,k

)
− h

(
αi ,q

g
j,K

)]T
+λ j,2h

(
β i ,q

p
j,k

)T
) . (4)

Remark. To provide an intuition about DFSM, let us consider a simple item example with 2 goal
facets and 2 intermediate facets. For an item with 4 response options, the Q-matrix takes the form
of [1, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; 0, 0, 1, 1]. Each row refers to one response option and the
first option is the correct response. The four columns refer to α1, α2,β1, and β2, respectively. Set
λ j,1 = (1.5, 2) and λ j,2 = (0.75, 1.25), then the probability of responding to each option given
a facet profile is presented in Table 14. Several conclusions can be drawn from Table 14. First,
when the facet profile is (1, 1, 0, 0), implying that a student masters all required goal facets and
none of the intermediate facets, the chance of selecting the key is the highest (i.e.,.909), whereas
the chance of selecting any distractor is the same (i.e.,.030). The chances of selecting distractors
are not always the same, they are the same in this case because none of the distractors measure
any goal facets. Second, when a student masters all required goal facets and one (or several)
intermediate facet, the chance of selecting the key drops understandably. For a student with a
facet profile of (α, β), and for an item with a q-vector (i.e., row vector) denoted by qk for option
k. If (α, β) − qk1 = (α, β) − qk2 , then the chance of selecting option k1 and k2 will be the same.
Third, if the slope on a facet is high, then possessing that facet will lead to a higher chance of
selecting an option that measures the same facet. For instance, in Table 14, because the slope on
α2 is higher than the slope on α1, the third facet profile yields a higher chance of selecting the
key (i.e., .69) than the second facet profile. The same conclusion applies to intermediate facets as
well.

Note that in Eq.1 ∼ 3, the λ’s are defined at item level instead of response option level,
hence there is no subscript k. This choice is made because of two reasons: (1) the model is more
parsimonious in general; (2) if for all items, each facet is measured by only one response option
(that is, if one computes the column sums of a q-matrix for an item, the column sum vector only
has 0’s and 1’s in it), then whether or not adding the subscript k will lead to the same model. We
tried to fit the two versions of the DFSM model, one with item-level intercepts and slopes and
the other with item-option level intercepts and slopes, on the real data set and noted that the latter
model did not converge. However, we provide estimation code for both models on https://github.
com/wang4066/HARLI1 and readers may consider this more flexible version if they have enough
data to support the model estimation.
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2.2. Regularized EM Algorithm

For model estimation, the main idea of the regularized EM will proceed as follows assuming
α and β reside in the same space. Let λ denote the set of item parameters, the form of h is specified
in advance (i.e., additive form for instance), and let π denote the vector of πα,β ’s representing
the latent class mixing proportions. Then the marginal log-likelihood of (λ,π) given a response
matrix Y is

logLN (λ,π |Y) =
∑N

i=1
log

[∑

(α,β)∈{0,1}K πα,β

∏J

j=1

∏K

k=1
θ
yi j=k
j,k

]
, (5)

where N is the sample size, and θ j,k is the conditional probability defined in Eq.3 (or 4) which
is a function of λ. A regularized EM (REM) algorithm with log-penalty on πl is proposed so that
the mixing proportion associated with impermissible latent classes will shrink strictly to 0. In the
REM algorithm, the objective function that will be maximized takes the following form

argmaxθ ,π

[
logLN (λ,π |X) + γ

∑2

l

M
logρN

(πl)

]
, subject to the constraint of

∑2

l

M
πl=1.

(6)

InEq.6,M is the total number of goal andproblematic facets. logρN
(πl) = log (πl) × I (πl > ρN )

+ log (ρN ) × I (πl ≤ ρN ) where ρN ≈ 1
N is a small threshold parameter to suppress singularity

issue of the log function (Gu & Xu, 2019; Wang, 2021a) . γ ε(−∞, 0) is a tuning parameter
and smaller γ yields more sparsity in π . At the convergence of the REM algorithm, π̂l will be
compared to ρN and only classes with π̂l > ρN are retained as permissible classes. Details of the
REM algorithm for the proposed DFSM model are given below.

2.3. E-step

In the E-step, one computes the conditional expectation of complete data log-likelihood,
lN (λ,π |X, α, β), with respect to the posterior distributions of (αi ,β i ) (i = 1, ..., N ) .First, write
the complete data log-likelihood as follows,

logLN (λ,π |X, α, β) =
∑N

i=1

{∑J

j=1

∑K j

k=1
I
(
xi j = k

)
log θ jk,αi ,βi

+ log f (αiβ i |π)

}
,

(7)

where θ jk,αi ,βi
’s are conditional probabilities defined in Eq.3 or 4. Then its expectation is,

Eα,β [logLN (λ,π |X,α,β)]
=

∑N

i=1

{∑

(α,β)∈{0,1}M Pr
i(α,β)

[∑J

j=1

∑K j

k=1
I
(
xi j = k

)
log θ jk,αi ,βi

+log f (αiβ i |π)

]}

=
∑J

j=1

[∑N

i=1

∑

(α,β)∈{0,1}M Pr
i(α,β)

∑K j

k=1
I
(
xi j = k

)
log θ jk,αi ,βi

]

+
∑N

i=1

[∑

(α,β)∈{0,1}M Pr
i(α,β) logπl

]
(8)

where Pr
i(α,β)

≡ Pr
i(α,β)∈l = P(αi = αl ,β i = βl |λr ,πr ) is the posterior distribution of (αl ,βl)

for person i given the parameter estimates from the r th iteration.
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Let Hr
j ≡ ∑N

i=1
∑

(α,β)∈{0,1}M Pr
i(α,β)

∑K j
k=1 I

(
xi j = k

)
log θ jk,αi ,βi

for notational simplicity
hereafter, and hence Eq.8 is simplified as follows

Eα,β [logLN (λ,π |X, α, β)] =
∑J

j=1
Hr

j +
∑N

i=1

[∑

(α,β)∈{0,1}M Pr
i(α,β) logπl

]
. (9)

Given that the last term in Eq.9 is unrelated to λ, it will be considered separately.

2.4. M-step

In the M-step, we will maximize Eα,β [lN (λ,π |X, α, β)] + γ
∑2

l
M
logρN

(πl) with respect
to θ and π , respectively. Specifically, let Pr

i(α,β)
≡ Pr

il for notational simplicity, the objective
function of πl that needs to be maximized becomes,

logLN (π) =
∑N

i=1

[∑2

l

M
Pr
il logπl

]
+ γ

∑2

l

M
logρN

(πl)+s(1 −
∑2

l

M
πl) (10)

where s is a Lagrangemultiplier, and the last term inEq.10 reflects the constraint that
∑2

l
M

πl = 1.
Then

∂logLN (π)

∂πl
= γ + ∑N

i=1 P
r
il

πl
− s = 0,

such that πl = γ+∑N
i=1 P

r
il

s . The key is to derive the term s. Since
∑2

l
M

πl = 1, we have
∑2

l
M

(
γ+∑N

i=1 P
r
il

s

)
= 1, and hence s = ∑2

l=1
M

(
γ + ∑N

i=1 P
r
il

)
. Based on the derivation,

πlwill be updated using the following two steps.

1. Let ν
(r)
l = max

{
c, γ + ∑N

i=1 P
r
il

}
, where c > 0 is a pre-specified value and Pr

il ≡
Pr
i(α,β)

where (α,β) belongs to the lth group.

2. π
(r)
l = ν

(r)
l∑L

l=1 ν
(r)
l

, where L denotes the total number of latent classes.

Here, “c” was chosen to be a very small value, in our case, c = .00001. Like Gu and Xu (2019)
as well as Wang (2021b), “c” was prespecified and included to avoid negative counts. Note that
γ < 0, depending on the value of γ , it is likely that γ + ∑N

i=1 P
r
il < 0. This is impermissible as

�
(r)
l denotes the expected number of people in latent class l which cannot be negative. So, adding

“c” is a numeric trick to make the algorithm stable, it will not affect the results as it is set to be
very small. Each item’s parameters will be updated by maximizing Hr

j separately. The full REM
algorithm is presented in Table 3.

2.5. Model Identifiability

The DFSM is identified when the model parameters can be uniquely estimated given the
observed responses. The identifiability of DFSM can be studied using the conclusions established
by Liu and Culpepper (2023). They derived the strict and generic identifiability conditions for
restricted latent class models (RLCM) for nominal response data. Because DFSM is a special
CDM for nominal responses, their conclusions can be generalized to our context. Specifically, we
first need to construct a�-matrix for an item from its Q-matrix. For example, for an item j with 4
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Table 3.
The REM algorithm for DFSM.

1. Initialize all model parameters. Set r = 1.

2. Compute Pr
i(α,β)∈l = L(xi |λr ,αi=αl ,βi=βl )π

r
l∑L

l=1 L(xi |λr ,αi=αl ,βi=βl )π
r
l

for i = 1, ...N .

3. Obtain item parameters by maximizing Hr
j for each item separately, for j = 1, ...J using the ‘optim’

function in R [One may choose “L-BFGS-B” algorithm, this step can be parallelized as maximizing each
Hr
j is independent of the others.]

Hr
j ≡ ∑N

i=1
∑

(α,β)∈l Pr
i(α,β)∈l

∑K j
k=1 I

(
xi j = k

)
log P(xi j = k|αi = αl ,βi = βl ,λ

r
j )

4. Compute π
(r)
l = ν

(r)
l∑L

l=1 ν
(r)
l

, where ν
(r)
l = max

{
c, γ + ∑N

i=1 Pr
il

}
and set c=0.0001.

5. Repeat steps 2-4 until convergence. The convergence criterion could be the maximum difference between
all parameter estimates (including both item parameters and class proportions) in the last two consecutive
EM steps is smaller than.0001.

6. After convergence, compare π
(r+1)
l to ρN and if π(r+1)

l < ρN , set π
(r+1)
l = 0, gl =0. Otherwise, gl =1.

And gl is an indicator indicating whether latent class l is permissible. Re-standardize all π
(r+1)
l such that

they still sum up to 1.
7. Re-conduct EM algorithm without penalty to obtain final parameter estimates and use the final estimates

to compute BIC. In this EM algorithm, one goes through steps 1-5, except that in step 4, compute π
(r)
l =

ν
(r)
l∑L

l=1 ν
(r)
l

only for those latent classes with gl =1, where ν
(r)
l = ∑N

i=1 Pr
il . Still make sure all π

(r)
l add

up to 1. [In fact, we will use an initial value of π
(0)
l such that those impermissible latent classes will have

π
(0)
l = 0. They will remain 0 during the EM algorithm].

total response options, i.e., K j = 3, and assume the total number of facets M=3 (e.g., 1 goal facet
and 2 intermediate facet) for simplicity, and presume the Q-matrix takes the form (note that the

first option is the key),Q j =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦. Different from Liu and Culpepper (2023), we have a

term
[
h

(
αi ,q

g
j,k

)
− h

(
αi ,q

g
j,K

)]
in DFSM, hence, we need to derive a Q∗

j by subtracting row

1 from row 2 and row 3, respectively, before obtaining the �-matrix. That is,

Q∗
j =

⎡

⎣
0 0 0

−1 1 0
−1 0 1

⎤

⎦ → � j =
⎡

⎣
0 0 0 0 0 0 0 0
1 −1 1 0 0 0 0 0
1 −1 0 1 0 0 0 0

⎤

⎦

→ λ j =
⎡

⎣
0 0 0 0 0 0 0 0

λ j,0 −λ j,1,1 λ j,2,1 0 0 0 0 0
λ j,0 −λ j,1,1 0 λ j,2,2 0 0 0 0

⎤

⎦ .

Here, � j is a K j -by-2M matrix, and as shown, the first row refers to the first option which is the
“reference” category in the nominal response DFSM model. The last two rows refer to the two
distractors. Each column refers to one possible facet profile, and the first column refers to the
intercept. Consistent with previous notation, the three subscripts in λ j,1,1 refers to item j , goal
facet, and α1, respectively. Similarly, the subscripts in λ j,2,2 refer to item j , intermediate facet,
and β2, respectively. Since we only consider “main” effects of facets on item responses, column
4 to 8 are all 0’s in both � j and λ j .
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According to Liu and Culpepper (2023), the nominal RLCM is generically identifiable if the

sparse three-dimensional array (�)J×∑
K j×2M =

⎡

⎣
�1

�2

�
′

⎤

⎦ satisfies the following two conditions:

(a) For j = 1, ..., M , �1
j and �2

j meet the structure of

� j =

⎡

⎢⎢
⎢
⎣

0 · · · 0 0 0 · · · 0
∗ · · · ∗ δ j, j,1 ∗ · · · ∗
...

...
...

...
...

...
...

∗ · · · ∗ δ j, j,K j−1 ∗ · · · ∗

⎤

⎥⎥
⎥
⎦

K j×2M

where the first row refers to the reference option, which, in the case of DFSM, refers to the answer

key, ∗ can be either 0 or 1, and
∑K j−1

k=1 δ j, j,k > 1. The latter constraint implies that for item j , at
least one of the response options must measure facet j . Or in other words, this condition implies
that, in the test, for each facet m, there are at least 2 items and each item has at least one response
option measuring m. Hence, the test length is at least 2 × M .

(b) For every m = 1, ..., M , �
′
satisfies that there exists an item j > 2M that

∑K j−1
k=1 δ j,m,k ≥ 1. This implies that there is at least one item in the last J − 2M items that

has a response option that measures facet m.
Note that the generic identification condition described above is directly adopted from Theo-

rem 2 of Liu and Culpepper (2023). Although in the current DFSMmodel set up, the loadings and
slopes are at item (instead of item option) level (i.e., see the λ j matrix), because every response
option of an item will measure different facets, the rank of the λ j matrix will be the same regard-
less of whether the parameters are defined at item level or item option level. Furthermore, the
proof of Theorem 2 only requires p j0 �= p j1 for j = 1, ..., M (see Equation A15 in their paper),
where p j0 is the two-dimensional vector including the probability of selecting the key for a given
facet profile and one minus that probability (i.e., sum of two elements in p j0 =1). p j0 is the
two-dimensional vector including the probability of selecting a distractor for a given facet profile
and one minus that probability. The inequality p j0 �= p j1 easily holds when the above condition
(a) is satisfied. In fact, using the example item presented in the earlier remark, as shown in Table
14, the probability of selecting the key is always different from the probability of selecting the
distractor for all possible facet profiles.

2.6. Facet Map

Another instructionally formative piece of information generated by DFSM is a compre-
hensive facet map, which includes both directional and non-directional links between facets. A
directional link implies a hierarchical structure (Dahlgren et al., 2006; Simon & Tzur, 2004)
, reflecting theories about students’ learning, where a piece of knowledge learned earlier serves
as a pre-requisite for the more advanced knowledge, forming a so-called learning trajectory (LT,
Corcoran et al., 2009; Daro et al., 2011; Templin & Bradshaw, 2014). A LTwill allow for optimiz-
ing instructional design by offering theory-driven sequences of cognitive progression. In contrast,
facets joined by a non-directional link would result in a “conjoined facet” which represents cross-
cutting thematic ideas. Identifying conjoined facets could provide teachers insight into persistent
ideas and reasoning that a student is applying acrossmultiple learning units (with variable success),
and which may require specific attention. For example, a dominant physics learner conception is
that “motion implies an on-going force of motion” (see Option A in the item in Fig. 1), which
means students are treating force as a property of the object. Perhaps if net force on an object were
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Figure 3.
Illustration of the deductive algorithm to construct DAG and added strength of the relationship.

taught as a mechanism conjoined with a resulting change in the property of momentum or kinetic
energy of the object, student learning would be more naturally and productively facilitated.

Both facet hierarchy and conjoined facet can be inferred from the permissible facet profiles.
Specifically, a hierarchical relationship exists between a pair of facets when mastery of a facet
m is required prior to mastery of another facet m

′
. That is, for person i , αim = 1 is a necessary

but not sufficient condition for αim′ = 1. As a result, for the combination of (αik, αik′ ), instead
of having 4 possible combinations, only 3 would be possible, i.e., (0, 0), (1,0), and (1, 1). For
conjoined facets (i.e., they are connected topics and should be treated as a unity), only 2 would be
possible, i.e., (0, 0) and (1, 1). That is, a student will either master both facets or master neither
of the facets, resulting in a non-directional link between them. The non-directional link implies
that both facets in the conjoined set are at the same level, none is pre-requisite of the other.

We propose a deductive algorithm to infer the links among facets and eventually to construct
a facet map. First, based on the significant latent classes, we will check pairs of facets separately
to deduce the feasible profiles based on them and put a directional arrow (if any) between them,
resulting in a directed acyclic graph (DAG). The DAG is denoted as G(V, E) where V is a set of
nodes (i.e., facets) and E is a set of directed edges that imply the hierarchical relationships among
facets. Then we will perform transitive reductions to construct a simple structure. A transitive
reduction is a subgraph with fewest edges that maintain the same reachability (i.e., directed
connection) as G (Chen & Wang, 2023) .

When we put both goal and intermediate facets in the same map, we first need to “reverse”
the profile of intermediate facets before using the same algorithm to determine G, that is, coding
0 as 1 and 1 as 0, respectively. This is because the possession of an intermediate facet implies lack
of relevant knowledge. Using α1, β1 ∼ β3 in Fig. 2 as an example, Fig. 3 illustrates the proposed
deductive algorithm for constructing DAG. It follows three steps:

(1) Step 1: For the final N -by-K (total number of goal and intermediate facets) estimated
facet profile matrix, reverse code the columns related β’s.

(2) Step 2: For each pair of facets, check the number of permissible patterns. If such a
number is smaller than 4, that means there is a potential link between the pair. When the
number is 2, it implies the existence of a conjoined facet, i.e., a non-directional arrow.
When the number is 3, it implies a hierarchy. The direction of the arrows depends on the
specific permissible pattern. In the example in Fig. 3, the permissible patterns between
(β1, α1) are [0, 0], [1, 0], and [1, 1], resulting in an arrow from β1 to α1, denoting that
β1 is pre-requisite of α1.
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(3) Step 3: Transitive reduction. We only want to include direct links. If a facet has two or
more arrows pointing toward it, it implies that there may exist redundancy. For instance,
in Fig. 3, β1 connects to β2 through two routes: β1 → β2 and β1 → α1 → β2. As a
result, the direct connection between β1 and β2 can be eliminated to make DAG more
parsimonious without changing its meaning. With a small number of facets, this step
can be accomplished by inspecting the full DAG. When the number of total facets is
large, we can construct an adjacency matrix of the DAG, A, based on the pair-wise
relationships among facets. The A-matrix for the example in Fig. 3 will the following
form with the order of facet (β1, α1, β2, β3):

A =

⎡

⎢⎢
⎣

0 1 1 1
0 0 1 1
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ → (after transitive reduction)Ã =

⎡

⎢⎢
⎣

0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦ .

That is, for any pair of facets denoted by (m1,m2), if (A2)m1,m2 > 0 then we set Am1,m2 = 0,
resulting in the second matrix above. The full, parsimonious DAG can be constructed based on
Ã.

Once the DAG is constructed, we propose to further infer the strength of the arrow based
on the estimated mixing proportions, as illustrated in the probabilities marked in red in Fig. 3.
The strength value will be a probability measure between 0 and 1, with larger values indicating
stronger relationships. As shown, such values are simply the proportion of students who possess
both facets (again with intermediate facets reverse coded). This is intuitive because if a high
proportion of students simultaneously possess both facets rather than merely the prerequisite,
there is a strong pathway between them, i.e., say from β1 to α1, for a student who has matured
from the intermediate facet β1, they are highly likely to master α1 as well.2 A conjoined facet will
be formed by adding a bidirectional arrow between two facets, which happens when 2 out of 4
latent profiles are permissible, implying the co-occurrence of two facets.

3. Simulation Study

A simulation study was conducted to evaluate the REM algorithm for DFSM parameter
recovery. The sample size was fixed at 4,000 and we intentionally selected the large sample size
due to model complexity. Test length was fixed at 27, and each item had 4 response options. It
was assumed that the test measures 3 goal facets and 5 intermediate facets just to be consistent
with our real data example. The Q-matrix was constructed as follows:

• Item 1–9: key requires 1 goal facet; none of the distractors require any goal facets. Each
distractor only measures 1 intermediate fact.

• Item 10–18: key requires 2 goal facets; 1 distractor requires 1 goal facet and 1intermediate
facets. The rest of the distractors only measure 1 intermediate facet and none of the goal
facet.

• Item 19–27: key requires 2 goal facets; 1 distractor requires 1 goal facet and 1 intermediate
facts; 1 distract requires 2 intermediate facets and 0 goal facet, and 1 distractor only requires
1 intermediate facet.

2 One may argue that the strength of the link can be quantified as the probability of simultaneously possess plus
simultaneously not possess both facets.We acknowledge that our selected statistic is somewhat confounded by the difficulty
of the facets. That is, when the two facets are easy and basic, the probability of the class (1, 1) would be high, leading to
a seemingly strong link between the two facets. As we mention in the discussion, other better ways to measure strength
of links between facets are needed in the future.
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(a) facet hierarchies (b) correlation among facets

Figure 4.
Hierarchical facet structure in the simulation study.

As a result, the number of items measuring each attribute were 21, 21, 21, 18, 18, 18, 18, and
18, respectively, for the goal facets (the first 3) and intermediate facets (the last five). λ j,0 was
generated from Uniform (-1, 1), both λ j,1 and λ j,2 were generated from Uniform (1.75, 2.25),
resulting in good informative items (de la Torre, 2011) . We only considered main effects in both

h
(
αi ,q

g
j,k

)
and h

(
β i ,q

p
j,k

)
. Twenty-five replications were conducted per condition. Different

sets of item parameters were simulated per replication.
We manipulated facet relationship, as follows:

• Moderate correlation among facets: Assuming the attributes were generated from a higher-
order DINA model (de la Torre & Douglas, 2004) , i.e., P (αk |θ) = 1

1+e−1.7γ1k (θ−γ0k ) ,
where θ ∼ N (0, 1), γ0k ∼ U (−1, 0.5), γ1k =[1.35, 1.5, 1.65, −1.35, −1.425, −1.5,
−1.575, −1.65]. Note that γ1k’s are positive on the goal facets, but they are negative on
the intermediate facet. This reflects the intuition that higher overall ability θ is associated
high chance of mastery of goal facets and lower chance of possession of intermediate
facets. The parameters were chosen to induce 30% sparsity, which means out of 28 = 256
all possible patterns, there were about 180 permissible patterns. The absolute correlation
among attributes were in the range of 0.4~0.5.

• Independent facets: We simulated all profiles from a uniform distribution, i.e., assume
every facet profile among all 256 possible profiles are equally likely to occur. Then we
imposed a constraint to ensure that those who have more goals facets will be less likely to
have many intermediate facets, i.e., if

∑3
k=1 αk ≥ 2 then

∑5
k=1 βk ≤ 2. This manipulation

results in 25% sparsity and almost zero correlation among facets.
• Hierarchical facets: We simulated profiles based on a hypothetical theory-driven hierarchi-

cal structure, as shown in Fig. 4a. This structure was chosen because it contains divergent
(i.e., α1 is the pre-requisite of both β2 and β3), convergent (i.e., β2 requires bothα1 and β3),
and independent (i.e., α3 is independent of the rest) structures (Liu et al., 2017; Wang,
2021b; Wang & Lu, 2021) in one map. Therefore, it is, to some extent, comprehensive to
cover popular attribute relationships in practice. As a result, there were only 36 permissi-
ble patterns (listed in Table 15 in the Appendix), and the correlation among attributes are
shown in Fig. 4b.

Evaluation criteria include the mean bias, mean relative bias, and mean absolute bias for
all item parameters. They were averaged across 25 replications. For person’s facet profiles, we

computed goal facet recovery rate, i.e.,
∑N

i=1
∑K

k=1
I|αik=α̂ik |
N×K . Similarly, we computed the pattern

recovery for intermediate facets as well as the combined profile. For population facet relationship,
we compared the estimated sparsity structurewith the true sparsity structure and computed (1) true
positive rate (TPR) = Correct recovery of true permissible patterns, (2) 1-FDR (False discovery
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Table 4.
Recovery of item parameters (values in the parathesis are standard deviations across items and across replications).

Mean bias Mean relative bias Mean absolute bias

Moderately correlated facets
λ j,0 .002 (.031) 24.93% (89.20%) .113 (.023)
λ j,1 −.009 (.025) −.47% (1.24%) .102 (.012)
λ j,2 −.013 (.016) −.67% (.77%) .085 (.010)
Independent facets
λ j,0 −.005 (.019) −17.98% (47.88%) .067 (.011)
λ j,1 −.005 (.013) −.24% (.69%) .078 (.008)
λ j,2 −.003 (.014) −.17 (.72%) .066 (.007)
Hierarchical facets
λ j,0 −.003 (.001) −10.38% (27.15%) .078 (0.041)
λ j,1 −.004 (.021) −.17% (1.09%) .097 (.027)
λ j,2 −.021 (.034) −.36% (2.03%) .080 (.021)

rate) = proportion of detected permissible patterns that are true patterns, and (3) true negative
rate (TNR)=correct recovery of true impermissible patterns. We aimed for these three rates to be
as close to 1 as possible.

Table 4 presents the recovery of item parameters. Values in the parathesis are standard devi-
ations across items and across replications. As shown, all item parameters appear to recover well,
and there is no appreciable difference among the three facet relational conditions, or among differ-
ent types of item parameters. Of note, the relative bias of λ j,0 is high (so is its standard deviation
across replications) which is merely because some of the true λ j,0’s is close to 0, hence when
they appear in the denominator to compute relative bias, the relative bias shoots up.

Table 5presents the recoveryof facets and facet profiles. It is unsurprising that recovery at facet
level is much higher than recovery at profile level. Moreover, recovery at overall profile level is the
hardest, followed by recovery of the five-dimensional intermediate facet profile, whereas recovery
of the three-dimensional goal facet profile is the most accurate. In addition, under the hierarchical
facet condition, the facet and facet profile recovery are the best, whereas their recoveries are
the worst under the independent facet condition. This is much expected because when the facets
display a hierarchical structure, only 36 out of 256 facet profiles are permissible, which largely
reduces the space for searching the optimal facet profile for each student. When the facets are
independent, there is not much shared information among different facets, making the recovery
of the entire profile hardest.

Table 6 presents the recovery of facet sparsity structure. First to notice is under both hier-
archical and independent conditions, all TPR, TNR and 1-FDR are close to 1, implying that the
sparsity structure is mostly accurately recovered under these two conditions. The hierarchical
condition slightly outperforms the independent condition simply because it has less density and
therefore easier to locate true permissible profiles. Second, where TNR and 1-FDR are close to
1 under the moderately correlated facets condition, whereas the average TPR is only.526. This
means that the algorithm tends to generate a sparser solution, thereby missing about 48% of the
true permissible pattern. This is not too surprising as it is well known in Lasso regression that when
the predictors are correlated, correct identification of significant predictors is harder, especially
when true density is high (i.e., less sparsity).
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Table 5.
Recovery of facets and facet profiles.

Profile Facet

Moderately correlated facets
Overall .693 (.020) .950 (.004)
α .874 (.008) .956 (.003)
β .780 (.020) .947 (.005)
Independent facets
Overall .625 (.014) .938 (.003)
α .827 (.009) .936 (.004)
β .742 (.015) .940 (.004)
Hierarchical facets
Overall .773 (.019) .963 (.002)
α .891 (.021) .962 (.001)
β .852 (.018) .964 (.001)

Table 6.
Recovery of facet sparsity structure.

True pattern TPR 1-FDR TNR

Moderately correlated facets 186/256 .526 (.037) .991 (.011) .984 (.018)
Independent facets 192/256 .952 (.016) .999 (.003) .996 (.008)
Hierarchical facets 36/256 1 (0.008) .964 (0.015) .990 (0.002)

4. Real Data Example

The feasibility of DFSM was demonstrated using data from Diagnoser assessment. The
assessment containsmultiple-choice itemswith diagnostically rich response options, eachmapped
onto well-defined facets (Minstrell et al., 2015) . The Diagnoser items have gone through
various psychometric analyses to validate interpretations of learning progression level diagnosis
(Chattergoon, 2020; Steedle & Shavelson, 2009) , although our analysis would be the first to use
DFSM to construct facet map. Nine items from the unit of “Identification of forces” were used,
and the sample size was N = 2, 729. Every item has 4 response options except item #3 which
has 5 options. The Q-matrix for these 9 items is presented in the Appendix. Overall, the number
of response options measuring each facet (i.e., the first 3 are goal facets and the remaining 5 are
intermediate facets) is 19, 16, 6, 6, 5, 4, 4, and 8. As shown, the Q-matrix is sparse, and only the
first two goal facets are measured by more than half of the response options. The definition of the
facets is presented in Table 7. Table 8 presents the proportion of endorsement of each response
option per item, and the key per item is bolded. As shown in Table 8, for 7 out of 9 items (except for
items 4 and 5), the proportion of students selecting the key is the highest, indicating that the items
are relatively easy for the student sample. We also use the reliability index proposed in Templin
and Bradshaw (2014) and found that the reliability of the three goal facets are: 0.89, 0.87, 0.92,
respectively, whereas the reliability of the five intermediate facts are 0.84, 0.82, 0.74, 0.43, and
0.68, respectively. It is worth noting that higher magnitude of slopes on the corresponding facets
(i.e., λ j,1 and λ j,2) leads to higher reliability unsurprisingly, whereas the number of items options
measuring each facet does not seem to affect facet reliability much.
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Table 7.
Definition of goal and intermediate facets for the real data example using items from the unit of “Identification of Forces”.

Goal Facets 1 Students can correctly identify the object or the mechanism that exerts
the force. (α1)

2 Students can correctly identify the direction in which the force is acting.
(α2)

3 Students can compare the relative sizes of the forces on an object. (α3)
Intermediate Facets 1 Students express that the downward force is greater than the upward

force on an object that is at rest or moving horizontally (to keep the
object from lifting off). (β1)

2 Students express that force is a property of an object, and that the size of
the force is dependent on the strength of the property (e.g., the faster,
heavier, stronger object has more force). (β2)

3 Student cites an energy source as a force (e.g., the engine exerts a
forward force on the car). (β3)

4 Students treat passive, non-active objects as unable to exert a force even
if in contact with the object (e.g., the table under the book does not
exert a force on the book). (β4)

5 Students determine the existence of a force by whether the object is in
motion (e.g., the rolling marble has a force of motion). (β5)

Note. Learners frequently speak of “force” as though it were a property of an object rather than an action on
an object (i.e., “the object has force”). While this idea is less productive to understanding forces, it is useful
for thinking about momentum or kinetic energy. Therefore, an α attribute in one unit may be modeled as β

attribute in another unit

Table 8.
Proportion of students selecting each response option per item.

Items 1 2 3 4 5 6 7 8 9

Option 1 0.045 0.254 0.114 0.498 0.102 0.259 0.066 0.027 0.754
Option 2 0.132 0.081 0.036 0.343 0.263 0.224 0.228 0.150 0.121
Option 3 0.743 0.663 0.321 0.127 0.347 0.134 0.673 0.034 0.035
Option 4 0.080 0.001 0.112 0.032 0.287 0.383 0.033 0.789 0.090
Option 5 0.417

Note. The answer key per item is bolded

To cross-check the results, we randomly split the data into a training set (sample size= 2,000)
and a test set (sample size = 729) 10 times. For each random split, we fit the DFSM using the
REM algorithm on the training set and used the estimated model parameters (including both item
parameters and population class mixing proportions) on the test set to estimate students’ facet
profiles. The estimated item parameters and their standard error are presented in Table 9. The
point estimates were obtained by averaging over 10 analyses. The standard error was computed
as standard deviation of the point estimates from the 10 random training sets. Several points can
be spotted from Table 9. First, majority of the items have negative λ j,0’s, which is consistent with
the observations from Table 8 that most items are relatively easy. Second, some of the cells for
λ j,1 and λ j,2 are blank simply because none of the response options of those items measure the
corresponding facets. Among all the estimated slopes, there are six that turn out to be nearly 0
(see the values highlighted in italics), which implies that the items are not discriminative with
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respect to the related facet. Take item 9 as an example, the estimated slopes on both α1 and
β2are 0. As a result, for students with true facet profiles of [1,1,1,0,0,0,0,0], [0,1,1,0,0,0,0,0],
[1,1,1,0,1,0,0,0], [0,1,1,0,1,0,0,0], they all have exactly the same predicted response probabilities
of [.904,.033,.033,.030] for the four response options, respectively. That is, the item can hardly
differentiate students with or without any or both of α1 and β2. In fact, by inspecting Table 8,
it is not surprising to note that the frequency of choosing option 1 (i.e., the key) is the highest,
whereas the frequencies of choosing any of the distractors are all low. Third, a few of the standard
errors seem to be large, which indicate the corresponding parameters were not stably estimated.
The large standard errors mostly occur on slopes for α2, and as we show below, α2 turns out to
be the most difficult facet.

Figure5 presents an estimated facet map. It is worth noting that not every round of analysis
produced the same facet map, instead, we put a solid link between two facets if such link appeared
in 5 or more out of 10 rounds of analysis. We put a dashed link between two facets if such link
appeared in less than 5 rounds of analysis. Table 10 presents the details of 11 links that were
identified between two facets. All these links were directional as reflected by 3 instead of 4 per-
missible classes defined by two facets, indicating that no conjoined facets were detected. Table 10
also includes the frequency of occurrence of each possible link, as well as the estimated probabil-
ities of each permissible latent class. These probabilities were averaged across 10 random splits.
Figure5 presents the results in Table 10 graphically for easier visualization. Several hierarchical
facets showed up. For instance, α3, β1, and β4 are all pre-requisites of α2, making α2 arguably
the most difficult goal facet. There is also an interesting linear hierarchy between β1, β4, and
β3, as well as another linear hierarchy between β1, β4, and β5. The strengths of the solid links
were also displayed in Fig. 5.

Table 11 presents the probability of possession of each facet in both training and test sets,
averaged across 10 rounds of analysis. As can be seen, the probabilities are quite consistent
between training and testing sets. Further, the mastery probability of α2 is the lowest, which is
consistent with the conjectured facet map that α2 tends to be most difficult. In addition, β1 and β4
tends to be at the lower end of the spotted linear hierarchy, and hence it is unsurprising to see low
probabilities on these two facets, implying that there may not be a lot of misconceptions among
students on these most basic understandings.

Lastly, we evaluated item fit by using a chi-squared statistic. Two versions of the statistics
were considered. For version I, for an item j , among all the permissible facet profiles (i.e., denoted
by G, and G < 2M ), we compute the following chi-squared statistic,

χ2
j =

∑G

g=1

∑K j

k=1
ng

(
Ojgk − E jgk

)2

E jgk
(
ng − E jgk

) . (11)

Here Ojgk and E jgk are the observed and expected count of students who are in latent
class gand select option k of item j . We also considered two versions of degree-of-freedom
G × (

K j − 1
) − d j where d j is the total number of item parameters for item j and G − d j . The

former case seems to fit better with Eq.11, whereas the latter term is used in polytomous IRT
model (e.g., Naumenko, 2014; Su et al., 2021).

For version II, for an item j , we will consider all permissible latent groups G j (i.e., G j ≤ G,
and G j ≤ 2K j ). The latent groups are created based on the q-vector of item j , and each latent
group may contain several latent classes with identical attribute vector with respect to the required
attributes (e.g., if q = (1, 1, 0, 0), the latent classes (1,1,0,0), (1,1,1,0), (1,1,0,1) and (1,1,1,1) are
placed in the latent group. For DFSM, the element in the q-vector of item j is 1 if at least one

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 10:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


C. WANG 765

Figure 5.
Estimated facet map.

Table 9.
Estimated item parameters and their standard errors.

λ j,0 λ j,1 λ j,2
Item α1 α2 α3 β1 β2 β3 β4 β5

1 −0.69 (.12) 1.48 (.33) 0.88 (.56) 2.17 (.12) 0.00 (.00) 1.38 (.25) 0.64 (.26)
2 −1.90 (.13) 1.88 (.22) 2.43 (1.18) 0.86 (.14) 2.68 (.29) 3.92 (.17) 0.00 (.00)
3 −0.53 (.23) 0.00 (.00) 0.95 (.82) 1.24 (.18) 0.56 (.68) 0.96 (.46) 1.98 (.30)
4 1.06 (.38) 2.67 (.26) 3.12 (1.03) 0.51 (.43) 0.37 (.49) 0.57 (.59) 1.35 (.32)
5 −0.17 (.76) 1.17 (.79) 4.00 (.01) 3.61 (.28) 3.67 (.25)
6 −0.58 (.79) 2.43 (1.43) 1.39 (1.31) 3.65 (.23) 3.61 (.43) 3.81 (.25)
7 −0.81 (.29) 1.90 (.29) 2.18 (1.42) 0.07 (.14) 1.85 (.10) 0.44 (.17)
8 −0.27 (.22) 2.12 (.23) 2.22 (1.59) 3.89 (.17) 1.47 (.66) 0.01 (.04) 0.52 (.36)
9 −0.18 (.13) 0.00 (.00) 0.09 (.13) 3.32 (.07) 0.00 (.01) 0.28 (.17)

Values in the parathesis are standard deviations computed across 10 random splits.

option of item j measures the corresponding attribute. Then the chi-squared statistic is

χ2
j =

∑G j

g=1

∑K j

k=1
ng

(
Ojgk − E jgk

)2

E jgk
(
ng − E jgk

) . (12)

Here Ojgk and E jgk are the observed and expected count of students who are in latent group
gand select option k of item j . The two versions of degree of freedom are G j × (

K j − 1
) − d j

where d j is the total number of item parameters for item j and G j − d j .
Before applying the item fit indices on real data, we tested them on the simulated data from

two conditions: moderately correlated facets and hierarchical facets. Since we did not simulate
any misfit intentionally, we only focused on Type I error of each index, as shown in Table 12.
In this Table, we also considered whether correcting for family-wise error rate using Bonferroni
correction. Most of the Type I error rates were below.05, and if Type I error is extremely small
(such as 0), the test may not be powerful. We aim to look for indices that have Type I error closest
to.05, and they are highlighted in red in Table 5. It is not surprising that implementing Bonferroni
correction yields lower Type I error. Further, Type I error is considerably lower for moderated
correlated facet condition because this condition yields many more permissible facet profiles (see
Table 6). Because the real data mimics the “hierarchical” structure, we tried the two methods
marked in Table 12 on the real data. Both methods flag the same items as having potential misfit:
item # 1, 3, 7, and 9, which suggest that either the q-matrix of these items need to be revised, or

the additive structure assumed in h
(
αi ,q

g
j,k

)
and h

(
β i ,q

p
j,k

)
need to be revisited.
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Table 10.
Estimated links between pairs of facets.

# of
permissible
latent
classes

Frequency
(out of
10 random
splits)

Class 1 Probability Class 2 Probability Class 3 Probability Implications

α1 β1 3 3 0 0 0.032 0 1 0.132 1 1 0.836 β1 → α1
α2 α3 3 4 0 0 0.246 0 1 0.541 1 1 0.212 α3 → α2
α2 β1 3 10 0 0 0.067 0 1 0.668 1 1 0.264 β1 → α2
α2 β4 3 1 0 0 0.224 0 1 0.540 1 1 0.236 β4 → α2
α3 β1 3 5 0 0 0.044 0 1 0.224 1 1 0.732 β1 → α3
β1 β2 3 3 0 0 0.032 1 0 0.469 1 1 0.499 β1 → β2
β1 β3 3 10 0 0 0.067 1 0 0.630 1 1 0.302 β1 → β3
β1 β4 3 10 0 0 0.067 1 0 0.193 1 1 0.740 β1 → β4
β1 β5 3 10 0 0 0.067 1 0 0.469 1 1 0.464 β1 → β5
β3 β4 3 2 0 0 0.188 0 1 0.541 1 1 0.271 β4 → β3
β4 β5 3 1 0 0 0.152 1 0 0.339 1 1 0.509 β4 → β5

The displayed permissible classes for each pair of facets were after reversing the intermediate facets.

Table 11.
Average probability of possession of each facet in training and test sets.

α1 α2 α3 β1 β2 β3 β4 β5

Training 0.799 0.334 0.752 0.076 0.378 0.686 0.177 0.453
Test 0.809 0.334 0.751 0.069 0.353 0.672 0.168 0.457

Table 12.
Type I error of various item fit indices.

Chi-squared statistics defined in Eq. 11 Chi-squared statistics defined in Eq. 12

Degree of freedom G × (
K j − 1

) − d j G − d j G j × (
K j − 1

) − d j G j − d j
Bonferroni correction Y N Y N Y N Y N
Hierarchical 0 .009 0 .092 [Method 1] .002 .030 [Method 2] .388 .716
Moderate correlation 0 0 0 0 0 .015 0 .053

5. Discussion

This study provides a valuable psychometric tool to greatly enhance diagnostic assessment.
Current scoring rubrics in most assessments still primarily gradate performance (i.e., right/wrong,
or partial credit). Such assessment results only provide an overview of student learning progress.
Instead, the best feedback should identify both correct and intermediate states of understanding.
This is exactly the type of information that DFSMwill extract from assessment data.With targeted
and individualized feedback, every student will get appropriate support on their greatest needs
to be successful, a condition essential to achieving educational equity. Our simulation study and
real data example show great promise for the DFSM and the regularized EM algorithm.
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Note that another available model that could be used for facet-based items is the generalized
diagnostic classification model for multiple-choice option-based scoring (GDCM-MC), which
accounts for both goal and intermediate facets (DiBello et al., 2015) . However, the GDCM-MC
has a complex formulation which makes Bayesian MCMC algorithm a preferable choice than the
more efficient EM algorithm. Hence, the regularization technique that is proposed can hardly be
applied for GDCM-MC in its current form. Second, as pointed out in a recent paper, the possible
coexistence of skills and preconceptions is not adequately handled in GDCM-MC (Kuo et al.,
2018). Third, GDCM-MC requires a three-valued coding scheme to specify which facets are
strongly related to each option, and this puts a higher requirement on the expert-provided coding
matrix. Instead, the DFSM model can naturally handle guessing and it requires less complicated
coding of the option-facet mapping matrix. Compared to GDCM-MC, the DFSM model also has
more compact parameterization such that it permits using the EM algorithm. If the option to facet
mapping is sparse (i.e., not enough options measuring each facet), the parameterization of the
DFSMmodel can be further reduced to make λ’s as attribute-level parameters instead of item-by-
attribute level parameters. Very recently, a model like DFSM was published (Levy, 2019) and
it was used to analyze game-based assessment data where each step a student takes is cognitively
coded. However, the authors used Bayesian estimation and did not consider exploring attribute
relationships.

One innovation worth highlighting is that our REM algorithm coupled with deductive algo-
rithm permits deriving a facet map. Despite the instructional benefits of a detailed facet map,
identifying the multitude of links among facet pairs poses a methodological challenge. For exam-
ple, just 9 facets could generate as many as 72 potential directional links. Templin and Bradshaw
(2014) proposed a likelihood ratio (LR) test formatted within a hierarchical diagnostic classifi-
cation model to statistically test one hypothesized link at a time. However, it is cumbersome to
perform their LR testing at scale because the reference distribution needs to be simulated each
time to derive the empirical p-value. Instead, we propose to leverage a fast ML method to directly
identify massive potential facet hierarchies and create a facet mapwith data-driven directional and
non-directional links. Such empirical evidence will not only complement existing theory driven
LTs but may also reveal new insights to refine or expand theoretical trajectories.

This research can be expanded in several directions. First and foremost, aswementioned in the
real data analysis, the model may not be identified with the given Q-matrix because we noted that
there does not seem to be an exact one-on-one relationship between the permissible latent classes
and facet map. From our discussion about generic identifiable conditions, the Q-matrix in the real
data example does not satisfy the conditions because one simple requirement of the condition
is there are more than 2M items. In the real data example, since we have 8 total facets, there
needs to be at least 16 items. However, the conditions we adopt from Liu and Culpepper (2023)
are sufficient conditions and they may not be necessary. Plus, the conditions may change when
there exist facet hierarchies or conjoined facets. Further studies need to be conducted to establish
necessary conditions for DFSM to be generically identified, with and without facet relationships.
Due to potential under identification, the revealed facet maps differed in certain aspects across
10 cross-validation analyses on one hand, and on the other hand, if we derived the facet map via
the deductive algorithm from estimated permissible classes, and then used the derived facet map
to map out the permissible classes, they did not exactly match the estimated permissible classes.
This noted discrepancy implies the potential model identification issues, which did not happen
in simulation study. Because the Q-matrix is much sparser and test length is much shorter in real
data compared to simulated data, future study is needed to delineate the necessary (and sufficient)
conditions of Q-matrix for DFSM to be identified. This information is essential for not only real
data analysis, but also for designing future facet-based diagnostic assessments.

Along this line of inquiry, a second research direction would be to explore the types of
items that provide high information. In classical item response theory, it is widely known that
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polytomously scored items tend to carry more information than dichotomously scored items, and
items with higher discrimination are more informative. With DFSM, although it is intuitive to
claim that higher λ j,1 and λ j,2 yield higher item information, it is still unknown what kind of
Q-matrix structure makes an item more informative. For instance, should each distractor only
measure one intermediate facet? Or should each distractor measure multiple intermediate facets
to max out the number of options per facet? A future study should take a deeper dive to study
the item information for DFSM, and to the extent possible, quantify the information gains by
modeling nominal responses compared to binary scoring.

Further, our simulation study is limited to additive structure of h
(
αi ,q

g
j,k

)
and h

(
β i ,q

p
j,k

)
,

as well as one level of test length and sample size. Increasing sample size and/or increasing test
length will certainly improve the estimation of item parameters and person parameters, respec-
tively, determining the minimum sample size needed for adequate recovery of DFSM item param-
eters under different manipulated conditions is still needed because such information is essential
to plan and interpret real data analysis. In addition, we provide a heuristic descriptive statistic to
infer the strength of links between pairs of facets, which is essentially the estimated probability
of having both the pre-requisite and current facets. Such a descriptive statistic is only a proxy to
the actual strength of linkages, whereas future research may consider network models that can
directly estimate and make inferences on the link strengths. Furthermore, our real data analysis
revealed that 4 items may exhibit misfit. Not only will a separate study exploring the performance
of various item fit indices in-depth be needed, but also developingmore flexible versions of DFSM

will be critical as well. For instance, allowing interaction terms in h
(
αi ,q

g
j,k

)
and h

(
β i ,q

p
j,k

)

or allowing λ j to be an item-option level parameter instead of an item-level parameter will make
the model more flexible, albeit less parsimonious. Lastly, the derived facet map should be thor-
oughly validated through a well-planned validation study that will likely involve student cognitive
interviews and teacher focus groups.

6. Appendix

See Tables 13, 14, 15.
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Table 13.
Q-matrix of the sample Diagnoser items in the real data analysis.

Item Response β1 β2 β3 β4 β5 α1 α2 α3

1 1 0 0 0 0 1 0 0 0
1 2 0 0 0 1 0 1 0 0
1 3 0 0 0 0 0 1 1 1
1 4 1 0 0 0 0 1 1 0
2 1 0 0 1 0 0 0 0 0
2 2 1 0 0 0 0 1 1 0
2 3 0 0 0 0 0 1 1 1
2 4 0 0 0 0 1 0 0 0
3 1 0 0 0 0 0 1 1 0
3 2 1 0 0 0 0 1 1 0
3 3 0 0 0 0 1 0 0 0
3 4 0 0 0 1 0 1 0 0
3 5 0 0 0 0 0 1 1 1
4 1 0 1 0 0 0 1 0 0
4 2 0 0 0 0 0 1 1 1
4 3 0 0 0 0 1 0 0 0
4 4 1 0 0 0 0 0 0 0
5 1 0 0 0 0 0 1 0 0
5 2 0 0 0 0 1 0 0 0
5 3 0 0 1 0 0 0 0 0
5 4 0 1 0 0 0 0 0 0
6 1 0 0 1 0 0 0 0 0
6 2 0 0 0 0 1 0 0 0
6 3 0 1 0 0 0 0 0 0
6 4 0 0 0 0 0 1 1 0
7 1 0 0 0 0 1 0 0 0
7 2 0 0 1 0 0 0 0 0
7 3 0 0 0 0 0 1 1 0
7 4 1 0 0 0 0 0 0 0
8 1 0 0 0 1 0 0 1 0
8 2 1 0 0 0 0 1 1 0
8 3 0 0 0 0 1 0 0 0
8 4 0 0 0 0 0 1 1 1
9 1 0 0 0 0 0 1 1 1
9 2 0 1 0 0 0 1 1 0
9 3 0 1 0 0 0 1 1 0
9 4 0 0 0 1 0 0 0 0
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Table 14.
The probability of selecting each response option of an example item.

Latent class α1 α2 β1 β2 A B C D

1 0 0 0 0 0.232 0.256 0.256 0.256
2 1 0 0 0 0.575 0.142 0.142 0.142
3 0 1 0 0 0.690 0.103 0.103 0.103
4 0 0 1 0 0.147 0.345 0.163 0.345
5 0 0 0 1 0.102 0.113 0.393 0.393
6 1 1 0 0 0.909 0.030 0.030 0.030
7 1 0 1 0 0.437 0.228 0.108 0.228
8 1 0 0 1 0.337 0.083 0.290 0.290
9 0 1 1 0 0.561 0.178 0.084 0.178
10 0 1 0 1 0.456 0.068 0.238 0.238
11 0 0 1 1 0.065 0.152 0.251 0.532
12 1 1 1 0 0.851 0.060 0.028 0.060
13 1 1 0 1 0.790 0.026 0.092 0.092
14 1 0 1 1 0.238 0.124 0.205 0.433
15 0 1 1 1 0.340 0.108 0.177 0.375
16 1 1 1 1 0.697 0.049 0.081 0.172

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 10:33:50, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


C. WANG 771

Table 15.
The 36 permissible patterns under the hierarchical facet simulation condition.

Pattern α1 α2 α3 β1 β2 β3 β4 β5

1 0 0 1 1 1 1 1 1
2 0 0 1 0 1 1 1 1
3 1 0 1 0 1 1 1 1
4 1 0 1 0 1 0 1 1
5 1 0 1 0 0 0 1 1
6 1 1 1 0 0 0 1 1
7 0 0 0 1 1 1 1 1
8 0 0 0 0 1 1 1 1
9 1 0 0 0 1 1 1 1
10 1 0 0 0 1 0 1 1
11 1 0 0 0 0 0 1 1
12 1 1 0 0 0 0 1 1
13 0 0 1 1 1 1 0 1
14 0 0 1 0 1 1 0 1
15 1 0 1 0 1 1 0 1
16 1 0 1 0 1 0 0 1
17 1 0 1 0 0 0 0 1
18 1 1 1 0 0 0 0 1
19 0 0 0 1 1 1 0 1
20 0 0 0 0 1 1 0 1
21 1 0 0 0 1 1 0 1
22 1 0 0 0 1 0 0 1
23 1 0 0 0 0 0 0 1
24 1 1 0 0 0 0 0 1
25 0 0 1 1 1 1 0 0
26 0 0 1 0 1 1 0 0
27 1 0 1 0 1 1 0 0
28 1 0 1 0 1 0 0 0
29 1 0 1 0 0 0 0 0
30 1 1 1 0 0 0 0 0
31 0 0 0 1 1 1 0 0
32 0 0 0 0 1 1 0 0
33 1 0 0 0 1 1 0 0
34 1 0 0 0 1 0 0 0
35 1 0 0 0 0 0 0 0
36 1 1 0 0 0 0 0 0
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