
European Journal of Applied Mathematics (2025), 1–44
doi:10.1017/S0956792525000178

PAPER

On the long-time asymptotics of the modified
Camassa–Holm equation with step-like initial data
Engui Fan1, Gaozhan Li1 and Yiling Yang2

1School of Mathematical Sciences and Key Laboratory of Mathematics for Nonlinear Science, Fudan University, Shanghai, P.R.
China
2College of Mathematics and Statistics, Chongqing University, Chongqing, P.R. China
Corresponding author: Yiling Yang; Email: ylyang@cqu.edu.cn

Received: 16 October 2024; Revised: 17 March 2025; Accepted: 24 March 2025

Keywords: modified Camassa–Holm equation; step-like initial data; Riemann–Hilbert problem; long-time asymptotics; airy
function

2020 Mathematics Subject Classification: 35Q15, 41A60, 37K15, 35C20

Abstract
We study the long-time asymptotics for the solution of the modified Camassa–Holm (mCH) equation with step-like
initial data.

mt +
(
m
(
u2 − u2

x

))
x
= 0, m = u − uxx,

u(x, 0) = u0(x) →
{

1/c+, x → +∞,

1/c−, x → −∞,

where c+ and c− are two positive constants. It is shown that the solution of the step-like initial problem can be
characterised via the solution of a matrix Riemann–Hilbert (RH) problem in the new scale (y, t). A double coordinate
(ξ , c) with c = c+/c− is adopted to divide the half-plane {(ξ , c) : ξ ∈R, c> 0, ξ = y/t} into four asymptotic regions.
Further applying the Deift–Zhou steepest descent method, we derive the long-time asymptotic expansions of the
solution u(y, t) in different space-time regions with appropriate g-functions. The corresponding leading asymptotic
approximations are given with the slow/fast decay step-like background wave in genus-0 regions and elliptic waves
in genus-2 regions. The second term of the asymptotics is characterised by the Airy function or parabolic cylinder
model. Their residual error order is O(t−2) or O(t−1), respectively.

1. Introduction

The present paper is concerned with the long-time asymptotic behaviour for the solution of the modified
Camassa–Holm (mCH) equation [26, 42]

mt +
(
m
(
u2 − u2

x

))
x
= 0, m = u − uxx, (1.1)

with step-like initial data

u(x, 0) = u0(x) →
{

1/c+, x → +∞,

1/c−, x → −∞.
(1.2)

The mCH (1.1) appeared in [26] as a integrable equation proposed by Fuchssteiner and Fokas and first
introduced by Camassa and Holm as a model for the unidirectional propagation of shallow-water waves
[8] (see also [15] for a rigorous justification in shallow-water approximation).
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The mCH (1.1) bears some similarity to the celebrated Camassa–Holm (CH) equation
mt + (um)x + uxm = 0, m = u − uxx, (1.3)

due to the presence of the relation m = u − uxx. Different from the CH (1.3), the mCH (1.1) contains
the cubic nonlinearity. In view of Fokas and Fuchssteiner [27], Olver and Rosenau [42], the CH (1.3) is
obtained from the general method of tri-Hamiltonian duality to the bi-Hamiltonian representation of the
Korteweg–de Vries equation, while this method applied to the modified Korteweg–de Vries equation
yields the (1.1). Henceforth, the (1.1) was referred to the modified CH equation (see also [43]). The
CH (1.3) appeared in [27] as a integrable equation proposed by Fuchssteiner and Fokas and first intro-
duced by Camassa and Holm as a model for the unidirectional propagation of shallow-water waves [8]
(see also [15] for a rigorous justification in shallow-water approximation). Therefore, the CH (1.3) has
attracted considerable interest and studied extensively due to its rich mathematical structures and remark-
able properties, such as peakon and multi-peakon solutions, bi-Hamiltonian structure, algebro-geometric
solutions, wave-breaking phenomena [8, 13, 14, 16, 21, 38].

Applying the scaling transformation and taking parameter limit ε→ 0,
x �→ εx, t �→ ε−1t, u �→ ε2u,

the mCH (1.1) can be reduced a short pulse equation [41]

uxt = u + 1

6

(
u3
)

xx
.

More recently, the mCH (1.1) was considered as a model for the unidirectional propagation for shallow-
water waves of mild amplitude over a flat bottom [12], where the solution u is related to the horizontal
velocity at a specific water level. It is noted that the global smooth one-soliton solution of the mCH (1.1)
with nonzero background data were obtained by using the RH method [2]. On the other hand, the soliton
of the mCH (1.1) with zero background data is a weak solution in the form of peaked wave. In addition,
the quasi-periodic solutions with periodic background data were constructed by using algebro-geometric
method [31]. The wave-breaking and those peakons for the mCH (1.1) with zero background data were
also investigated in [30]. The existence of the global peakon solutions and the large time asymptotic
behaviour of these kind of non-smooth solitons were investigated in [10]. It is known that the Cauchy
problem associated with the mCH (1.1) is the locally well-posed in the Sobolev space Hs(R), s> 5/2
[30]. Recently, the long-time asymptotic behaviour of the mCH (1.1) with linear dispersion term was
established by using ∂̄-steepest descent analysis in [46]. Based on the RH problem established in [2],
Boutet de Monvel et al. studied the long-time asymptotic behaviour of the mCH (1.1) under nonzero
boundary conditions via nonlinear steepest descent method.

Initial value problems for nonlinear evolution equations with step-like initial data have attracted much
attention since the early 1970s [34]. The implementation of the rigorous asymptotic analysis to step-like
initial value problems for integrable equations started in the paper [7], which extended the methods
from Deift, Venakides, and Zhou [17]. Since then, problems with step-like initial data have also been
considered for a variety of integrable systems such as the KdV equation [22], the focusing and defocusing
NLS equations [1, 4–6, 25, 32], the modified KdV equation [29, 35] and Camassa–Holm equation [39].
A wide range of important physical phenomena manifest themselves in the behaviour of solutions of
such step-like initial value problems for large times, e.g., rarefaction waves [32], modulated waves [45],
elliptic waves [4] and so on. The main feature in the long-time behaviour that distinguishes step-like
initial conditions from decaying initial conditions is the formation of an oscillatory region that connects
the different behaviour at x → ±∞ of the solution. These oscillatory regions are typically described by
elliptic or hyperelliptic modulated waves. Very recently, Karpenko, Shepelsky, and Teschl develop the
RH formalism to the mCH (1.1) with step-like initial data (1.2) and give a representation for the solution
of this problem in terms of the solution of an associated RH problem [33].
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Figure 1. Asymptotic approximations of the mCH equation in different space-time-(ξ , c) regions, where
the Regions I ( yellow ) and II ( orange ) corresponding to genus-0, they are slow-decay and fast-decay
background regions, respectively; The Regions III ( green ) and IV ( purple ) corresponding to genus-2
region, they are the first-type and second-type elliptic wave regions. Here, ξm is the critical condition
that under the case of Region III, the stationary point of g-function merges to c. The Region I is a unit
of three subregions. We use three shades of yellow to distinguish these three subregions. The Region III
is a unit of two subregions, where we use two shades of green to distinguish it.

1.1. Statement of results

The purpose of our present work is to investigate the long-time asymptotic behaviour of the mCH (1.1)
with step-like initial data (1.2). Notice that under the transformation

u(x, t) �→ c−u(x, c2
−t), (1.4)

c−u(x, c2
−t) is also a solution of the mCH (1.1), and the condition (1.2) becomes

u(x, 0) = u0(x) →
{

1/c, x → +∞,

1, x → −∞,
(1.5)

where c = c+/c−. Therefore, without loss of generality, let

c− = 1, c+ = c ≥ 1, (1.6)

in (1.2). For brevity, we will continue to adopt the notations c− and c+, but their exact values are given
by (1.6).

We find that the types of asymptotic expansions for the mCH (1.1) are closely related to the scope of
two parameter ξ = y/t and c, where y is a new space variable defined by

y(x, t) = x +
∫ x

−∞

(
m(s, t) − 1

c−

)
ds. (1.7)

So in our paper we adopt double coordinates (ξ , c) to divide the upper half plane {(ξ , c) : ξ ∈R, c> 1}
into four different space-time regions (see Figure 1), in which we will present different leading order
asymptotic approximations for the mCH (1.1) with step-like initial value (1.5). Our results are subject
to the following assumption:

Assumption 1. The reflection coefficients defined by (2.16), associated to the initial data u0, are analytic
on C \ [−c, c].
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This assumption is set similar to [5, 6]. On one hand, the initial data are smooth and approaches to
the backgrounds quickly enough such that the reflecting coefficients are meromorphic on C \ [−c, c]. It
is only made to simplify the proof and only affect the error order of the final asymptotic formulas in our
main result. It allows us to avoid the technical work associated with the introduction of ∂̄-extensions of
the jump matrices to perform the steepest descent analysis like in [46]. On the other hand, the assumption
ensures that the initial data are ”no soliton” and generic, namely, the corresponding spectral problem
has no eigenvalue and spectral singularity. Then the reflection coefficients defined by (2.16) have no
poles. The combination of these two aspects results in the analyticity of the reflecting coefficients on
C \ [−c, c].

Theorem 1.1. Let u(x, t) be the solution for the initial-value problem (1.1) and (1.5). Denote ξ = y/t
with y defined in (1.7). As t → ∞, the long-time asymptotics of the mCH (1.1) are given as follows.

Region I: (i) {(ξ , c) : c ≥ 1, ξ < 3/4}; (ii) {(ξ , c) : 1 ≤ c ≤ λ1, 3/4< ξ < 1}; (iii) {(ξ , c) : 1 ≤ c ≤
λ1, 1 ≤ ξ < 3}, with

λ1 := λ1(ξ ) =
(

1 − √
4ξ − 3

1 − ξ

)1/2

, (1.8)

whose branch is selected by λ1(1) = √
2. It is a slow decay step-like background constant region with

genus-0 and admits asymptotic expansion

u(x, t) = u(x(y, t), t) = 1 + u(1)(ξ )t−
1
2 +O(t−1), (1.9)

x = y − 2I1
δ
− 2y(1)(ξ )t−

1
2 +O(t−1), (1.10)

where u(1) defined in (7.2) comes from the parabolic cylinder function, and I1
δ
, u(1) and y(1) are given

in (3.3) and (7.3), respectively.
Region II: {(ξ , c) : ξ > 1 + 2/c, c ≥ 1}. It is a fast decay step-like background constant region with
genus-0. We have asymptotic expansion

u(x, t) = u(x(y, t), t) = c−1 +O(e−Ct), (1.11)

x(y, t) = y − 2 ln
(
δ(∞)eI1

δ+ia(y,t)
)

+O(e−Ct), (1.12)

where a(y, t) = − i
2
(c + 1)y + it

2

(
c−2 + c

)
, I1
δ

and δ(∞) are given in Proposition 5 and C is a positive
constant.
Region III: Genus-2 elliptic wave region.

(i) {(ξ , c) : c>
√

2, 1 ≤ ξ < 1 + 2/c} ∪ {(ξ , c) : 2< c, 1 + 2
c4 (c2 − 2)< ξ < 1 + 2

c
}, we have

asymptotic expansion

u(x, t) = u(x(y, t), t) = u(3)(y, t; ξ ) + t−1E(ξ ) +O(t−2),

x(y, t) = y − 2 ln
(
−ie−itg(∞)+it(p(−)

+ −g+)(0)δ∞(0)δ+(0)Mmod
12,+(0)
)

+ 2i
H(0)

11 Mmod
12,+(0) + H(0)

12 Mmod
22,+(0)

Mmod
12,+(0)

t−1 +O(t−2),

where u(3)(y, t; ξ ) is constructed by the Riemann theta function associated with the genus 2
Riemann surface shown in (7.5), and E(ξ ) given in (7.6) comes from the combined effect of the
Riemann theta function and Airy Model. g(∞), Mmod, g(z), δ∞(0), δ+(0) and H(0) are shown in
(5.5), (5.13), Proposition 6, 7, and 8, respectively.
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(ii) {(ξ , c) :
√

2< c< 2, 1 − 2
c4 (2 − c2)< ξ < 1} ∪ {(ξ , c) : ξm < ξ < 1, c> 2}, we have asymp-

totic expansion

u(x, t) = u(x(y, t), t) = u(4)(y, t; ξ ) + t−1/2E(ξ ) +O(t−1),

x(y, t) = y − 2 ln
(
−ie−itg(∞)+it(p(−)

+ −g+)(0)δ∞(0)δ+(0)Mmod
12,+(0)
)

+ 2i
H(0)

11 Mmod
12,+(0) + H(0)

12 Mmod
22,+(0)

Mmod
12,+(0)

t−1/2 +O(t−1),

where u(4)(y, t; ξ ), E(ξ ), has same expansion as (7.5), (7.6) but the function δ∞(0), δ+(0), H(0)

and H(1) are shown in Proposition 9 and 11, respectively. ξm is the critical velocity that the
stationary points of the g-function given in Proposition 6 merges to c. E(ξ ), H(0) and H(1)

represent the contribution of the pairs of stationary points out of cut via parabolic cylinder
model.

Region IV: Genus-2 elliptic wave region. { 3
4
< ξ < ξm, 2< c}, we have asymptotic expansion

u(x, t) = u(x(y, t), t) = u(5)(y, t; ξ ) + t−1E(ξ ) +O(t−2),

x(y, t) = y − 2 ln
(
−ie−itg(∞)+it(p(−)

+ −g+)(0)δ∞(0)δ+(0)Mmod
12,+(0)
)

+ 2i
H(0)

11 Mmod
12,+(0) + H(0)

12 Mmod
22,+(0)

Mmod
12,+(0)

t−1 +O(t−2).

where u(5)(y, t; ξ ) and E(ξ ) has same expansion as (7.5), (7.6) but the functions g(∞), g(z), δ∞(0),
δ+(0), H(0), H(1) and Mmod are shown in Proposition 12, 13, and 14, formula (6.19), respectively. E(ξ ),
H(0) and H(1) represent the common contribution of two local Airy Model of two pairs of stationary
points.

Remark 1.2. We divide the (ξ , c) plane in four parts as shown in above theorem accounting to the g-
function appeared in the analysis. Although both Region III and Region IV are genus-2 regions, their
g-functions have different expressions.

Remark 1.3. Region I and Region III are comprised of the union of two and three subregions, respec-
tively. In Regions I and III, the subleading term of the asymptotic behaviour in these subregions are
different, because these subregions have different number of stationary points. When ξ → 1−, a pair of
stationary points approaches to infinity while a pair of stationary points approaches to ±√

2. We find that
there is no transition region on the shared boundary ξ = 1 in Region I. So does it on the shared boundary
ξ = 1 in Region III. But as ξ → 3/4, the stationary points will merge, which implies that the asymptotic
behaviour may be expressed in terms of solutions of the second Painlevé equation. Our results also hold
for c = 1.

Remark 1.4. Our result also implies that x/t = y/t +O(t−1). So the division of regions in the (y, t) plane
approximates to it on (x, t) plane as t → ∞.

Compared with the works [2, 3, 33], our work has the following different features:

• Consider the mCH (1.1) with a nonzero boundary condition, Boutet de Monvel et al. in [2] con-
structed its RH problem and exact solutions. Further they obtained long-time asymptotics of the
solution by using Deift–Zhou steepest descent method [3]. In our present work, we consider the
mCH (1.1) with the step-like initial data condition (1.2), which can reduce the nonzero boundary
condition as a special case of (1.2) by taking c = 1. Moreover, our long-time asymptotics with the
step-like initial data condition becomes more challenging than that [3] which is only described by
parabolic cylinder model. Our result requires a elliptic wave model in genus-2, the Airy function
model and also the parabolic cylinder model.
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• In Ref. [33], though Karpenko et al. considered the mCH (1.1) with step-like initial data which is the
same as ours, they only established its RH problem without consideration of long-time asymptotics.
While we focus on its long-time asymptotic behaviours for different space-time regions on the whole
(x, t)-plane.

1.2. Out line of the paper

Our paper is arranged as follows. In Section 2, we study the eigenfunctions and scattering data associated
with step-like initial value (1.5). Further we analyse their analyticity, symmetries and asymptotic to
construct the RH problem for M(z) of step-like initial value problem, which will be used to analyse
long-time asymptotics of the mCH equation in our paper. In Section 3 and Section 4, we construct
the RH problem associated with the Regions I and II, further transform it into a model RH problem.
In Sections 5 and 6, to analyse the RH problem in the regions III and IV, we introduce a g-function in
genus two Riemann surface and transform the original RH problem to a RH problem M(2)(z), which is
further decomposed into a Mmod(z) model problem and an inner local problems. The Mmod(z) contributes
to the leading term of the asymptotics and is given by Riemann theta functions attached to a hyperelliptic
Riemann surface in subsection 5.2.1 and subsection 6.3 in different region. Finally, in Section 7, we give
the proof of Theorem 1.1.

2. Direct scattering and the RH problem
2.1. Spectral analysis on the lax pair

The mCH (1.1) admits the Lax pair [2]

�x = X�, �t = T�, (2.1)

where

X = 1

2
(izmσ2 − σ3), (2.2)

T =
(

z−2 + u2 − u2
x

2

)
σ3 − i
(

z−1(u − ux) + z

2

(
u2 − u2

x

)
m
)
σ2 (2.3)

and z ∈C is spectrum parameter. Here, we introduce the standard Pauli matrices

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
.

Since the Lax pair (2.1) admit spectral singularity at z = ∞ and z = 0, the asymptotic behaviour of the
eigenfunction � as z → ∞ and z → 0 need to be controlled.
Case I. z = ∞. For any real constant C �= 0, we denote a matrix function relying on C

DC(z) = 1

2

(
φC(z) + φC(z)−1 φC(z)−1 − φC(z)

φC(z)−1 − φC(z) φC(z) + φC(z)−1

)
, φC(z) =

(
C + z

C − z

)1/4

, (2.4)

where φC(z) is analytic on C \ [−C, C] and the branch is chosen such that as z → ∞, φC(z) ∼ e− iπ
4 +

O(z−1). Denote

lim
z→∞

DC(z) = DC(∞) =
√

2

2
(I + iσ1), (2.5)

which is independent of C. For convenience, we use the notation f±(z) of some function f to denote the
boundary values of f from the ± sides of the oriented jump contours. We set the orientation of all curve
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on the real axis to be directed from the left to the right in this paper. From φC,+(z) = −iφC,−(z), it follows
that

DC,+(z) = iσ1DC,−(z), z ∈�+,

Under the initial value (1.5), we define two gauge transformations

�±(z; x, t) = Dc±(z)�(z; x, t), (2.6)

which satisfy the following Lax pair

�±
x =
(

− i

2
m
√

z2 − c2
±σ3 + P±

)
�±, (2.7)

�±
t =
(

i
√

z2 − c2
±

(
m(u2 − u2

x)

2
+ 1

c±z

)
σ3 + L±

)
�±, (2.8)with

P± := i
c±m − 1

2
√

z2 − c2
±
(c±σ3 + izσ2) ,

L± := i

(
c±(u2 − u2

x)(1 − c±m)

2
√

z2 − c2
±

− u − 1/c±√
z2 − c2

±

)
σ3 + ux

c±
σ1

−
(

z(u2 − u2
x)(1 − c±m)

2
√

z2 − c2
±

− c±u − 1

z
√

z2 − c2
±

)
σ2,

and the branch of the square root is chosen such that
√

z2 − c2
± ∼ ic±, z → 0 in C

+, where C
± denote

the upper/lower half complex plane and c± are exactly given in (1.6). For convenience, we denote �± =
[−c±, c±] as the branch cut of φc±(z).

Furthermore, we introduce

μ±(z; x, t) =�±(z; x, t)eitp(±)(z)σ3 , (2.9)

where p(±)(z) are defined by

tp(±)(z) := tp(±)(z; x, t) =
√

z2 − c2
±

2

(∫ x

±∞
(m(s) − 1/c±)ds + x

c±
− 2t

c±z2
− t

c3
±

)
. (2.10)

In this paper, whenever convenient, we use f (z) to denote f (z; x, t) to emphasise the dependence on z.
Then μ±(z; x, t) solve the two Volterra-type integral equations

μ±(z; x, t) = I +
∫ x

±∞
e

i
2 σ̂3

√
z2−c2±

∫ s
x m(v,t)dv
[
P±(z; s, t)μ±(z; s, t)

]
ds. (2.11)

It follows from (2.11) that the Jost functions μ±(z) := μ±(z; x, t) admit two kinds of symmetries

μ±(z) = σ1μ±(z̄)σ1 = σ2μ±(−z)σ−1
2 .

Again applying (2.11), it is accomplished that detμ±(z) = 1, and

μ±(z) → I, z → ∞.

Thus it appears that μ±(z) are analytical in C \�±, respectively. Let

μ̃±(z; x, t) = D−1
c± (z)μ±(z; x, t), (2.12)

then the Volterra-type integrals (2.11) about μ̃±(z) := μ̃±(z; x, t) are changed into

μ̃±(z; x, t) = D−1
c± (z) +

∫ x

±∞
D−1

c± (z)e
i
2

√
z2−c2±

∫ s
x m(l,t)dlσ̂3 Dc± (z)

·
(

X(z; s, t) + i

2
m(s, t)
√

z2 − c2
±Dc± (z)−1σ3Dc±(z)

)
μ̃±(z; s, t)ds, (2.13)
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where X is defined in (2.2). It follows from (2.13) that the Jost functions μ̃±(z) have no more than
− 1

4
-weak singularity at z = ±1 and z = ±c as

μ̃±(z) =O((z ∓ 1)−1/4
)
, μ̃±(z) =O((z ∓ c)−1/4

)
.

Since Dc± (z)−1�±(z; x, t) are two fundamental matrix solutions of the Lax pair (2.1), they are related
by a scattering matrix function S(z) independent of x and t

Dc+ (z)−1�+(z; x, t) = Dc− (z)−1�−(z; x, t)S(z), (2.14)

S(z) =
(

s11(z) s12(z)

s21(z) s22(z)

)
, det S(z) = 1.

Combining the transformations (2.9), (2.12) with the (2.14), it deduced that

S(z) = eitp(−)(z; x,t)σ3 (μ̃−(z; x, t))−1μ̃+(z; x, t)e−itp(+)(z; x,t)σ3 , (2.15)

which is analytic on C \�+. It also implies that the scattering matrix S(z) has no more than − 1
4
-weak

singularity at z = ±1 and z = ±c. On the other hand, it is also deduced that

S(z) ∼ e
1
2 Hzσ3 , z → ∞,

where H is a constant given by

H =
(

1 − 1

c

)
x +
(

1

c3
− 1

)
t +
∫ x

−∞
(m(s, t) − 1) ds +

∫ +∞

x

(
m(s, t) − 1

c

)
ds.

Define two reflecting coefficients by

r1(z) = s21(z)

s11(z)
, r2(z) = s12(z)

s22(z)
. (2.16)

As z → ±c, they then admit asymptotic behaviour 1 − r1(z)r2(z) =O((z ∓ c)1/2).
To construct the RH problem, the jump of the Jost functions μ̃±(z) on the cut�± need to be analysed

in the following proposition under standard proof.

Proposition 1. The functions μ±, μ̃±, S and the reflecting coefficients r1, r2 admit the jump relations
(i) For z ∈�±,

μ±
+(z) = σ1μ

±
−(z)σ1.

(ii) For z ∈�−,

μ̃±
11,+(z) = −iμ̃±

12,−(z), μ̃±
21,+(z) = −iμ̃±

22,−(z),

s11,±(z) = s22,∓(z), s12,±(z) = s21,∓(z), r1,±(z) = r2,∓(z).

(iii) For z ∈�+ \�−, μ̃+(z) has same jump as above equation while μ̃−(z) has no jump. And

s11,+(z) = −is12,−(z), s21,+(z) = −is22,−(z), r1,±(z)r2,∓(z) = 1.

(iv) For z ∈R \�+,

r1(z) = r2(z).

Under the Assumption 1 r1(z) and r2(z) are analytic in C \�+.
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Case II: z = 0.
The Lax pair (2.7)–(2.8) is rewritten in the form

�±
x = − i

√
z2 − c2

±
2c±

σ3�
± + P±

0 �
±,

�±
t = i
√

z2 − c2
±

(
1

2c3
±

+ 1

c±z2

)
σ3�

± + L±
0 �

±,

where c± are exactly given in (1.6) and

P±
0 =iz

c±m − 1

2c±
√

z2 − c2
±
(zσ3 + ic±σ2) ,

L±
0 =L± + i

√
z2 − c2

±

(
m(u2 − u2

x)

2
+ 1

c±z
− 1

2c3
±

+ 1

c±z2

)
σ3.

By making transformation

μ±
0 (z; x, t) =�±(z; x, t)eiq(±)(z; x,t)σ3 ,

q(±)(z; x, t) = i
√

z2 − c2
±

2c±

[
x −
(

1

c2
±

+ 2

z2

)
t

]
,

μ±
0 (z) := μ±

0 (z; x, t) admit a new Lax pair

μ±
0,x = − i

√
z2 − c2

±
2c±

[σ3,μ
±
0 ] + P±

0 μ
±
0 , (2.17)

μ±
0,t = i
√

z2 − c2
±

(
1

2c3
±

+ 1

c±z2

)
[σ3,μ

±
0 (z)] + L±

0 μ
±
0 , (2.18)

which can be written into two Volterra type integrals

μ±
0 (z) = I +

∫ x

±∞
e

i
2c± σ̂3

√
z2−c2±(s−x) [P±

0 (z; s, t)μ±
0 (z; s, t)

]
ds.

Taking z = 0 in above integral equation implies μ±
0 (0) = I. Moreover, expanding μ±

0 (z) at z = 0 gives
that

μ±
0 (z) = I + z

2

⎛
⎝ 0

∫ x

±∞

(
m − 1

c±

)
ex−sds

− ∫ x

±∞

(
m − 1

c±

)
es−xds 0

⎞
⎠+O(z2), (2.19)

which will be used to reconstruct the potential u(x, t).
Because μ±

0 e−iq(±)σ3 also admit Lax pair (2.7)–(2.8), there exist two matrix functions C±(z) indepen-
dent of x and t such that

μ±
0 (z; x, t)e−iq(±)(z; x,t)σ3 C±(z) =μ±(z; x, t)e−itp(±)(z; x,t)σ3 . (2.20)

Since q(±) − tp(±) = −1

2

√
z2 − c2

±
∫ x

±∞ (m − 1/c±)ds, taking the limits x → ±∞, we obtain C±(z) ≡ I.
Invoking (2.12) and Dc± ,+(0) = iσ1, it follows that

μ̃±
+(0) = −i

(
0 ei(q(±)

+ (0)−tp(±)
+ (0))

e−i(q(±)
+ (0)−tp(±)

+ (0)) 0

)
. (2.21)

Consequently, from (2.15) it follows that as z → 0 ∈C
+,

s11(z) = ei(q(−)
+ −q(+)

+ )(0) +O(z2), s22(z) = e−i(q(−)
+ −q(+)

+ )(0) +O(z2). (2.22)

https://doi.org/10.1017/S0956792525000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000178


10 E. Fan et al.

2.2. Setting up a RH problem with step-like initial data

Define a sectionally analytical matrix

M(z) := M(z; x, t) = Dc−(∞) ×

⎧⎪⎨
⎪⎩
(
μ̃−

1 (z), μ̃+
2 (z)

s22(z)
eit(p(+)−p(−))

)
, as z ∈C

+,

(
μ̃+

1 (z)

s11(z)
e−it(p(+)−p(−)), μ̃−

2 (z)
)

, as z ∈C
−,

(2.23)

where μ̃±
1 (z) and μ̃±

2 (z) denote the first and second column of μ̃±(z), respectively and Dc−(∞) is defined
in (2.5).

In order to construct the RH problem only depending explicitly on the scattering data, via the
definition of the new scale y(x, t) in (1.7), we define

N(z) := N(z; y, t) = M(z; x(y, t), t). (2.24)

Recall the notation ξ = y/t and c− = 1, then p(−) defined in (2.10) can be rewrite as

p(−) =
√

z2 − 1

2

(
ξ − 1 − 2z−2

)
.

Then N(z) is a solution of the following RH problem.

RH problem 1.

1. Analyticity: N(z) is meromorphic in C \R;
2. Symmetry: N(z) = σ2N(−z)σ−1

2 = σ1N(z̄)σ1;
3. Jump condition: N has continuous boundary values N±(z) on R and

N+(z) = N−(z)Ṽ(z), z ∈R, (2.25)

where

Ṽ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
1 r2(z)e−2itp(−)

−r1(z)e2itp(−)
1 − r1r2

)
, as z ∈R \�+,

(
1 r2,+(z)e−2itp(−)

−r1,−(z)e2itp(−)
0

)
, as z ∈�+ \�−,

−iσ1, as z ∈�−.

4. Asymptotic behaviours: N(z) = I +O(z−1), z → ∞;
5. Singularity: N(z) has singularity at z = ±1 with

N(z) ∼ (O((z ∓ 1)−1/4
)
, O((z ∓ 1)1/4

))
, z → ±1 in C

+, (2.26)
N(z) ∼ (O((z ∓ 1)1/4

)
, O((z ∓ 1)−1/4

))
, z → ±1 in C

−. (2.27)
From (2.19), (2.20) and (2.22), it reveals that

N(z) =N+(0) + N1z +O(z2), z → 0 ∈C
+, (2.28)

where

N+(0) = iDc−(∞)

(
0 f1

f −1
1 0

)
, N1 = iDc− (∞)

(
f2 0

0 f3

)

with

f1 = exp

{
−1

2

∫ x

−∞
(m − 1)ds

}
, f2 = e

1
2

∫ x
−∞ (m−1)ds

2

(∫ x

−∞
(m − 1)es−xds + 1

)
,

f3 = e− 1
2

∫ x
−∞ (m−1)ds

2c

(
1 −
∫ x

+∞
(cm − 1)ex−sds

)
.
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Thus, via the definition of y in (1.7), it follows that

x(y, t) = y − 2 ln
(

i
√

2N21,+(0)
)

. (2.29)

Direct calculation shows that

− 2
(
N12,+(0)N1,11 + N21,+(0)N1,22

)= f1f2 + f −1
1 f3 (2.30)

= 1

2

(∫ x

−∞
(m − 1)es−xds −

∫ x

+∞
(m − 1/c)ex−sds + (1 + c)/c

)
.

Taking x → +∞ and x → −∞ in above equation, respectively, and via the fact that lim
x→−∞

m = 1, lim
x→+∞

m =
1/c, we arrive at that

lim
x→+∞

(f1f2 + f −1
1 f3) = 1/c lim

x→−∞
(f1f2 + f −1

1 f3) = 1.

Via taking the derivative with respect to x on (2.30), we obtain

−2
(
N12,+(0)N1,11 + N21,+(0)N1,22

)+ 2∂2
x (N12,+(0)N1,11 + N21,+(0)N1,22) = m.

Therefore, we arrive at the following reconstruction formula

u(x, t) = −2(N12(0)N1,11 + N21,+(0)N1,22), (2.31)

2.3. An almanac of jump matrix factorisations

The jump matrix Ṽ(z) admits the following decomposition from the symmetry of the reflecting
coefficients r1, r2 in Proposition 1, which will be used in the asymptotic analysis in the next section.

On the interval R \�+,

Ṽ(z) =
(

1 0

−r1e2itp(−)
1

)(
1 r2e−2itp(−)

0 1

)

=
(

1 r2e−2itp(−)

1−r1r2

0 1

)
(1 − r1r2)

−σ3

(
1 0

−r1e2itp(−)

1−r1r2
1

)
. (2.32)

On the interval �+ \�−,

Ṽ(z) =
(

1 0

−r1,−(z)e2itp(−)
1

)(
1 r2,+(z)e−2itp(−)

0 1

)

=
(

1 r2,−(z)e−2itp(−)

1−r1,−(z)r2,−(z)

0 1

)(
0 r2,−(z)

e2itp(−)

−e2itp(−)

r2,−(z)
0

)(
1 0

−r1,+(z)e2itp(−)

1−r1,+(z)r2,+(z)
1

)
.

On the interval �−,

Ṽ(z) = −i

(
1 0

−r1,−(z)e2itp(−)
1

)
σ1

(
1 r2,+(z)e−2itp(−)

0 1

)
.

The long-time asymptotic of RH problem 1 is affected by the growth or decay of the exponential
function e±2itp(−) with

p(−) =
√

z2 − 1

2

(
ξ − 1 − 2z−2

)
, ∂zp

(−) = 1

2
√

z2 − 1z3

[(
ξ − 1)z4 + 2z2 − 4

)]
.

Thus, to obtain the long-time asymptotics, we need to analyse the real part of 2itp(−). We hope that
after appropriately choosing triangular factorisations of the jump matrices and associated deformations
of the original RH problem, the jumps remaining on R can become constant matrices (independent of
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(a) (b) (c)

Figure 2. In the white region, Im[p(−)]> 0, while in another region, Im[p(−)]< 0. (a) ξ < 3/4; (b)
3/4< ξ < 1; (c) 1 ≤ ξ < 3.

Figure 3. Figure of curves �j and domains j, j = 1, 2, in the case of {(ξ , c) : ξ < 3/4}.

z, but dependent on ξ and c) of special structure or a jump matrices of solvable model, whereas the
other jumps decay exponentially to the identity matrix. We introduce the g-function mechanism [17] to
problems with step-like background in different regions. This mechanism is relevant when some entries
of the jump matrix grow exponentially or oscillate as t → ∞. The general idea consists in replacing the
original phase function in the jump matrix. This new g-function needs to be analytic on C except some
new cut (it is undetermined and do not must be�±) and satisfies the above condition. Moreover, it must
have same asymptotic properties as z → ∞, 0 ∈C

+ as p(−):

p(−) = 1 − ξ

2
z +O(z−1), ∂zp

(−) = 1 − ξ

2
+O(z−2), z → ∞; (2.33)

p(−) = i

z2
− iξ

2
+O(z), ∂zp

(−) = −2i

z3
+O(z), z → 0 ∈C

+. (2.34)

The structure of the limiting RH problem is such that the problem can be solved explicitly in terms
of Riemann theta functions and Abel integrals on Riemann surfaces associated with the limiting RH
problem [1, 4–7]. For different ranges of the parameter ξ = y/t, different Riemann surfaces may appear.

3. Region I: slow-decay background region

In this section, we will analyse the long-time asymptotics in the slow-decay background region. The
signature table and stationary points of p(−) are shown in Figure 2.

(a) For the case ξ < 3
4
, there is no stationary point on R;

(b) For the case 3/4< ξ < 1, there are four stationary points ±λ1 and ±λ2 on R, where λ1 is defined

in (1.8) and λ2 := λ2(ξ ) =
(

1 + √
4ξ − 3

1 − ξ

)1/2

where λ2(3/4) = 2;

(c) For the case 1 ≤ ξ < 3, there are two stationary points ±λ1 on R.

Therefore, the Region I contains the following three different cases:

(i) {(ξ , c) : ξ < 3/4};
(ii) {(ξ , c) : 1< c ≤ λ1, 3/4< ξ < 1};
(iii) {(ξ , c) : 1< c ≤ λ1, 1 ≤ ξ < 3}.
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Figure 4. Figure of curves�j and domainsj, j = 1, 2, in the case of {(ξ , c) : 1< c ≤ λ1, 3/4< ξ < 1}.

Figure 5. Figure of curves �j and domains j, j = 1, 2, in the case of {(ξ , c) : 1< c ≤ λ1, 1 ≤ ξ < 3}.
Specially, in the case (ii) and case (iii), it follows that c<λ1. In what follows, we introduce the
curves �j := �j(ξ , c) and domains j := j(ξ , c), j = 1, 2, relying on (ξ , c), that is, it is different in
cases (i) − (iii). We will use the first decomposition of the jump matrix given in Subsection 2.3 on 1

and �1 while use the second decomposition on 2 and �2 to open the jump on R.
(i) The case {(ξ , c) : ξ < 3/4}. In this region, there has no stationary point. Define

�1 = eiψ
R

+ ∪ ei(π−ψ)
R

+, �2 =2 = ∅,

1 = {z : z = eφil, l ∈R, 0<φ <ψ} ∪ {z : z = eφil, l ∈R, π −ψ <φ <π},
where φ is a small enough positive angle such that 1 is non-intersect with the curve Im[p(−)](z) = 0 as
shown in Figure 3.

(ii) The case {(ξ , c) : 1< c ≤ λ1, 3/4< ξ < 1}. Let curve�j, j = 1, 2 as Figure 4 shown. It also admits
that j, j = 1, 2, is non-intersect with the curve Im[p(−)](z) = 0.

(iii) The case {(ξ , c) : 1< c ≤ λ1, 1 ≤ ξ < 3}. Let the curve�j, j = 1, 2 as Figure 5 showing. The only
difference from the case (ii) is that there is only two stationary points ±λ1.

To deal with the jump on R, we denote a interval

I(ξ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅, as ξ < 3
4
;

[−λ2, −λ1] ∪ [λ1, λ2], as 3
4
< ξ < 1;

( − ∞, −λ1] ∪ [λ1, +∞) as ξ > 1;

(3.1)

and introduce an auxiliary function

δ(z) := δ(z; ξ , c) = exp

{
1

2π i

∫
I(ξ )

log(1 − r1(s)r2(s))

s − z
ds

}
, (3.2)

We give the properties about δ(z) as follow without proof.

Proposition 2.

(a) As z → 0 ∈C
+,

δ(z) = exp
{
I1
δ

} · (1 + zI2
δ

)+O(z2),
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where

I1
δ
= 1

2π i

∫
I(ξ )

log(1 − r1(s)r2(s))

s
ds, (3.3)

I2
δ
= 1

2π i

∫
I(ξ )

log(1 − r1(s)r2(s))

s2
ds;

(b) δ+(z) = δ−(z)(1 − r1r2), z ∈ I(ξ ), δ−(z) = δ+(z), z ∈R \ I(ξ );
(c) δ(z) → 1, as z → ∞ ∈C \ I(ξ ).

For the right endpoints λ of I(ξ ) (λ may be −λ1, +λ2 here), there exists an analytic function
δλ(z) on z ∈ Uλ \ I(ξ ) which is continuous to the boundary such that for ν := ν(z) = log(1 −
r1(z)r2(z))/2π ,

δ(z) = δλ(z)(z − λ)−iν(λ), arg(z − λ) ∈ ( − π , π ), (3.4)
with

|δλ(z) − δλ(λ)|� |z − λ| .

Via the function δ given in (3.2), we define a new matrix-valued function,
M(1)(z) := M(1)(z; ξ , c) = N(z; ξ , c)G(z; ξ , c)δσ3 (z; ξ , c), (3.5)

where G(z) := G(z; ξ , c) is a piecewise matrix interpolation function

G(z) =
(

1 −r2e−2itp(−)

0 1

)
, z ∈1; G(z) =

(
1 0

−r1e2itp(−)
1

)
, z ∈∗

1;

G(z) =
(

1 0

r1e2itp(−)

1−r1r2
1

)
, z ∈2; G(z) =

(
1 r2e−2itp(−)

1−r1r2

0 1

)
, as z ∈∗

2;

G(z) = I z in elsewhere.

(3.6)

Then M(1) satisfies the following RH problem.

RH problem 2.

1. Analyticity: M(1)(z) is meromorphic in C \�(1), where
�(1) := �(1)(ξ , c) = (∪2

j=1�j(ξ , c) ∪�j(ξ , c)∗)∪ [−1, 1] ; (3.7)

2. Symmetry: M(1)(z) = σ2M(1)(−z)σ−1
2 = σ1M(1)(z̄)σ1;

3. Jump condition: M(1) has continuous boundary values M(1)
± (z) on �(1) and

M(1)
+ (z) = M(1)

− (z)V (1)(z), z ∈�(1), (3.8)
where

V (1)(z) =
(

1 r2δ
−2e−2itp(−)

0 1

)
, z ∈�1; V (1)(z) =

(
1 0

−r1δ
2e2itp(−)

1

)
, z ∈�∗

1 ;

V (1)(z) =
(

1 0

−r1δ
2e2itp(−)

1−r1r2
1

)
z ∈�2; V (1)(z) =

(
1 r2δ

−2e−2itp(−)

1−r1r2

0 1

)
, z ∈�∗

2 ;

V (1)(z) = −iσ1, z ∈�−

4. Asymptotic behaviours: M(1)(z) = I +O(z−1), z → ∞;
5. Singularity: M(1)(z) has at most fourth root singularities at z = ±1.

Denote U±λj as a small neighbourhood of ±λj with U±λj =
{
z : |z ± λj| ≤ �

}
, where � is a small

positive constant such that � <min
{
λ1−c

3
, λ2−λ1

3

}
.

https://doi.org/10.1017/S0956792525000178 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525000178


European Journal of Applied Mathematics 15

In the case (i), because of the absence of stationary point, U±λj = ∅, j = 1, 2, while in case (ii),
U±λ2 = ∅.

The jump matrix exponentially decays to the identity matrix I as t → ∞ away from stationary points,
which inspires us to construct the solution M(1)(z) as follows

M(1)(z) =

⎧⎪⎨
⎪⎩

E(z; ξ , c)Mmod1(z; ξ , c), z /∈ U±λ1 ∪ U±λ2 ,

E(z; ξ , c)M1,±(z; ξ , c), z ∈ U±λ1 ,

E(z; ξ , c)M2,±(z; ξ , c), z ∈ U±λ2 .

(3.9)

Mmod1 is the global parametrix, which will be given later. E is the error function, whose existence is
guaranteed by small norm theory in Subsection 3.2 and as t → ∞, its asymptotic expansion can be
computed. Mj,±, j = 1, 2 are the local parametrixs. Each Mj,±, j = 1, 2 admits jump V (1) only on U±λj , and
satisfies that Mj,± → I, as z → ∞. They can be approximated by a model RH problem whose solution
is constructed explicitly in terms of parabolic cylinder functions and appears frequently in the literature
of long-time asymptotic calculations for integrable nonlinear waves [1, 4–6, 17–20, 46].

Because of the symmetry M(1)(z) = σ2M(1)(−z)σ−1
2 in RH problem 2, the local RH problems should

satisfy

Mj,+(z) = σ2M
j,−(−z)σ−1

2 , z ∈ U+λj .

It is sufficient to consider M2,+ and M1,−. Denote ζ j,± =√|2p(−)′′ ( ± λj)|(z ∓ λj) as the local parameter
in U±λj , and

r+λ2 =r2(λ2)δ+λ2 (λ2)e
−2itp(−)(λ2)( − 2tp(−)′′ (λ2))

2iν(λ2),

r−λ1 =r2( − λ1)δ−λ1 ( − λ1)e
−2itp(−)(−λ1)( − 2tp(−)′′ ( − λ1))

2iν(λ1).

The Assumption 1 (analyticity) and (d) in the Proposition 2 imply that in the corresponding neighbour-
hood, ∣∣r−λ1 − r2(z)δ−2

−λ1
(z)
∣∣� ∣∣ζ 1,−∣∣ , ∣∣r+λ2 − r2(z)δ−2

+λ2
(z)
∣∣� ∣∣ζ 2,+∣∣ ,

which satisfies the conditions of Theorem A.1 in [36] thanks to

−2p(−) = −2p(−)( ± λj) + (ζ j,±)2 +O(ζ j,±)3.

Thus, M2,+ and M1,− are well approximated by P1(ζ 2,+; r+λ2 ) and P1(ζ 1,−; r−λ1 ), respectively, which
are defined in the Appendix B. As t → ∞, the asymptotics of Mj,±(z) := Mj,±(z; ξ , c) is given by the
following proposition.

Proposition 3. For z ∈ U±λj \ {±λj}, we have

Mj,±(z) = I + t−1/2 Aj,±(ξ )

z ∓ λj

+O(t−1), j = 1, 2, (3.10)

where

Aj,±(ξ ) = 1√|2p(−)′′ ( ± λj)|

(
0 β̃

j,±
12

β̃
j,±
21 0

)
,

and β̃ j,±
21 β̃

j,±
12 = −ν(λj) with

β̃1,+
12 = β̃1,−

21 =
√

2πe
1
2 πν(λ1)e

π i
4

r−λ1�(iν(λ1))
,

β̃2,−
12 = β̃2,+

21 =
√

2πe
1
2 πν(λ2)e

π i
4

r+λ2�(iν(λ2))
.
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3.1. A model RH problem on cuts

The global parametrix Mmod1(z) is given by the following model RH problem:

RH problem 3.

1. Analyticity: Mmod1(z) is holomorphic in C \�−;
2. Jump condition: Mmod1 has continuous boundary values Mmod1

± (z) on �− with Mmod1
+ (z) =

Mmod1
− (z)Vmod1(z), z ∈�−, where

Vmod1(z) = −iσ1, z ∈�−; (3.11)

3. Asymptotic behaviours: Mmod1(z) = I +O(z−1), z → ∞;
4. Singularity: Mmod1(z) has at most fourth root singularities at z = ±1.

The solution of this model RH problem is given by

Mmod1(z) = D1(∞)D1(z)−1, (3.12)

where D1 is defined in (2.4). As z → 0 ∈C
+, it is adduced that

Mmod1(z) = 1√
2
(I − iσ1)− zi

2
√

2
(I + iσ1)+O(z2). (3.13)

3.2. The small norm RH problem for error function

In this subsection, we consider the error matrix-function E(z) := E(z; ξ , c) in this region.

RH problem 4.

1. Analyticity: E(z) is analytical in C \�E, where�E = ∂U ∪ [�(1) \ (U ∪�−)
]

, with U := U(ξ , c) =
∪j=1,2U±λj , and ∂U is the boundary of U;

2. Asymptotic behaviours: E(z) ∼ I +O(z−1), |z| → ∞;
3. Jump condition: E(z) has continuous boundary values E±(z) on �E satisfying E+(z) = E−(z)VE(z),

where the jump matrix VE(z) is given by

VE(z) =
{

Mmod1(z)V (1)(z)Mmod1(z)−1, z ∈�E \ ∂U,

Mj,±(z)Mmod1(z)−1, z ∈ ∂U,
(3.14)

Out of U, the jump VE admits the following estimates

‖VE − I‖p � exp
{−tKp

}
, z ∈�E \ U, p ∈ [1, ∞], (3.15)

for positive Kp relying on p. For z ∈ ∂U, Mmod1(z) is bounded, so by (3.10), we find that

|VE(z) − I| =O(t−1/2). (3.16)

Therefore, the existence and uniqueness of the RH problem 4 is obtained via a small-norm RH problem
[18, 19]. According to Beals–Coifman theory, the solution of the RH problem 4 can be given by

E(z) = I + 1

2π i

∫
�E

(I +� (s)) (VE(s) − I)

s − z
ds, (3.17)

where the � ∈ L∞(�E) is the unique solution of (1 − CE)� = CE (I) , and CE is a integral operator:
L∞(�E) → L2(�E) defined by CE(f )(z) = C−

(
f (VE(z) − I)

)
with the usual Cauchy projection operator

C−(f )(s) = limz→�E−
1

2π i

∫
�E

f (s)

s − z
ds.

In case (i), under the absence of λj, j = 1, 2, it appears that

E(z) = I +O(e−C(ξ ,c)t) (3.18)
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where C(ξ , c) is a positive constant relying on ξ and c. While in the case(ii) and (iii), the stationary
points have contribution on t → ∞. By (3.16), it adduced that

‖CE‖ ≤ ‖C−‖‖VE(z) − I‖2 �O(t−1/2), (3.19)
which implies that 1 − CE is invertible for sufficiently large t. So � exists and is unique. Besides,

‖�‖L∞(�E ) �
‖CE‖

1 − ‖CE‖ � t−1/2. (3.20)

In order to reconstruct the solution u(y, t) of (1.1), we need the asymptotic behaviour of E(z) as z → 0 ∈
C

+ and the long-time asymptotic behaviour of E(0).

Proposition 4. As z → 0 ∈C
+, we have

E(z) = E(0) + E1z +O(z2), (3.21)
with long-time asymptotic behaviour

E(0) = I + t−1/2H(0) +O(t−1), (3.22)
where

H(0) =
∑

p=±λj ,j=1,2

Mmod1(p)Aj,±(ξ )Mmod1(p)−1

p
. (3.23)

Here Aj,±(ξ ) is given by (3.10). And

E1 = 1

2π i

∫
�E

(I +� (s)) (VE − I)

s2
ds = t−1/2H(1) +O(t−1),

where

H(1) =
∑

p=±λj ,j=1,2

Mmod(p)Aj,±(ξ )Mmod(p)−1

p2
. (3.24)

Proof. Substituting the long-time asymptotic behaviour of VE,� (s) and Proposition 3 into 2π i(E(0) −
I), it is found that ∫

�E

(I +� (s)) (VE − I)

s
ds

=
∫
∂U

Mmod1(s)(Mj,±(s) − I)Mmod1(s)−1

s
ds +O(t−1)

= t−1/2

∫
∂U

Mmod1(s)Aj,±(ξ )Mmod1(s)−1

s(z ∓ λj)
ds +O(t−1). (3.25)

Then by residue theorem we finally arrive at the result.

4. Region II: fast-decay background region

The Region II is corresponding to the case {(ξ , c) : ξ > 1 + 2/c}. In this case, we introduce a new scalar
function

X(z) = √
z2 − c2, θ (+)(z) = X(z)

(
ξ − 1

2
− 1

cz2

)
, (4.1)

where X(z) is analytic on C \�+ and takes the single-valued analytic branch such that X+(z) ∈ iR+ on
�+. In this region of ξ , we also define the stationary point of θ (+) as λ1 =

√
2

c(ξ−1)
∈ (0, 1) satisfying

ξ − 1

2
− 1

cλ2
1

= 0.
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Figure 6. The region 2 ∪∗
2 and curve �2 ∪�∗

2 . In this case {(ξ , c) : ξ > 1 + 2/c}, Im[θ (+)](z)< 0 in
yellow region while Im[θ (+)](z)> 0 in white region. And critical line Im [θ (+)](z) = 0 is black solid line.

Unlike Region I, the stationary point λ1 is not the zero of ∂zθ
(+) = 0.The sign of the imaginary part

Im[θ (+)] is shown in Figure 6. Define the contour�1 and the region1 as shown in Figure 6. Obviously,

p(−) − θ (+) =O (z−1
)

, as z → ∞, (4.2)

p(−) − θ (+) = ci

2
(ξ − 1) + i

2c2
− iξ

2
+O(z2), as z → 0 ∈C

+. (4.3)

So we can use θ (+) to replace p(−) in the jump matrix. And we will utilise the factorisations of the jump
matrix in Section 2.3 to deform the jump contours, so that the oscillating factor e±2itθ (+) are decaying in
corresponding region, respectively.

Similar to the above section, in this region of ξ , we introduce a piecewise matrix interpolation
function

G(z) =: G(z; ξ , c) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1 0

r1e2itθ (+)

1−r1r2
1

)
, as z ∈2;(

1 r2e−2itθ (+)

1−r1r2

0 1

)
, as z ∈∗

2;

I as z in elsewhere,

. (4.4)

Invoking that 1 − r1( ± c)r2( ± c) = 0, the matrix function G(z) brings a new − 1
4
-singularity on z = ±c.

To deal with the jump on R, we introduce an auxiliary function δ(z) := δ(z; ξ , c) defined by

log δ(z) =X(z)

2π i

(∫ −1

−c

+
∫ 1

c

)
log(ir2,−(s))

(s − z)X+(s)
ds + X(z)

2π i

∫
R\�+

log(1 − r1(s)r2(s))

(s − z)X(s)
ds, (4.5)

which relies on ξ and admits the following jump condition:

δ+(z) = δ−(z)(1 − r1r2), z ∈R \�+;

δ−(z)δ+(z) = ir2,−(z), z ∈�+ \�−;

δ−(z)δ+(z) = 1, z ∈�−.

Then we have the following proposition

Proposition 5. The scalar function δ(z) satisfies the following properties

(a) δ(z) is analytic on C \R;
(b) δ(z) has singularity at z = c, −c with

δ(z) =O ((z − p)∓1/4
)

, z ∈C
± → p, p = ±c;

(c) As z → ∞ ∈C \R, δ(z) has limit δ(∞) with

log δ(∞) = − 1

2π i

(∫ −1

−c

+
∫ 1

c

)
log(ir2,−(s))

X+(s)
ds − 1

2π i

∫
R\�+

log(1 − r1(s)r2(s))

X(s)
ds.
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(d) As z → 0 ∈C
+,

δ(z) = exp
{
I1
δ

} · (1 + zI2
δ

)+O(z2).

Here,

I1
δ
= c

2π

(∫ −1

−c

+
∫ 1

c

)
log(ir2,−(s))

sX+(s)
ds + c

2π

∫
R\�+

log(1 − r1(s)r2(s))

sX(s)
ds, (4.6)

I2
δ
= c

2π

(∫ −1

−c

+
∫ 1

c

)
log(ir2,−(s))

s2X+(s)
ds + c

2π

∫
R\�+

log(1 − r1(s)r2(s))

s2X(s)
ds. (4.7)

Proof. The proof of (a), (c) and (d) is trivial as [46]. And for (b), noting that the integral func-

tion X(z)
2π i

(∫ −1

−c
+ ∫ 1

c

) log(ir2,−(s))

(s − z)X+(s)
ds is bounded as z → ±c, it remains to estimate the second integral

X(z)
2π i

∫
R\�+

log(1 − r1(s)r2(s))

(s − z)X(s)
ds. The proof is given by taking z → c as an example. There exists a constant

cr such that as c< s → c

log(1 − r1r2) = cr + 1

2
log(s − c) +O ((s − c)1/2

)
.

It follows from [40] that as z → c for z ∈C
±

X(z)

2π i

∫
R\�+

cr

(s − z)X(s)
ds =O(1).

On the other hand,
X(z)

2π i

∫
R\�+

1
2

log(s − c)

(s − z)X(s)
ds = 1

4
log(z − c) + o(1),

from which we conclude the property (b).

Define a new transformation via (4.4), (4.5),

M(1)(z) := M(1)(z; ξ , c) = δ(∞)−σ3 N(z)eit(p(−)−θ (+))σ3 G(z)δ(z)σ3 , (4.8)

which has continuous boundary values M(1)
± (z) on �(1) := �+ ∪�2 ∪�∗

2 and

M(1)
+ (z) = M(1)

− (z)V (1)(z), z ∈�(1), (4.9)

where

V (1)(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

−r1δ
2e2itθ (+)

1−r1r2
1

)
, as z ∈�2,

(
1 r2δ

−2e−2itθ (+)

1−r1r2

0 1

)
, as z ∈�∗

2 ,

−iσ1, as z ∈�+,

(4.10)

The jump matrix exponentially decays to the identity matrix I as t → ∞ on�2 ∪�∗
2 , which finally leads

to the model RH problem replaced 1 to c in RH problem 3 with solution

Mmodc(z) := Dc(∞)Dc(z)−1, (4.11)

where Dc is defined in (2.4). As z → 0 ∈C
+, it is accomplished that

Mmodc(z) = 1√
2

(
1 −i

−i 1

)
− zi

2
√

2c

(
1 i

i 1

)
+O(z2). (4.12)

Consider the error function

E(z) := E(z; ξ , c) = M(1)(z)(Mmodc(z))−1, (4.13)
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Figure 7. The canonical homology basis {aj, bj}2
j=1 of the genius 2 Riemann surface.

which has jump matrix exponentially decaying to the identity matrix I as t → ∞ on �2 ∪�∗
2 including

±1. Then its existence and uniqueness can be shown by a small-norm RH problem with

E = I +O(e−Ct), (4.14)

for some constant C> 0.

5. Region III: the first-type genus-2 elliptic wave region

In the Region III, we need to introduce a new g-function defined on genus 2 Riemann surface. Note that
this region contains two cases

(i) {(ξ , c) : 2< c2 < 4, 1 − 2(c2−2)
c4 < ξ < 1} ∪ {(ξ , c) : c2 > 4, ξm < ξ < 1};

(ii) {(ξ , c) : c2 < 2, 1 + 2(2−c2)
c4 < ξ < 1 + 2/c} ∪ {(ξ , c) : c2 > 2, 1 ≤ ξ < 1 + 2/c}.

In this two different cases, although has same expression, g has different property. So after we proving
the basic property of g, we will discuss this two different cases separately. Here, ξm is the critical point
of ξ that the stationary point z2 of the g-function given in Proposition 6 in case (i) merge c.

5.1. Constructing the g-function

To construct the g-function, we first introduce:

Y(z) := Y(z; z0, c) =
[

z2 − z2
0

(z2 − 1)(z2 − c2)

]1/2

, (5.1)

where z0 ∈ (1, c). Its branch cut is

�mod = [−c, −z0] ∪�− ∪ [z0, c]. (5.2)

and the branch of the square root is chosen such that Y+(z) ∈ iR+ for z ∈ [z0, c]. And dg is the derivative
of g-function given as follows

dg = Y(z)

z3

[
1 − ξ

2
z4 − c

z0

(
1 + 1

c2
− 1

z2
0

)
z2 + 2c

z0

]
dz. (5.3)

Here, dg is a meromorphic differential defined on the 2-genus Riemann surface M, which has real
branch points ±1, ±c and ±z0 with 1< z0 < c. And the canonical homology basis

{
aj, bj

}2
j=1

is shown
in Figure 7. Simply calculation shows that

∂zg − ∂zp
(−) =O(z−2), as z → ∞; ∂zg − ∂zp

(−) =O(z), as z → 0 ∈C
+.

Thus the g-function is given by

g(z) := g(z; ξ , c) =
∫ z

c

dg, z ∈C \�mod. (5.4)

Proposition 6. There exists a real number z0 = z0(ξ , c) in (1, c) such that the function g(z) defined above
has the following properties
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(a) The a-period of g(z) is zero and the b-period of g(z) is real;
(b) g(z) satisfies the following jump conditions across �+:

g−(z) + g+(z) = 0, z ∈ (z0, c),

g−(z) − g+(z) = 0, z ∈ (1, z0) ∪ (−z0, −1),

g−(z) + g+(z) = B1, z ∈�−,

g−(z) + g+(z) = B2, z ∈ ( − c, −z0),

where Bj = Bj(ξ , c) = ∮
bj

dg is real;

(c) g(z) has another stationary point z1 = z1(ξ ) ∈ (z0, c), which is one of the solutions of equation ξ−1
2

z4 +
c
z0

(
1 + 1

c2 − 1
z2
0

)
z2 − 2c

z0
= 0;

(d) In Case (i), (ii) with c2 > 2, 1> ξ , g(z) has another stationary point z2 = z2(ξ ) ∈ (c, +∞), z2 > z1,
which also is a solution of equation ξ−1

2
z4 + c

z0

(
1 + 1

c2 − 1
z2
0

)
z2 − 2c

z0
= 0. When c> 2, as ξ → ξm <

1 − 2(c2−2)
c4 , z2(ξ ) decreases to c.

Proof. First, we give the existence of z0. From the symmetry of dg, it is accomplished that a2-period
of g(z) is zero. Rewrite the function Y(z) as Y(z; z0, c). Let F(s) := F(s; ξ , c) be a function defined on R

with

F(s; ξ , c) =
∫ c

s

Y+(z;s, c)

z3

[
ξ − 1

2
z4 + c

s

(
1 + 1

c2
− 1

s2

)
z2 − 2c

s

]
dz.

Then it follows that F(c) = 0 and

F(1) =
∫ c

1

1

z3

[(
z2 − c2
)−1/2
]

+

(
ξ − 1

2
z4 + z2

c
− 2c

)
dz = −θ (+)

+ (1),

with θ (+) defined in (4.1). And we calculate the s-derivative of F at s = c,

∂sF(c) = − i

c3

(
c2 − 1
)−1/2
(
ξ − 1

2
c4 + c2 − 2

)
.

In the case ξ < 1, obviously, F(1) ∈ iR−. Thus, when c2 > 2, ξ >− 2(c2−2)
c4 + 1, ∂sF(c) ∈ iR−. And in

the case 1 ≤ ξ < 2
c
+ 1, from the property of θ (+) in above section, we have that F(1) ∈ iR+. While when

c2 < 2, 1 + 2(2−c2)
c4 < ξ < 2

c
+ 1 and c2 > 2, 1 ≤ ξ < 2

c
+ 1, it is adduced that ∂sF(c) ∈ iR+. So there must

exist z0 ∈ (1, c), such that F(z0) = 0.
Moreover, there exists z1 ∈ (z0, c) such that f (z2

1) = 0 with

f (x) = ξ − 1

2
x2 + c

z0

(
1 + 1

c2
− 1

z2
0

)
x − 2c

z0

.

By simply calculating the a1-period of g(z) is zero and the both b-period are real. Obviously, f (0)< 0.
So in the ξ > 1 case, f (x) only has one zero z1 on R

+. And in the ξ < 1 case, we denote another real
solution of f (z) = 0 as z2

2.
In addition, in the ξ < 1 case, simple calculation gives that

∂sF(s; ξ ) = −
∫ c

s

z(1 − ξ )

2
√

(z2 − 1)(z2 − c2)(z2 − s2)s3
(s2 − z2

1)(s2 − z2
2)dz,

∂(1−ξ )/2F(s; ξ ) =
∫ c

s

z
√

z2 − s2

√
(z2 − 1)(z2 − c2)

dz.

Thus, when ξ decreases from 1, z0(ξ ) increases in (1, c) while z2 as a solution of f (x) = 0 decreases.
When z2 merges with c, we denote this critical condition as ξm.
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Figure 8. The opened jump contours �(1) and opened domains j ∪∗
j , j = 1, 2. The yellow region

means Im[g]< 0, while white region means Im[g]> 0.

Denote constant

g(∞) = lim
z→∞

g(z) − p(−)(z). (5.5)

Next, because g will have different sign table in ξ > 1 and ξ < 1, we will discuss g-function separately
in these two cases.

5.2. Opening the jump in the region 1 ≤ ξ < +∞
In this region, we give the signature table of Im[g] in Figure 8. Let the open domains ±

j be as in
Figure 8. Now we use g to replace p(−) in the exponential function. In this region of (ξ , c), we introduce
a piecewise matrix interpolation function G(z) := G(z; ξ , c) with

G(z) =
(

1 0
r1e2itg

1−r1r2
1

)
, z ∈2; G(z) =

(
1 r2e−2itg

1−r1r2

0 1

)
, z ∈∗

2;

G(z) =
(

1 −r2e−2itg

0 1

)
, z ∈1; G(z) =

(
1 0

−r1e2itg 1

)
, z ∈∗

1;

G(z) = I, z in elsewhere.

(5.6)

Same as above section, G(z) brings a new − 1
4
-singularity on z = ±c. To open the jump contour R,

we define

�2 =
{

z = −z1 + e
3π i
4 R

+
}

∪
{

z = z1 + e
π i
4 R

+
}

,

�1 =
{

z = −z0 + eψ il, l ∈ (0,
z0 − 1

2 cosψ
)

}
∪
{

z = z0 + e(π−ψ)il, l ∈ (0,
z0 − 1

2 cosψ
)

}

∪
{

z = 1 + eψ il, l ∈ (0,
z0 − 1

2 cosψ
)

}
∪
{

z = −1 + e(π−ψ)il, l ∈ (0,
z0 − 1

2 cosψ
)

}
,

where ψ <π/4 is chosen as a small enough positive constant such that �1 is contained in the region of
Im[g]> 0.

We define a new matrix-valued function M(1)(z),

M(1)(z) := M(1)(z; ξ , c) = eitg(∞)σ3 Neit(p(−)−g)σ3 G, (5.7)

which satisfies the following RH problem.

RH problem 5.

1. Analyticity: M(1)(z) is meromorphic in C \�(1), where

�(1) = (∪2
j=1�j ∪�∗

j

)∪R

is shown Figure 8;
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2. Symmetry: M(1)(z) = σ2M(1)(−z)σ−1
2 = σ1M(1)(z̄)σ1;

3. Asymptotic behaviours: M(1)(z) = I +O(z−1), z → ∞;
4. Singularity: M(1)(z) has singularity at z = ±1, ±c with:

M(1)(z) ∼O(z ∓ 1)−1/4, z → ±1 in C \�(1),

M(1)(z) ∼ (O(1), O(z ∓ c)−1/2
)

, z → ±c in C
+,

M(1)(z) ∼ (O(z ∓ c)−1/2, O(1)
)

, z → ±c in C
−.

5. Jump condition: M(1) has continuous boundary values M(1)
± (z) on the contour �(1) with M(1)

+ (z) =
M(1)

− (z)V (1)(z), where

V (1)(z) =
(

1 r2e−2itg

0 1

)
, z ∈�1; V (1)(z) =

(
1 0

−r1e2itg 1

)
, z ∈�∗

1 ;

V (1)(z) =
(

1 0
−r1e2itg

1−r1r2
1

)
, z ∈�2; V (1)(z) =

(
1 r2e−2itg

1−r1r2

0 1

)
, z ∈�∗

2 ;

V (1)(z) = (1 − r1r2)
−σ3 , z ∈R \�+; V (1)(z) =

(
0 −ie−itB1

−ieitB1 0

)
, z ∈�−;

V (1)(z) =
(

0 r2,−(z)e−itB2

−r1,+(z)eitB2 0

)
, z ∈ [−c, −z1];

V (1)(z) =
(

0 r2,−(z)e−itB2

−r1,+(z)eitB2 eit(g−−g+)

)
, z ∈ [−z1, −z0];

V (1)(z) =
(

0 r2,−(z)

−r1,+(z) e−2itg+

)
, z ∈ [z0, z1];

V (1)(z) =
(

0 r2,−(z)

−r1,+(z) 0

)
, z ∈ [z1, c];

To deal with the jump on R, we define Y3(z) = (z2 − 1)(z2 − c2)Y(z), and δ(z; ξ , c) := δ(z) with

log δ(z) =Y3(z)

2π i

[∑
±

∓
∫ ±z0

±c

log(ir2,−(s)) − w±
(s − z)Y3,+(s)

ds +
∫
R\�+

log(1 − r1(s)r2(s))

(s − z)Y3(s)
ds

]
, (5.8)

where w± satisfy linear system as⎛
⎜⎝
∫ −z0

−c

ds

Y3,+(s)

∫ c

z0

ds

Y3,+(s)∫ −z0

−c

sds

Y3,+(s)

∫ c

z0

sds

Y3,+(s)

⎞
⎟⎠
(

w−
w+

)
=
⎛
⎜⎝
∫
�+\[−z0,z0]

log(ir2,−(s))

Y3,+(s)
ds + ∫

R\�+
log(1 − r1(s)r2(s))

Y3(s)
ds

∫
�+\[−z0,z0]

s log(ir2,−(s))

Y3,+(s)
ds + ∫

R\�+
s log(1 − r1(s)r2(s))

Y3(s)
ds

⎞
⎟⎠ .

δ(z) admits the following jump condition:

δ+(z) = δ−(z)(1 − r1(z)r2(z)), z ∈R \�+;

δ−(z)δ+(z) = ir2,−(z)e−w± , z ∈ ∓[ ± c, ±z0];

δ−(z)δ+(z) = 1, z ∈�−.

By a similar way to Proposition 5, we obtain the following proposition
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Proposition 7. The scalar function δ(z) satisfies the following properties

(a) δ(z) is analytic on C \ (( − ∞, −z0) ∪�− ∪ (z0, ∞));
(b) δ(z) has singularity at z = ±c with:

δ(z) =O(z − p)∓1/4, z ∈C
± → p, p = ±c.

(c) As z → ∞ ∈C, δ(z) ∼ δ∞ := δ∞(ξ , c) with

log δ∞ = − 1

2π i

(∫ −z0

−c

+
∫ z0

c

)
s2 log(ir2,−(s))

Y3,+(s)
ds − 1

2π i

∫
R\�+

s2 log(1 − r1(s)r2(s))

Y3(s)
ds.

(d) As z → 0 ∈C
+,

δ(z) =δ+(0)
(
1 + δ(1)z

)+O(z2),

where

δ(1) = cz0

2π

(∫ −z0

−c

+
∫ z0

c

)
log(ir2,−(s))

s2Y3,+(s)
ds + cz0

2π

∫
R\�+

log(1 − r1(s)r2(s))

s2Y3(s)
ds.

By using δ(z) in (5.8), we define a new matrix function

M(2)(z; ξ , c) := δ∞(ξ , c)−σ3 M(1)(z; ξ , c)δ(z; ξ , c)σ3 , (5.9)

which then satisfies the following RH problem.

RH problem 6.

1. Analyticity: M(2)(z) is meromorphic inC \�(2) with�(2) = (∪2
j=1�j ∪�∗

j

)∪�mod, where�mod is given
in (5.2);

2. Symmetry: M(2)(z) = σ2M(2)(−z)σ−1
2 = σ1M(2)(z̄)σ1;

3. Asymptotic behaviours: M(2)(z) = I +O(z−1), z → ∞;
4. Singularity: M(2)(z) has at most fourth root singularities at z = ±c;
5. Jump condition: M(2) has continuous boundary values M(2)

± (z) on �(2) and

M(2)
+ (z) = M(2)

− (z)V (2)(z), z ∈�(2),

where

V (2)(z) =
(

1 r2δ
−2e−2itg

0 1

)
, z ∈�1; V (2)(z) =

(
1 0

−r1δ
2e2itg 1

)
, z ∈�∗

1 ;

V (2)(z) =
(

1 0
−r1δ

2e2itg

1−r1r2
1

)
, z ∈�2; V (2)(z) =

(
1 r2δ

−2e−2itg

1−r1r2

0 1

)
, z ∈�∗

2 ;

V (2)(z) =
(

0 −ie−itB2+w−

−ieitB2−w− 0

)
, z ∈ [−c, −z1]; V (2)(z) =

(
0 −iew+

−ie−w+ 0

)
, z ∈ [z1, c];

V (2)(z) =
(

0 −ie−itB1

−ieitB1 0

)
, z ∈�−;V (2)(z) =

(
0 −iew+

−ie−w+ δ−
δ+ e−2itg+

)
, z ∈ [z0, z1];

V (2)(z) =
(

0 −ie−itB2+w−

−ieitB2−w− δ−
δ+ eitB2 e−2itg+

)
, z ∈ [−z1, −z0];

For z ∈�(2) \R, the jump V (2)(z) exponentially approaches the identity matrix as t → ∞. So we expect
to only consider the jump on R. To arrive at this goal, in this case, we denote U := U(ξ , c) as the union
set of neighbourhood of ±z0:

U = U+z0 ∪ U−z0 , U±z0 = {z : |z ∓ z0| ≤ �} , (5.10)
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where � is a small positive constant such that � <min
{

z0−1
3

, z1−z0
3

}
. The stationary point ±z1 is on the

cut with Im[g+](z1)< 0, which means that the exponential function in V (2)(z) also decays exponentially
on ±z1. In fact, it is also decays exponentially on (z0, z1] ∪ [−z1, z0). So the contribution of ±z1 is small
as t → ∞.

Thus, the jump matrix V (2)(z) uniformly goes to I on�(2) \ U. So outside U there is only exponentially
small error (in t) by completely ignoring the jump condition of M(2)(z). It enlightens us to construct the
solution M(2)(z) as follow

M(2)(z) =

⎧⎪⎨
⎪⎩

E(z; ξ , c)Mmod(z; ξ , c), z /∈ U±z0 ,

E(z; ξ , c)Mlo,+(z; ξ , c), z ∈ U+z0 ,

E(z; ξ , c)Mlo,−(z; ξ , c), z ∈ U−z0 ,
(5.11)

where Mmod(z) is the model RH problem on the Riemann surface, which solution is given by theta
function in Subsection 5.2.1. Mlo,±(z) are local model of ±z0 which solution can be expressed in terms of
Airy functions shown in Subsection 5.2.2. And E(z; ξ , c) is the error function, which will be discussed
in subsection 5.2.3 by the small-norm RH problem theory.

5.2.1. Model RH problem on Riemann surface
We consider the following model RH problem with its jump matrix on R.

RH problem 7.

1. Analyticity: Mmod(z) is analytical in C \�mod, where �mod is given in (5.2);
2. Asymptotic behaviours: Mmod(z) ∼ I +O(z−1), |z| → ∞;
3. Jump condition: Mmod(z) satisfies the jump relation

Mmod
+ (z) = Mmod

− (z)Vmod(z), z ∈�mod,

where the jump matrix Vmod(z) is given by

Vmod(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 −ie−itB2+w−

−ieitB2−w− 0

)
, as z ∈ [−c, −z0],(

0 −ie−itB1

−ieitB1 0

)
, as z ∈�−,

(
0 −iew+

−ie−w+ 0

)
, as z ∈ [z0, c].

(5.12)

4. Singularity: Mmod(z) has at most fourth root singularities at z = ±c, ±1, ±z0.

The solution Mmod of the model RH problem can be specifically characterised by � function on the
Riemann surface with genus-2. We define

N1(z) = 1

2

(
κ(z) + κ(z)−1

)
, N2(z) = 1

2

(
κ(z)−1 − κ(z)

)
,

where κ(z) is analytic function for z ∈C \�mod,

κ(z) =
[

(z − c)(z − 1)(z + z0)

(z − z0)(z + 1)(z + c)

] 1
4

,

and its branch is fixed by requiring that κ(z) = 1 +O(z−2), z → ∞. Let ωi, i = 1, 2 be the standard
holomorphic differentials on the genus 2 Riemann surfaceM such that

∫
ai
ωj = δij, i, j = 1, 2. And denote
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its b-period matrix B̃ = [B̃ij]i,j=1,2 ∈ GL2(C), with B̃ij =
∮

bj
ωi, i, j = 1, 2. Define the Abel map

A : M→C
2/B̃M + N, M, N ∈Z

2,

P �→
(∫ P

1

ω1,
∫ P

1

ω2

)T

.

The theta function � associated to B̃ is defined by

�(�u) =
∑
�l∈Zg

exp (π i< B̃�l,�l>+2π i<�l, �u> )

with

�(�u ± ej) =�(�u), �(�u ± B̃ej) = exp ( ∓ 2π iuj − π iB̃jj)�(�u).

Let C = ( − tB1−w+
2π

, − tB2+i(w−−w+)
2π

)T ∈C
2 be a column vector. According to [23], there exists a constant

K ∈C
2 such that �(A(P) −K), �(A(P) +K) have the same zeros as N1(z) and N2(z), respectively.

Define

Mmod(z) = e
w+

2 σ̂3

⎛
⎝Nmod

11 (∞)−1N1Nmod
11 (z) Nmod

11 (∞)−1N2Nmod
12 (z)

Nmod
22 (∞)−1N2Nmod

21 (z) Nmod
22 (∞)−1N1Nmod

22 (z)

⎞
⎠ , (5.13)

which is the solution of RH problem 7, where

Nmod(z) =
⎛
⎝ �(A(z)−K+C)

�(A(z)−K)
�(−A(z)−K+C)
�(−A(z)−K)

�(A(z)+K+C)
�(A(z)+K)

�(−A(z)+K+C)
�(−A(z)+K)

⎞
⎠ , Nmod(∞) = lim

z→∞
Nmod(z).

As z → 0 ∈C
+, it follows that

Mmod(z) = Mmod
+ (0) + Mmod

1 z +O(z2),

where

Mmod
+ (0) =

√
2

2
e

w+
2 σ̂3

⎛
⎝ Nmod

11 (∞)−1Nmod
11,+(0) −iNmod

11 (∞)−1Nmod
12,+(0)

−iNmod
22 (∞)−1Nmod

21,+(0) Nmod
22 (∞)−1Nmod

22,+(0)

⎞
⎠ ,

Mmod
1 =

√
2

2

⎛
⎝Nmod

11 (∞)−1 0

0 Nmod
22 (∞)−1

⎞
⎠

e
w+

2 σ̂3

⎡
⎣
⎛
⎝ ∂zNmod

11,+(0) −i∂zNmod
12,+(0)

−i∂zNmod
21,+(0) ∂zNmod

22,+(0)

⎞
⎠+
(

1 − 1

z0

+ 1

c

)⎛⎝−iNmod
11,+(0) Nmod

12,+(0)

Nmod
21,+(0) −iNmod

22,+(0)

⎞
⎠
⎤
⎦ .

5.2.2. Localised RH problem near stationary points
Using local approximations, appropriate error estimates as well as higher-order asymptotics beyond the
O(1) term can be derived. In this subsection, we only give the details of the model around z0. We consider
Mlo,+(z) here as an example. First, we denote P(z0) as the neighbourhood of z0 in the Riemann surface M
corresponding to dg. It is an analytic homeomorphism. It follows form the definition of dg in (5.1)–(5.3)
that there exist a holomorphic function f+ (we hope the subscript ± indicates ±z0) on P(z0) such that

g = −2i

3
f 3
+.
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Here, on the complex plane, because g+(z) ⊂ iR− when z ∈ (z0, c), we can choose f+ ∈R
+ on (z0, c)∩

U+z0 . Let

λ+ = t
2
3 f 2

+. (5.14)

Because of g+(z) = −g−(z), λ+ := λ+(z) is a holomorphic homeomorphism from U+z0 to a neighbour-
hood of zero and

4

3
λ

3
2+ = 2itg+, z ∈ (z0, c)∩ U+z0 ,

where the branch cut of ( · )
3
2 is chosen same as in the Airy model in the Appendix A.

From the definition of λ+, it follows that

4

3
λ

3
2+ = 2itg, Imz> 0,

4

3
λ

3
2+ = −2itg, Imz< 0.

Then we explicitly define Mlo,+(z) which should have the same jump condition with M(2)(z) locally in
U+z0 as follow via the Airy parametrix. Similar to [6, 25, 29], it is shown that

Mlo,+(z) =
√

2

2
MmodH(z; z0)

−1 (I − iσ1) λ
σ3
4+ mAi(λ+)H(z; z0), (5.15)

where

H(z; z0) =
⎧⎨
⎩ δ

σ3 r
σ3
2

1 , z − z0 ∈C
+ ∩ U+z0 ,

σ3σ1δ
σ3 r

− σ3
2

2 , z − z0 ∈C
− ∩ U+z0 .

Moreover, for convenience, denote

F+(z) := F+(z; ξ , c) =
√

2

2
Mmod(z; ξ , c)H(z; ± z0)

−1 (I − iσ1) f
1
2 σ3

+ , (5.16)

which thereby is an analytic and invertible function in U+z0 . Similarly,

Mlo,−(z) =
√

2

2
MmodH(z; − z0)

−1 (I − iσ1) λ
σ3
4− mAi(λ−)H(z; − z0). (5.17)

with

H(z; − z0) =
⎧⎨
⎩ e

itB2
2 σ3σ3δ

σ3 r
σ3
2

1 , z − z0 ∈C
+ ∩ U−z0 ,

e
itB2

2 σ3σ1δ
σ3 r

− σ3
2

2 , z − z0 ∈C
− ∩ U−z0 ,

g = −2i

3
f 3
− + B2

2
, λ− = t

2
3 f 2

−,

where f− ∈R+ on z ∈ ( − c, −z0) ∩ U−z0 and

F− := MmodH(z; − z0)
−1 (I − iσ1) λ

σ3
4− (5.18)

is an analytic and invertible function in U−z0 . Moreover, as z → z0 in C \ [z0, c], λ+ has expansion

λ+ = (Ã+)
2
3 (z − z0) + 2B̃+

3Ã
1
3+

(z − z0)
2 +O((z − z0)

3),

λ− = (Ã−)
2
3 (z + z0) + 2B̃−

3Ã
1
3−

(z + z0)
2 +O((z + z0)

3),
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where

Ã+ = t

2

(
2z0

(z2
0 − 1)(c2 − z2

0)

) 1
2
(
ξ − 1

2
z0 + c

z2
0

(1 + 1

c2
) − 3c

z4
0

)
,

B̃+ = 3t

10

[
−1

2
(

2z0

(z2
0 − 1)(c2 − z2

0)
)− 1

2
−7z4

0 + 3(1 + c2)z2
0 + c2

(z2
0 − 1)2(c2 − z2

0)2

(
ξ − 1

2
z0 + c

z2
0

(
1 + 1

c2

)
− 3c

z4
0

)

+
(

2z0

(z2
0 − 1)(c2 − z2

0)

) 1
2
(
ξ − 1

2
− c

z3
0

(
1 + 1

c2
− 1

z2
0

)
+ 6c

z5
0

)]
,

Ã− = − it

2

(
2z0

(z2
0 − 1)(c2 − z2

0)

) 1
2
(

−ξ − 1

2
z0 + c

z2
0

(
1 + 1

c2

)
− 3c

z4
0

)
,

B̃− = 3t

10

[
− i

2

(
2z0

(z2
0 − 1)(c2 − z2

0)

)− 1
2 −7z4

0 + 3(1 + c2)z2
0 + c2

(z2
0 − 1)2(c2 − z2

0)2

(
−ξ − 1

2
z0 + c

z2
0

(
1 + 1

c2

)
− 3c

z4
0

)

−i

(
2z0

(z2
0 − 1)(c2 − z2

0)

) 1
2
(
ξ − 1

2
+ c

z3
0

(
1 + 1

c2
− 1

z2
0

)
− 6c

z5
0

)]
. (5.19)

5.2.3. The small norm RH problem for error function
In this subsection, we consider the error matrix-function E(z) := E(z; ξ , c) in this region.

RH problem 8.

1. Analyticity: E(z) is analytical in C \�E, where

�E = ∂U ∪ [�(2) \ (U ∪ [−c, −z1] ∪�− ∪ [z1, c])
]

with U defined in (5.10);
2. Asymptotic behaviours: E(z) ∼ I +O(z−1), |z| → ∞;
3. Jump condition: E(z) has continuous boundary values E±(z) on �E satisfying E+(z) = E−(z)VE(z),

where the jump matrix VE(z) is given by

VE(z) =
{

Mmod(z)V (2)(z)Mmod(z)−1, z ∈�E \ ∂U,

Mlo,±(z)Mmod(z)−1, z ∈ ∂U±z0 ,
(5.20)

which is shown in Figure 9.

By (5.15), (5.17) and (A.5), the jump matrix of above RH problem satisfies

‖ VE(z) − I ‖2�O(t−1).

Similar to the discussion in Subsection 3.2, the RH problem 8 admits a unique solution given by

E(z) = I + 1

2π i

∫
�E

(I +� (s)) (VE(s) − I)

s − z
ds, (5.21)

where the � ∈ L∞(�E) is the unique solution of (1 − CE)� = CE (I) .
In order to reconstruct the solution u(y, t) of (1.1), we need the asymptotic behaviour of E(z) as

z → 0 ∈C
+ and the long-time asymptotic behaviour of E(0).

Proposition 8. As z → 0 ∈C
+, we have

E(z) = E(0) + E1z +O(z2),
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Figure 9. The jump contour �E for the E(z). The red circles are ∂U.

with long-time asymptotic behaviour

E(0) = I + t−1H(0) +O(t−2). (5.22)

And

H(0) := H(0)(ξ , c) =
∑

p=±z0

∂z

⎛
⎝1

z
F±

⎛
⎝ 0 − 5i

48
Ã

− 4
3±

0 0

⎞
⎠ (F±)−1

⎞
⎠ (p)

+
∑

p=±z0

1

p

⎛
⎝F±

⎛
⎝ 0 5

36
B̃±Ã

− 7
3±

− 7i
48

Ã
− 2

3± 0

⎞
⎠ (F±)−1

⎞
⎠ (p).

Here, B̃±, Ã± are given in (5.19). And

E1 := E1(ξ , c) = 1

2π i

∫
�E

(I +� (s)) (VE − I)

s2
ds,

satisfies long-time asymptotic behaviour condition

E1 = t−1H(1) +O(t−2), (5.23)

where

H(1) := H(1)(ξ , c) =
∑

p=±z0

∂z

⎛
⎝ 1

z2
F±

⎛
⎝0 − 5i

48
Ã

− 4
3±

0 0

⎞
⎠ (F±)−1

⎞
⎠ (p)

+
∑

p=±z0

1

p2

⎛
⎝F±

⎛
⎝ 0 5

36
B̃±Ã

− 7
3±

− 7i
48

Ã
− 2

3± 0

⎞
⎠ (F±)−1

⎞
⎠ (p).

Proof. By using expansion of VE and � (s) =O(t−1), we have∫
�E

(I +� (s)) (VE − I)

s
ds = 1

t

∫
∂U±z0

MmodH(s; ± z0)−1mAi
1 H(s; ± z0)(Mmod)−1

sf 3
±

ds +O(t−2).

From the definition of F± in (5.16) and (5.18), we rewrite

MmodH(s; ± z0)
−1mAi

1 H(s; ± z0)(Mmod)−1

= 1

2
F±f

− σ3
2± (I + iσ1)mAi

1 (I − iσ1) f
σ3
2± (F±)−1.

Here, from (5.19) and mAi
1 in Appendix A, as z → z0 ∈C

+, we have
1

2
f −3
± f

− σ3
2± (I + iσ1)mAi

1 (I − iσ1) f
σ3
2± =

1

(z ∓ z0)2

⎛
⎝0 − 5i

48
Ã

− 4
3±

0 0

⎞
⎠+ 1

(z ∓ z0)

⎛
⎝ 0 5

36
B̃±Ã

− 7
3±

− 7i
48

Ã
− 2

3± 0

⎞
⎠+O(1).

Then by residue theorem, we finally arrive at the result.
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Figure 10. The domains j and curves �j, j = 1, 2. The yellow region means Im[g](z)< 0 while white
region means Im[g](z)> 0.

5.3. Opening the jump in the region 3/4 < ξ < 1

This region includes two cases:

(1)
{

(ξ , c) : 2< c2 < 4, 1 − 2(c2−2)
c4 < ξ < 1

}
;

(2)
{
(ξ , c) : c2 > 4, ξm < ξ < 1

}
.

In both cases we introduce the same g function by

dg = Y(z)

z3

[
1 − ξ

2
z4 − c

z0

(
1 + 1

c2
− 1

z2
0

)
z2 + 2c

z0

]
dz

which will have another zero on R except on cut. It means that g has three pairs of stationary points on
R, which will gives additional contribution as t → ∞. The stationary points of g are ±z0 and the zeros
of the equation

1 − ξ

2
z4 − c

z0

(
1 + 1

c2
− 1

z2
0

)
z2 + 2c

z0

= 0.

It has two pairs of zeros on R: ±z1 ∈ (z0, c), ±z2. Note that, z2
1z

2
2 = 4c

z0(1−ξ )
. For a given c, when ξ decreases

from 1, z2 as a function of ξ decreases from +∞. We denote ξm as the critical condition of ξ that
stationary point z2 merge c. Under this case, the sign table of Img is shown in Figure 10.

Similar to the above section, we define the contour �j and closed region j relying on (ξ , c) as in
Figure 10. Here the angle of �j is a small enough positive constant such that �j, j = 1, 2 are contained
in the region of Img> 0.

In this region of (ξ , c), we introduce a piecewise matrix interpolation function

G(z) := G(z; ξ , c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 −r2e−2itg

0 1

)
, as z ∈1;

(
1 0

−r1e2itg 1

)
, as z ∈∗

1;(
1 0

r1e2itg

1−r1r2
1

)
, as z ∈2;

(
1 r2e−2itg

1−r1r2

0 1

)
, as z ∈∗

2;

I as z in elsewhere,

. (5.24)

Same as above section, G(z) brings a new singularity. To deal with the jump on R, we introduce an
auxiliary function δ(z) := δ(z; ξ , c). Define Y3(z) = (z2 − 1)(z2 − c2)Y(z), and

log δ(z) =Y3(z)

2π i

∑
±

∓
∫ ±z0

±c

log(ir2,−(s)) − w±
(s − z)Y3,+(s)

ds + Y3(z)

2π i

(∫ −c

−z2

+
∫ z2

c

)
log(1 − r1(s)r2(s))

(s − z)Y3(s)
ds,
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where⎛
⎜⎝
∫ −z0

−c

ds

Y3,+(s)

∫ c

z0

ds

Y3,+(s)∫ −z0

−c

sds

Y3,+(s)

∫ c

z0

sds

Y3,+(s)

⎞
⎟⎠
(

w−
w+

)
=
⎛
⎜⎝
∫
�+\[−z0,z0]

log(ir2,−(s))

Y3,+(s)
ds + ∫

[−z2,z2]\�+
log(1 − r1(s)r2(s))

Y3(s)
ds

∫
�+\[−z0,z0]

s log(ir2,−(s))

Y3,+(s)
ds + ∫

[−z2,z2]\�+
s log(1 − r1(s)r2(s))

Y3(s)
ds

⎞
⎟⎠ .

δ(z) admits the following jump condition

δ+(z) = δ−(z)(1 − r1r2), z ∈ [−z2, z2] \�+;

δ−(z)δ+(z) = ir2,−(z)e−w± , z ∈ ∓[ ± c, ±z0];

δ−(z)δ+(z) = 1, z ∈�−.

and the following proposition

Proposition 9. The scalar function δ(z) satisfies the following properties

(a) δ(z) is analytic on C \ ((−z2, −z0) ∪�− ∪ (z0, z2));
(b) δ(z) has singularity at z = ±c with

δ(z) =O(z − p)∓1/4, z ∈C
± \R→ p, p = c, −c. (5.25)

(c) As z → ∞ ∈C \R, δ(z) ∼ δ∞ with

log δ∞ = − 1

2π i

∫
�+\[−z0,z0]

s2 log(ir2,−(s))

Y3,+(s)
ds − 1

2π i

∫
[−z2,z2]\�+

s2 log(1 − r1(s)r2(s))

Y3(s)
ds.

(d) As z → 0 ∈C
+,

δ(z) =δ+(0)
(
1 + δ(1)z

)+O(z2), (5.26)

where

δ(1) = cz0

2π

(∫ −z0

−c

+
∫ c

z0

)
log(ir2,−(s))

s2Y3,+(s)
ds + cz0

2π

(∫ −c

−z2

+
∫ z2

c

)
log(1 − r1(s)r2(s))

s2Y3(s)
ds;

(e) For z2, there exists an analytic function δ+z2 (z) on z ∈ U+z2 \ (c, z2) which is continuous to the
boundary such that for ν(z2) = 1

2π
log(1 − r1(z2)r2(z2)),

δ(z) = δ±z2 (z)(z − z2)
−iν(z2), arg(z − z2) ∈ ( − π , π ), (5.27)

and ∣∣δ+z2 (z) − δ+z2 (z2)
∣∣� |z − z2| .

Through δ(z) and G(z), in this region of (ξ , c), same as above subsection, we give series of transforma-
tions:

N
(5.7)−→ M(1) (5.9)−→ M(2) = δ−σ3

∞ eitg(∞)σ3 Neit(p−−g)σ3δσ3 ,

which then satisfies the following RH problem.

RH problem 9.

1. Analyticity: M(2)(z) is meromorphic in C \�(2) with

�(2) = ∪2
j=1

(
�j ∪�∗

j

)∪�mod,

where �mod is given in (5.2)
2. Symmetry: M(2)(z) = σ2M(2)(−z)σ−1

2 = σ1M(2)(z̄)σ1;
3. Asymptotic behaviours: M(2)(z) = I +O(z−1), z → ∞;
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4. Jump condition: M(2) has continuous boundary values M(2)
± (z) on �(2) and

M(2)
+ (z) = M(2)

− (z)V (2)(z), z ∈�(2), (5.28)

where

V (2)(z) =
(

1 r2δ
−2e−2itg

0 1

)
, z ∈�1; V (2)(z) =

(
1 0

−r1δ
2e2itg 1

)
, z ∈�∗

1 ;

V (2)(z) =
(

1 0
−r1δ

2e2itg

1−r1r2
1

)
, z ∈�2; V (2)(z) =

(
1 r2δ

−2e−2itg

1−r1r2

0 1

)
, z ∈�∗

2 ;

V (2)(z) =
(

0 −ie−itB2+w−

−ieitB2−w− 0

)
, z ∈ [−c, −z1]; V (2)(z) =

(
0 −iew+

−ie−w+ 0

)
, z ∈ [z1, c];

V (2)(z) =
(

0 −ie−itB1

−ieitB1 0

)
, z ∈�−; V (2)(z) =

(
0 −iew+

−ie−w+ δ−
δ+ e−2itg+

)
, z ∈ [z0, z1];

V (2)(z) =
(

0 −ie−itB2+w−

−ieitB2−w− δ−
δ+ eitB2 e−2itg+

)
, z ∈ [−z1, −z0];

5. Singularity: M(2)(z) has at most fourth root singularities at z = ±c, ±1.

Except the cut away from R, the jump V (2)(z) exponentially approaches the identity matrix as t → ∞.
So we expect to only consider the jump on R. However, different from above section, in this region, g
has another pair of stationary points on R. So in this case, we denote U := U(ξ , c) as the union set of
neighbourhood of ±z0 and ±z2

U = U±z0 ∪ U±z2 , U±zj =
{
z : |z ∓ zj| ≤ �

}
, j = 0, 2. (5.29)

Here, � is a small positive constant such that � <min
{

z0−1
3

, z1−z0
3

, z2−c
3

, ε
}
. Outside U there is only

exponentially small error (in t) by completely ignoring the jump condition of M(2)(z). This proposition
enlightens us to construct the solution M(2)(z) as follow

M(2)(z) =

⎧⎪⎪⎨
⎪⎪⎩

E(z; ξ , c)Mmod(z; ξ , c), z /∈ U,

E(z; ξ , c)M0,±(z; ξ , c), z ∈ U±z0 ,

E(z; ξ , c)Mmod(z; ξ , c)M2,±(z; ξ , c), z ∈ U±z2 ,

where same as Mmod(z; ξ , c) is the model RH problem on the Riemann surface, which solution is given
by theta function in Subsection 5.2.1. The difference is Mj,±(z; ξ , c) are local model of ±zj, j = 0, 2.
When j = 2, its solution can be expressed in terms of parabolic cylinder parametrix. When j = 0, same
as above subsection, its solution can be expressed in terms of Airy parametrix shown in Subsection 5.2.2.
Its contribution will be higher-order term of the local parametrix of M2,±(z; ξ , c)

Similar to discussion of the Proposition 3 in the Section 3, let

ζ 2,+ = 2
√

g′′( ± z2)(z ∓ z2), r+z2 = r2( + z2)δ
2
+z2

( ± z2)e
−2itg(±z2)(4tg′′( ± z2))

2iν(z2).

One can find that M2,+(z) is well approximated by P1(ζ 2,+;r+
z2

) and M2,+(z) = σ2M2,−(−z)σ−1
2 . Therefore,

similar to the Proposition 3, we give the approximation below.

Proposition 10. M2,±(z) admits the following asymptotic expansion

M2,±(z) = I + t−1/2 A±(ξ )

z ∓ z2

+O(t−1), t → +∞, (5.30)
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Figure 11. The jump contour �E for the E(z). The red circles are ∂U.

where

A±(ξ , c) = 1

2
√|g′′( ± z2)|

(
0 β̃±

12

β̃±
21 0

)
, (5.31)

β̃−
12 = β̃+

21 =
√

2πe
πν(z2)

2 e
π i
4

r+z2�(iν(z2))
, β̃±

21β̃
±
12 = −ν(z2),

where δ+z2 and ν(z2) are defined in (5.27).

5.3.1. The small norm RH problem for error function
In this subsection, we consider the error matrix-function E(z) := E(z; ξ , c) in this region.

RH problem 10.

1. Analyticity: E(z) is analytical in C \�E, where

�E = ∂U ∪ [�(2) \ (U ∪ [−c, −z1] ∪�− ∪ [z1, c])
]

;

2. Asymptotic behaviours: E(z) ∼ I +O(z−1), |z| → ∞;
3. Jump condition: E(z) has continuous limit E±(z) on �E satisfying E+(z) = E−(z)VE(z), where the

jump matrix VE(z) is given by

VE(z) =

⎧⎪⎨
⎪⎩

Mmod(z)V (2)(z)Mmod(z)−1, z ∈�E \ ∂U,

Mlo,±(z)Mmod(z)−1, z ∈ ∂U±z0 ,

Mmod(z)M2,±(z)Mmod(z)−1, z ∈ ∂U±z2 ,

(5.32)

which is shown in Figure 11.

Similar to the discussion in Section 3.2, the RH problem 10 satisfies

|VE(z) − I| =O(t−1/2). (5.33)

and admits a unique solution, which can be given by

E(z) = I + 1

2π i

∫
�E

(I +� (s)) (VE(s) − I)

s − z
ds, (5.34)

where the � ∈ L∞(�E) is the unique solution of the equation (1 − CE)� = CE (I) .
In order to reconstruct the solution u(y, t) of (1.1), we need the asymptotic behaviour of E(z) as

z → 0 ∈C
+ and the long-time asymptotic behaviour of E(0), which is obtained from Proposition 4.

Proposition 11. As z → 0 ∈C
+, we have

E(z) = E(0) + E1z +O(z2), (5.35)

with long-time asymptotic behaviour

E(0) = I + t−1/2H(0) +O(t−2). (5.36)
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Figure 12. The canonical homology basis {aj, bj}2
j=1 of the genius 2 Riemann surface.

And

H(0) := H(0)(ξ , c) =
∑

p=±z2

Mmod(p)A±(ξ )Mmod(p)−1

p
. (5.37)

Here, B̃±, Ã± are shown in (5.19). And

E1 = 1

2π i

∫
�E

(I +� (s)) (VE − I)

s2
ds, (5.38)

satisfies long-time asymptotic behaviour condition

E1 = t−1/2H(1) +O(t−1), (5.39)

where

H(1) := H(1)(ξ , c) =
∑

p=±z2

Mmod(p)A±(ξ )Mmod(p)−1

p2
. (5.40)

6. Region IV: the second-type genus-2 elliptic wave region

The Region IV is corresponding to the case 3
4
< ξ < ξm, c> 2. Here, as denoted in the above section, ξm

is the critical condition that stationary point z2 merge c. Similarly, we need to construct new g-functions
defined on genus 2 Riemann surface which has real branch points ±1, ±z1 and ±z2 with z1 < z2. And
the canonical homology basis

{
aj, bj

}2
j=1

is shown in Figure 12.

6.1. Constructing the g-function

To construct the g-function, we introduce

Z(z) =
[

(z2 − z2
1)(z

2 − z2
2)

(z2 − 1)

]1/2

, (6.1)

whose branch cut is

�mod := �mod(ξ , c) = [−z2, −z1] ∪�− ∪ [z1, z2], (6.2)

and the branch of the square root is chosen such that Z+(z) ∈ iR+ for z ∈ [z1, z2]. And z1, z2 admit:
1 − ξ

2
= 1

z1z2

(
1 − 1

z2
1

− 1

z2
2

)
. (6.3)

Denote

dg = Z(z)

z3

[
1 − ξ

2
z2 − 2

z1z2

]
dz. (6.4)

dg is a meromorphic differential defined on the 2-genus Riemann surface, with dg on the upper sheet
and −dg on the lower sheet. Similarly, the g-function is given by

g(z) =
∫ z

z2

dg, z ∈C \�mod. (6.5)
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Figure 13. The region of 1 ∪∗
1 and the contour �1 ∪�∗

1 . The shaded region means Im[g](z)< 0,
while white region means Im[g](z)> 0.

Proposition 12. There exist a pair of real numbers z1 := z1(ξ , c), z2 := z2(ξ , c) in (1, c) such that the
function g(z) defined above has the following properties

(a) The a-period of g(z) is zero and the b-period of g(z) is in R;
(b) The sign of Im[g] has the same property in Figure 13;
(c) g(z) satisfies the following jump conditions across [−z2, z2]:

g−(z) + g+(z) = 0, z ∈ (z1, z2),

g−(z) − g+(z) = 0, z ∈ (1, z1) ∪ (−z1, −1),

g−(z) + g+(z) = B1, z ∈ ( − 1, 1),

g−(z) + g+(z) = B2, z ∈ (−z2, −z1),

here, Bj = Bj(ξ ) = ∮
bj

dg is real;

(d) g(z) has another stationary point z0 = z0(ξ ) ∈ (z1, z2), which is the solution of equation ξ−1
2

z2 −
2

z1z2
= 0.

(e) As ξ → ξm, we have z2 → c, while as ξ → 3
4
, z1, z2 → 2.

Proof. Denote η= − 2
z1z2

. Thus, (6.3) gives

z2
1 + z2

2 = 4

η2

(
1 + 1 − ξ

η

)
.

Then the a2-period of g equals to zero if and only if F(η, ξ ) = 0 with

F(η, ξ ) =
∫ z2

z1

Z(z)

z3

[
1 − ξ

2
z2 − 2

z1z2

]
dz.

When ξ = 3
4
, F(η, ξ ) = 0 has solution ( − 1

2
, 3

4
), and on the other end ξ = ξm, F(η, ξ ) = 0 has solution

as shown in Proposition 6: ( − 2
cz0(ξm)

, ξm). And

∂ηF(η, ξ ) =
∫ z2

z1

z√
(z2 − 1)(z2 − z2

1)(z2 − z2
2)

[
1 + (1 − ξ )

(
2

η3
+ 2

η4
(1 − ξ )

)]
dz.

Consider the function f (x) = x4 + 2(1 − ξ )x + 3(1 − ξ )2. It is noticed that (6.3) implies −η > 1 − ξ , so
simple calculation gives that f (η)> f (ξ − 1)> 0. So ∂ηF �= 0, which gives the existence of solution η.

6.2. Opening the jump contour

Similar to the above section, we define the following contour�1 and closed region1 relying on (ξ , c) as
in Figure 13 to open the jump onR. In this region of (ξ , c), we introduce a piecewise matrix interpolation
function
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G(z) := G(z; ξ , c) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1 −r2e−2itg

0 1

)
, as z ∈1;

(
1 0

−r1e2itg 1

)
, as z ∈∗

1;

I as z in elsewhere,

(6.6)

Same as above sections, G(z) brings a new singularity. To deal with the jump on R, we give a
introduction of an auxiliary function δ(z) := δ(z; ξ , c). Define

Z3(z) =(z2 − 1)Z(z), log δ(z) = Z3(z)

2π i

∑
±

∓
∫ ±z0

±z2

log(ir2,−(s)) − w±
(s − z)Z3,+(s)

ds. (6.7)

where w± satisfy linear system as⎛
⎜⎝
∫ −z0

−z2

ds

Z3,+(s)

∫ z2

z0

ds

Z3,+(s)∫ −z0

−z2

sds

Z3,+(s)

∫ z2

z0

sds

Z3,+(s)

⎞
⎟⎠
(

w−
w+

)
=
⎛
⎜⎝
∫

[−z2,z2]\[−z0,z0]

log(ir2,−(s))

Z3,+(s)
ds

∫
[−z2,z2]\[−z0,z0]

s log(ir2,−(s))

Z3,+(s)
ds

⎞
⎟⎠ .

δ(z) admits the following jump condition

δ−(z)δ+(z) = ir2,−e−w− , z ∈ [−z2, z2] \ [−z1, z1];

δ−(z)δ+(z) = 1, z ∈�−,

and the following proposition

Proposition 13. The scalar function δ(z) satisfies the following properties

(a) δ(z) is analytic on C \�mod;
(b) δ(z) has singularity at z = c, −c with:

δ(z) =O((z − p)∓1/4
)
, z ∈C

± \R→ p, p = c, −c; (6.8)

(c) As z → ∞ ∈C \R, δ(z) ∼ δ∞(z) with δ∞ defined by

log δ∞ = − 1

2π i

(∫ −z1

−z2

+
∫ z2

z1

)
s2 log(ir2,−(s))

Z3,+(s)
ds;

(d) As z → 0 ∈C
+,

δ(z) = δ+(0)
(
1 + δ(1)z

)+O(z2),

where

δ(1) = cz1

2π

(∫ −z1

−z2

+
∫ z1

z2

)
log(ir2,−(s))

s2Z3,+(s)
ds.

Through δ(z) and G(z), in this region of (ξ , c), same as above subsection, we give the same
transformation in this case:

N(z)
(5.7)−→ M(1)(z)

(5.9)−→ M(2)(z) =
{

E(z; ξ , c)Mmod(z; ξ , c) z /∈ U

E(z; ξ , c)Mj,pm(z; ξ , c) z ∈ U±zj , j = 1, 2,

where Mmod(z; ξ , c) is the model RH problem on the Riemann surface, which solution is given by theta
function in Subsection 6.3. For j = 1, 2, Mj,pm(z; ξ , c) are local model of ±zj which solution can be
expressed in terms of Airy functions similarly in Subsection 5.2.2. And E(z; ξ , c) is the error function,
which has jump contour in Figure 14, and it is similarly in subsection 5.2.3. We obtain its asymptotic
property directly as follow
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0 z1−z1 1−1 z2−z2

Figure 14. The jump contour �E for the E(z; ξ , c). The red circles are ∂U.

Proposition 14. As z → 0 ∈C
+, we have

E(z; ξ , c) = E(0) + E1z +O(z2), (6.9)

with long-time asymptotic behaviour

E(0) = I + t−1H(0) +O(t−2). (6.10)

And

H(0) := H(0)(ξ , c) =
∑

p=±zj ,j=1,2

∂z

(
1

z
F±
(

0 − 5i
48

[Ãj
±]− 4

3

0 0

)
(F±)−1

)
(p)

+
∑

p=±zj ,j=1,2

1

p

(
F±
(

0 5
36

B̃ j
±[Ãj

±]− 7
3

− 7i
48

[Ãj
±]− 2

3 0

)
(F±)−1

)
(p),

where B̃ j
± and Ãj

± are shown in (6.14). Further, E1 admits the following asymptotic expansion

E1 = t−1H(1) +O(t−2), (6.11)

where

H(1) := H(1)(ξ , c) =
∑

p=±zj ,j=1,2

∂z

(
1

z2
F±
(

0 − 5i
48

[Ãj
±]− 4

3

0 0

)
(F±)−1

)
(p)

+
∑

p=±zj ,j=1,2

1

p2

(
F±
(

0 5
36

B̃j
±[Ãj

±]− 7
3

− 7i
48

[Ãj
±]− 2

3 0

)
(F±)−1

)
(p).

Here we denote

F±(z) := MmodH(z; ± z0)
−1N−1f

σ3
2± , (6.12)

3

2
itg(z) = Ã1

+(z − z1)
3/2 + B̃1

+(z − z1)
2 +O((z − z1)

5/2), (6.13)

where the definition of the square root is mappingR+ toR+, and Ã1
−, B̃1

−, Ã2
+, B̃2

+, Ã2
−, B̃2

− are as the similar
definition on −z1, z2, −z2, respectively.

Ã1
+ = t

2

(
2z1(z2

2 − z2
1)

(z2
1 − 1)

) 1
2
(

1 − ξ

z1

− 4

z4
1z2

)
, (6.14)

B̃1
+ = 3t

10

(
2z1(z2

2 − z2
1)

(z2
1 − 1)

) 1
2
[
−1 − ξ

z2
1

+ 12

z5
1z2

+
(

1 − ξ

z1

− 4

z4
1z2

)(
1

4z1

+ z1

z2
1 − z2

2

− 2z1

z2
1 − 1

)]
,

Ã2
+ = it

2

(
2z2(z2

2 − z2
1)

(z2
2 − 1)

) 1
2
(

1 − ξ

z2

− 4

z1z4
2

)
,

B̃2
+ =3it

10

(
2z1(z2

2 − z2
1)

(z2
2 − 1)

) 1
2
[
−1 − ξ

z2
2

+ 12

z1z5
2

+
(

1 − ξ

z2

− 4

z1z4
2

)(
1

4z2

+ z2

z2
2 − z2

1

− 2z2

z2
2 − 1

)]
,

Ã1
− = − iÃ1

+, B̃1
− = iB̃1

+, Ã2
− = iÃ2

+, B̃2
− = −iB̃2

+.
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6.3. Model RH problem on Riemann surface

Similarly to Subsection 5.2.1, we arrive at the following model RH problem

RH problem 11.

1. Analyticity: Mmod(z) is analytical in C \�mod with �mod defined in (6.2).
2. Asymptotic behaviours: Mmod(z) ∼ I +O(z−1), |z| → ∞;
3. Jump condition: Mmod(z) satisfies the jump relation

Mmod
+ (z) = Mmod

− (z)Vmod(z), z ∈�mod,

where the jump matrix Vmod(z) is given by

Vmod(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 −ie−itB2+w−

−ieitB2−w− 0

)
, as z ∈ [−z2, −z1],(

0 −ie−itB1

−ieitB1 0

)
, as z ∈�−,

(
0 −iew+

−ie−w+ 0

)
, as z ∈ [z1, z2];

(6.15)

4. Singularity: Mmod(z) has at most fourth root singularities at z = ±z2, ±1, ±z1.

Mmod can be derived by the � function on the Riemann surface of genus 2. To construct the model
RH problem Mmod, we further let for z ∈C \�mod,

κ(z) =
[

(z − z2)(z − 1)(z + z1)

(z − z1)(z + 1)(z + z2)

] 1
4

, N1(z) = 1

2
(κ + κ−1), N2(z) = 1

2
(κ−1 − κ),

where the branch of the forth root is chosen such that κ(z) = 1 +O(z−1), z → ∞. Let ωi denote the
standard holomorphic differentials on this genus-2 Riemann surface M such that

∫
ai
ωj = δij, i, j = 1, 2.

Denote matrix B̃ ∈ GL2(C), B̃ij =
∮

bj
ωi,i, j = 1, 2. Considering the Abel map

A : M→C
2/B̃M + N, M, N ∈Z

2 (6.16)

P �→
(∫ P

c

ωi

)2

i=1

, (6.17)and the � function

�(�u) =
∑
�l∈Zg

exp (π i< B̃�l,�l>+2π i<�l, �u> ) (6.18)

Let C = ( − tB1−iw+
2π

, − tB2+i(w−−w+)
2π

)T ∈C
2 be a column vector. Then there exists a constant K ∈C

2 such
that �(A(P) − K), �(A(P) + K) have the same zeros as N11 and N12, respectively. Then

Mmod(z) = 1

2
e

w+
2 σ̂3diag

(
�(A(∞) − K)

�(A(∞) − K + C)
,

�(A(∞) − K)

�(A(∞) − K − C)

)⎛⎝N1Nmod
11 N2Nmod

12

N2Nmod
21 N1Nmod

22

⎞
⎠ , (6.19)

is the solution of RH problem 11, where

Nmod(z) =
⎛
⎝ �(A(z)−K+C)

�(A(z)−K)
�(−A(z)−K+C)
�(−A(z)−K)

�(A(z)+K+C)
�(A(z)+K)

�(−A(z)+K+C)
�(−A(z)+K)

⎞
⎠ ,

As z → 0 ∈C
+, it follows that

Mmod(z) = Mmod
+ (0) + Mmod

1 z +O(z2). (6.20)
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7. Long-time asymptotics for the mCH equation

In this section, we give the proof of Theorem 1.1.
For the region I, we have a sequence of transformations for z in a small neighbourhood of 0

N(z)
(3.5)−→ M(1)(z)

(3.9)−→ E(z)Mmod1(z). (7.1)

Together with the definition of G in (3.6), Propositions 2 and 4, it is adduced that as z → 0 in C
+,

N(z) =E(z)Mmod1(z)δ−σ3 G(z)−1 = (I + H(0)t−
1
2 )Mmod1

+ (0) exp ( − I1
δ
σ3)

+ z

2
√

2

(
(I − iσ1) e−I1

δ σ3 + (iI − σ1) e−I1
δ σ3 I2

δ
σ3

)

+ zt−
1
2

2
√

2
H(0)
(
(σ1 − iI) e−I1

δ σ3 − (I − iσ1) e−I1
δ σ3 I2

δ
σ3

)

+ zt−
1
2

2
√

2
H(1) (I − iσ1) e−I1

δ σ3 +O(z2) +O(t−1),

where the I1
δ

and I2
δ
, H(0) and H(1) are given by (3.3), Proposition 4, respectively. Substituting above

estimates into reconstruction formula (2.29) and (2.31) leads to the result in (1.9) and (1.10) with

u(1)(ξ ) = − (1 + iI2
δ
)H(0)

22 − 2i(H(0)
21 + H(0)

12 ) − (1 − iI2
δ
)H(0)

11

− H(1)
21 − H(1)

12 − iH(1)
11 − iH(1)

22 (7.2)
y(1)(ξ ) =H(0)

11 − H(0)
21 i. (7.3)

For the region II, we have done the sequence of transformations for z in a small neighbourhood
of 0

N(z)
(4.8)−→ M(1)(z)

(4.13)−→ E(z)Mmodc(z). (7.4)

To reconstruct u(x, t) by using (2.31), we take z → 0 in C
+ of N. Together with Proposition 5, (4.3),

(4.4), (4.12) and (4.14), we obtain that

N(z) = δ(∞)σ3 E(z)Mmodc(z)δ(z)−σ3 G(z)−1e−it(p(−)−θ (+))σ3

=δ(∞)σ3

(
1√
2

(I − iσ1) − zi

2
√

2c
(I + iσ1)

)
e−I1

δ σ3 (I − I2
δ
σ3z)e−it(p(−)

+ −θ (+)
+ )(0)σ3

+O(t−2) +O(z2)

Substituting above estimates into (2.29) and (2.31) leads to the result in (1.11) and (1.12).
For the regions III and IV, their solving processes are similar. Therefore, we take ξ > 1 part of region

III as an example to give the proof. For z in a small neighbourhood of 0, we have done a sequence of
transformations of RH problem

N(z)
(5.7)−→ M(1)(z)

(5.9)−→ M(2)(z)
(5.11)−→ E(z)Mmod(z).
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Taking z → 0 in C
+, from the asymptotic expansion of g in (5.5), Proposition 6, 7 and equations (5.6),

(5.13), it follows that

N(z) =e−itg(∞)σ3δ∞(z)σ3 E(z)Mmod(z)δ(z)−σ3 G(z)−1e−it(p(−)−g)σ3

=e−itg(∞)σ3δ∞(0)σ3 Mmod
+ (0)δ+(0)−σ3 e−it(p(−)

+ −g+)(0)σ3

+ t−1e−itg(∞)σ3δ∞(0)σ3 H(0)Mmod
+ (0)δ+(0)−σ3 e−it(p(−)

+ −g+)(0)σ3

+ ze−itg(∞)σ3δ∞(0)σ3
(
δ(1)

∞ σ3Mmod
+ (0)δ+(0)−σ3 + Mmod

1 δ+(0)−σ3

−Mmod
+ (0)δ+(0)−σ3δ(1)σ3

)
e−it(p(−)

+ −g+)(0)σ3

+ zt−1e−itg(∞)σ3δ∞(0)σ3 H(1)Mmod
+ (0)δ+(0)−σ3 e−it(p(−)

+ −g+)(0)σ3 +O(t−2) +O(z2).

Substituting above equation into (2.29) and (2.31) leads to

u(x, t) =u(y(x, t), t) = u(3)(y, t; ξ ) + t−1E(ξ ) +O(t−2),

where

u(3)(y, t; ξ ) = −e−2itg(∞)δ∞(0)2Mmod
12,+(0)
[(
δ(1)

∞ − δ(1)
)

Mmod
11,+(0) + Mmod

1,11

]
− e2itg(∞)δ∞(0)−2Mmod

12,+(0)−1
[(
δ(1) − δ(1)

∞
)

Mmod
22,+(0) + Mmod

1,22

]
, (7.5)

and

E(ξ ) = −e−2itg(∞)δ∞(0)2Mmod
12,+(0)
[
H(1)

11 Mmod
11,+(0) + H(1)

12 Mmod
21,+(0)
]

−e−2itg(∞)δ∞(0)2
(
H(0)

11 Mmod
12,+(0) + H(0)

12 Mmod
22,+(0)
)

× [(δ(1)
∞ − δ(1)

)
Mmod

11,+(0) + Mmod
1,11

]
−e2itg(∞)δ∞(0)−2

H(1)
21 Mmod

12,+(0) + H(1)
22 Mmod

22,+(0)

Mmod
12,+(0)

+e2itg(∞)δ∞(0)−2
H(0)

11 Mmod
12,+(0) + H(0)

12 Mmod
22,+(0)

Mmod
12,+(0)2

× [(δ(1) − δ(1)
∞
)

Mmod
22,+(0) + Mmod

1,22

]
. (7.6)

Moreover, it is accomplished that

x(y, t) =y − 2 ln
(
−ie−itg(∞)+it(p(−)−g)(0)δ∞(0)δ+(0)Mmod

12,+(0)
)

+ 2i
H(0)

11 Mmod
12,+(0) + H(0)

12 Mmod
22,+(0)

Mmod
12,+(0)

t−1 +O(t−2), (7.7)

where H(0) and H(1) is in Proposition 8 and 11 corresponding to different case of ξ > 1 and ξ < 1 parts
of region III. Finally, by summarising the above results, we present our main Theorem 1.1 in this paper.
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Appendix A. The RH model for Airy function

In this appendix, we recall the standard model RH problem of Airy function [6], which has been used
in our paper. Let � = �1 ∪ �2 ∪ �3 ∪ �4 ⊂C be the rays

�1 := {ze
2iπ
3 : z ∈R

+}, �2 := {z : z ∈R
−}, �3 := {ze

4iπ
3 : z ∈R

+}, �4 := {z : z ∈R
+}.

The corresponding open sectors are given as follows

S1 = {z : arg z ∈ (0, 2π/3)}, S2 = {z : arg z ∈ (2π/3, π )}, (A.1)

S3R = {z : arg z ∈ (π , 4π/3)}, S4 = {z : arg z ∈ (4π/3, 2π )}. (A.2)

Let χ = e
2iπ
3 and the function mAi(z) for z ∈C \ � by

mAi(z) =A(z) ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

e
2
3 z

3
2 σ3 , z ∈ S1 ∪ S4,(
1 0

−1 1

)
e

2
3 z

3
2 σ3 , z ∈ S2,(

1 0

1 1

)
e

2
3 z

3
2 σ3 , z ∈ S3,

(A.3)

where

A(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Ai(z) Ai(χ 2z)

Ai′(z) χ 2Ai′(χ 2z)

)
e− π

6 σ3 , Imz> 0,(
Ai(z) −χ 2Ai(χz)

Ai′(z) −Ai′(χz)

)
e− π

6 σ3 , Imz< 0,

(A.4)

and Ai(z) is Airy function. In addition, mAi : C \ �→C
2×2 is a matrix valued analytic function and

satisfies the jump condition

mAi
+ (z) = mAi

− (z)vAi(z),
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Figure 15. Orient of �k, k = 1, 2, 3, 4.
where

vAi(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0

−e
4
3 z

3
2 1

)
, z ∈ �1 ∪ �3,(

0 −1

1 0

)
, z ∈ �2,(

1 −e
4
3 z

3
2

0 1

)
, z ∈ �4.

The asymptotic behaviour of mAi(z) as z → ∞ is√
2

2
(I − iσ1) z

σ3
4 mAi(z) = I +

∞∑
j=1

mAi
j

z
3j
2

, (A.5)

where

mAi
j = e

iπ
4

2
(I − iσ1)

(
1 0

0 −i

)
(
3

2
)j

(
(−1) juj uj

−(−1) jvj vj

)
e− iπ

4 σ3 , (A.6)

uj = (2j + 1)(2j + 3) . . . (6j − 1)

(216) jj! , vj = 6j + 1

1 − 6j
uj.

Appendix B. The RH model for parabolic cylinder function

RH problem 12. For any non-zero complex constant |r0|< 1, ν(r0) = 1
2π

log
(
1 − |r0|2

)
, small positive

angle 0<κ < π

4
, find a holomorphic function P1(ζ ; r0) on ζ ∈C \ ∪4

k=1�k, �1 = eiκ
R

+, �2 = e−iκ
R

−,
�3 = eiκ

R
−, �4 = e−iκ

R
+ oriented as Figure 15, satisfying the following conditions:

(i) P1(ζ ; r0) = I +O( 1
ζ
), ζ → ∞.

(ii) On ζ ∈�k, P1,+(ζ ; r0) = P1,−(ζ ; r0)V
pc
1 (ζ ; r0), where

Vpc
1 (ζ ; r0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 r0ζ

2iν(r0)e
i
2 ζ

2

0 1

)
, ζ ∈�1,(

1 0

− r̄0
1−|r0|2 ζ

−2iν(r0)e− i
2 ζ

2
1

)
, ζ ∈�2,(

1 r0
1−|r0|2 ζ

2iν(r0)e
i
2 ζ

2

0 1

)
, ζ ∈�3,(

1 0

−r̄0ζ
−2iν(r0)e− i

2 ζ
2

1

)
, ζ ∈�4,

(B.1)

where the branch of the logarithmic function is chosen such that arg ζ ∈ ( − π , π ).
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For any complex constant a, Da(ζ ) denotes the parabolic cylinder function which satisfies the Weber’s
equation

Da,ζ ζ +
(

−ζ
2

4
+ a + 1

2

)
Da = 0, (B.2)

with large ζ behaviour

Da(ζ ) ∼

⎧⎪⎪⎨
⎪⎪⎩
ζ ae− ζ2

4 , − 3π
4
< arg ζ < 3π

4
,

ζ ae− ζ2

4 − √
2π

�(−a)
eiaπζ−a−1e

ζ2

4 , π

4
< arg ζ < 5π

4
,

ζ ae− ζ2

4 − √
2π

�(−a)
e−iaπζ−a−1e

ζ2

4 , − 5π
4
< arg ζ <− π

4
.

(B.3)

The unique solution of RH problem 12 is given by

P1(ζ ; r0) =�1(ζ ; r0)S1(ζ ; r0)ζ
−iν(r0)σ3 e− iζ2

4 σ3 , (B.4)

where

�1 =
(

e
−πν

4 Diν(ζe− iπ
4 ) − iν

β21
e

3π(ν−i)
4 D−iν−1(ζe− 3iπ

4 )
iν
β12

e
−π(ν+i)

4 Diν−1(ζe− iπ
4 ) e

3πν
4 D−iν(ζe− 3iπ

4 )

)
, Imζ > 0,

�1 =
(

e
3πν

4 Diν(ζe
3iπ
4 ) − iν

β21
e
π(−ν+i)

4 D−iν−1(ζe
iπ
4 )

iν
β12

e
3π(ν+i)

4 Diν−1(ζe
3iπ
4 ) e

πν
4 Diν(ζe

iπ
4 )

)
, Imζ < 0,

�1 ∼ ζ iν(r0)σ3 e
iζ2
4 σ3 , ζ → ∞,

with β21 = √
2πe

πν
2 + iπ

4

r0�(iν)
, β12 = − ν(r0)

β21
and

S1 =
(

1 r0

0 1

)
, 0< arg ζ <κ, S1 =

(
1 0

− r̄0
1−|r0|2 1

)
, π −κ < arg ζ < π ,

S1 =
(

1 r0
1−|r0|2

0 1

)
, π < arg ζ < π +κ, S1 =

(
1 0

−r̄0 1

)
, 2π −κ < arg ζ < 2π ,

S1 = I, arg ζ ∈ (κ, π −κ)∪ (π +κ, 2π −κ) .

Moreover, the solution P1(ζ ; r0) satisfies

P1(ζ ; r0) = I + P(1)
1 (r0)

ζ
+O(

1

ζ 2
), ζ → ∞,

where

P(1)
1 (r0) =

(
0 β12

β21 0

)
.
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