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Abstract

Let n points be chosen independently and uniformly in the unit cube [0, 1]d , and suppose
that each point is supplied with a mark, the marks being independent and identically
distributed random variables independent of the location of the points. To each cube R
contained in [0, 1]d we associate its score Xn(R) defined as the sum of marks of all points
contained in R. The scan statistic is defined as the maximum of Xn(R), taken over all
cubes R contained in [0, 1]d . We show that if the marks are nonlattice random variables
with finite exponential moments, having negative mean and assuming positive values with
nonzero probability, then the appropriately normalized distribution of the scan statistic
converges as n → ∞ to the Gumbel distribution. We also prove a corresponding result
for the scan statistic of a Lévy noise with negative mean. The more elementary cases of
zero and positive mean are also considered.
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1. Introduction

Let {Ui, i = 1, . . . , n} be n points chosen independently and uniformly from the
d-dimensional unit cube [0, 1]d . Suppose that to each pointUi a markXi is attached, the marks
being independent and identically distributed (i.i.d.) real-valued random variables independent
ofU1, . . . , Un. The collection {(Ui,Xi), i = 1, . . . , n} is called the marked empirical process.
A natural problem is how to detect inhomogeneities, e.g. clustering of unusually big marks, in
the marked empirical process. To this end, we may consider the scan statistic, whose definition
we now recall (see [9] and [10]). For a set R ⊂ [0, 1]d , define its score Xn(R) as the sum of
marks of all points contained in R, that is,

Xn(R) =
∑

i∈{1,...,n} : Ui∈R
Xi. (1.1)

Then the scan statistic is defined as supR∈R(1)Xn(R), where R(1) is some collection of subsets
(‘windows’) of [0, 1]d . Since no a priori assumptions about the size of the clusters are made,
it is natural to require R(1) to contain windows of all sizes. In this paper we take R(1) to be
the collection of all cubes contained in [0, 1]d (a cube is a translate of the set [0, x]d for some
x > 0).
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The main question is then how the scan statistic is distributed as n → ∞. To state our main
result, we make the following assumptions about the distribution of the random marks.

(X1) The logarithmic moment generating function of X1, ψ(θ) = log E[exp{θX1}], exists as
long as θ ∈ [0, θ0) for some θ0 ∈ (0,∞] which is supposed to be maximal with this
property.

(X2) The function ψ has a zero θ∗ ∈ (0, θ0).

(X3) The distribution of X1 is nonlattice.

Note that condition (X2) implies that E[X1] = ψ ′(0) < 0. A further corollary is that P[X1 >

0] �= 0. Conversely, if (i) E[X1] < 0, (ii) P[X1 > 0] �= 0, and (iii) condition (X1) is satisfied
for θ0 = ∞, then condition (X2) is fulfilled automatically.

Let R(1) be the collection of all cubes contained in [0, 1]d . Our main result reads as follows.

Theorem 1.1. Let {(Ui,Xi), i = 1, . . . , n} be a marked empirical process satisfying condi-
tions (X1)–(X3) above. Then

lim
n→∞ P

[
sup

R∈R(1)
Xn(R) ≤ 1

θ∗ (log n+ (d − 1) log log n+H ∗ + τ)

]
= exp{−e−τ }

for every τ ∈ R, where H ∗ is a constant to be specified later.

The scan statistic of Theorem 1.1 may be interpreted as a likelihood ratio test statistic in the
following sense. Suppose that we are given a set of points {Ui, i = 1, . . . , n} in [0, 1]d , the
point Ui being marked by a number Yi . Let F0 and F1 be two distribution functions such that
the density p = dF1/dF0 exists. Consider the following hypotheses (here, R ∈ R(1)).

H0: U1, . . . , Un, Y1, . . . , Yn are independent with the following distributions: the Ui are
uniformly distributed in [0, 1]d and Yi ∼ F0.

HR: U1, . . . , Un are independent and uniformly distributed in [0, 1]d , whereas, for each i =
1, . . . , n, the random variable Yi is independent of {U1, . . . , Un} \ {Ui} and

Yi ∼
{
F1 if Ui ∈ R,
F0 if Ui /∈ R.

H1:
⋃
R∈R(1) HR .

It is easy to see that the log-likelihood ratio statistic for testing H0 against HR is given by
Xn(R) defined in (1.1) withXi = logp(Yi). Thus, the scan statistic considered in Theorem 1.1
may be interpreted as a likelihood ratio statistic for testing H0 against H1.

In the one-dimensional case, the distribution of the scan statistic with variable window size
applied to an i.i.d. sequence with negative mean was initially studied in [7] and [12], where
it was shown that an analogue of Theorem 1.1 in dimension 1 with marked empirical process
replaced by an i.i.d. sequence of random variables holds. This result was extended from i.i.d.
to Markov-dependent sequences in [14], a version for Lévy processes was obtained in [8].
The one-dimensional scan statistic with variable window size appears in a variety of settings.
For example, it may be interpreted as the statistic used in the CUSUM stopping procedure in
change-point analysis, as the maximal waiting time among the first n customers in a GI/G/1
queue, as the maximum of a random walk reflected at its minimum, or, in bioinformatics, as
the maximal segmental score when comparing two random sequences.
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The papers cited above use fluctuation theory of random walks and Lévy processes. Fluc-
tuation theory, giving very elegant solutions in dimension d = 1, does not allow an extension
to the case in which d ≥ 2. To prove Theorem 1.1, we use a completely different method
introduced by Pickands [18], [19]; see [2], [16, Chapter 12], and [20] for further development
of the theory, and [3] for the closely related Poisson clumping heuristic. Although Pickands’
method was used originally to study extremes of Gaussian processes, it can be applied in the
non-Gaussian case as well; see, e.g. [2] and [21].

A question closely related to that considered in Theorem 1.1 concerns the distribution of
supR∈R(n)Z(R), where Z is an independently scattered homogeneous Lévy random measure
on R

d with negative mean and R(n) is the collection of all cubes contained in [0, n]d . The
analogue of Theorem 1.1 in this situation, Theorem 2.1, will be stated in Section 2. In fact, it
will be more convenient for us to prove Theorem 2.1 first and then to deduce Theorem 1.1 from
it using a close relation between the empirical process and the Poisson process.

It will be seen in the proof of Theorem 2.1 that the main contribution to the extremes of the
scan statistic is made by cubes of some ‘optimal’ volume vn ≈ c∗ log n for some constant c∗,
as well as by cubes having a volume differing from the optimal volume by a quantity of order√
vn. Thus, the situation we encounter is close to that of [11], where a scan statistic applied to

a fractional Brownian noise with negative mean was considered. Using a change of variables,
the problem in [11] was reduced to studying extremes of a Gaussian field with nonconstant
variance, the points of maximal variance corresponding to the intervals of ‘optimal’ size. In our
case, random fields under consideration are non-Gaussian, which makes many results from the
extreme-value theory of Gaussian processes inapplicable and causes some technical difficulties.

In Theorem 1.1 and Theorem 2.1, below, the distribution of the scan statistic applied to noises
with negative mean is considered. We may ask: what happens if the mean is 0 or positive?
Compared to the negative mean case, these two cases, which will be treated in Section 3, are
much simpler. See Section 4 of [12] for the similar problem in the case of i.i.d. sequences
and [23] for the case of fractional Brownian noise.

It seems that Theorems 1.1 and 2.1 remain true, with a different constant H ∗, if, instead of
cubes, the family {λB + x : λ > 0, x ∈ R

d} is used as a set of scanning windows, where B is
any d-dimensional body with a piecewise-smooth boundary. However, working out the details
is rather difficult and is not done here.

Finally, let us note that although we are considering only the scan statistic with variable
window size, the same method, with considerable simplifications, can be used to obtain Erdös–
Rényi-type laws in distribution for the scan statistic taken over all windows of fixed volume
c log n (c log n/n in the case of the marked empirical process). The corresponding result
in the case of a one-dimensional i.i.d. sequence was proved in [15] and [21]. In the case of a
d-dimensional compound Poisson process, this can be deduced from [6], where large deviations
estimates are proved for the scan statistic taken over a set of windows with fixed shape and size
(the windows need not be cubes). Using such a statistic in applications requires a preknowledge
about the size of the clusters to be discovered.

The organization of the paper is as follows. In Section 2 we state Theorem 2.1, an analogue
of Theorem 1.1 for the scan statistic applied to a Lévy noise. The limiting distribution of the
scan statistic in the case of zero or positive mean is considered in Section 3. The proof of
Theorem 2.1 will be carried out in Section 4. Finally, in Section 5 we deduce Theorem 1.1
from Theorem 2.1.

Scan statistics of multidimensional i.i.d. arrays with negative mean were studied by
Jiang [13]. Our Theorem 1.1 solves an open problem stated at the end of Jiang’s paper.
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2. The scan statistic of a Lévy noise with negative mean

Let {ξ(t), t ≥ 0} be a Lévy process. An independently scattered homogeneous Lévy random
measure on R

d (Lévy noise for short) is a stochastic process {Z(R), R ∈ B(Rd)}, indexed by
the collection B(Rd) of Borel sets in R

d , such that the following conditions are satisfied.

(Z1) Z(R) has the same distribution as ξ(|R|), where |R| is the Lebesgue measure of a Borel
set R.

(Z2) If R1, . . . , Rn are disjoint Borel subsets of R
d then Z(R1), . . . ,Z(Rn) are independent

and Z(
⋃n
i=1 Ri) = ∑n

i=1 Z(Ri).

The Lévy sheet {�(x1, . . . , xd), (x1, . . . , xd) ∈ [0,∞)d} associated to the Lévy noise Z is
defined by

�(x1, . . . , xd) = Z([0, x1] × · · · × [0, xd ]).
By [1] we may always assume that the sample paths of � belong to the Skorokhod space in d
dimensions, as defined in [1] and [5]. Concerning the underlying Lévy process ξ , we suppose
that the following three conditions are satisfied.

(L1) The logarithmic moment generating function of ξ(1), ϕ(θ) = log E[exp{θξ(1)}], exists
as long as θ ∈ [0, θ0) for some θ0 ∈ (0,∞] which is supposed to be maximal with this
property.

(L2) The function ϕ has a zero θ∗ ∈ (0, θ0).

(L3) The distribution of ξ(1) is nonlattice.

Let R(n) be the collection of all cubes contained in [0, n]d .

Theorem 2.1. Let {Z(R), R ∈ B(Rd)} be a Lévy noise on R
d , as defined above, such that

conditions (L1)–(L3) are satisfied. Then

lim
n→∞ P

[
sup

R∈R(n)
Z(R) ≤ 1

θ∗ (d log n+(d−1) log log n+(d−1) log d+H ∗+τ)
]

= exp{−e−τ }

for every τ ∈ R, where H ∗ is a constant to be specified later.

For d = 1, this theorem was proved in [8] by a method which uses fluctuation theory of
Lévy processes and, thus, cannot be extended to higher dimensions.

3. Results in the case of zero and positive mean

In the preceding sections we considered the limiting distribution of the scan statistics of
Lévy noises and marked empirical processes assuming, essentially, that the mean is negative.
The case of negative mean is the most difficult case. Here, we state the corresponding results
in the case of zero and positive mean, restricting ourselves, for simplicity, to Lévy noises.

First we consider the case of zero mean. Let {W(R), R ∈ B([0, 1]d)} be a standard Gaussian
white noise on [0, 1]d ; we suppose that the corresponding Brownian sheet has continuous sample
paths. Recall that R(n) is the collection of all cubes contained in [0, n]d . For a Borel set R,
let |R| be its Lebesgue measure.

Theorem 3.1. Let {Z(R), R ∈ B(Rd)} be a Lévy noise such that

E[Z(R)] = 0, var Z(R) = σ 2|R|, for each Borel set R ⊂ R
d .

https://doi.org/10.1239/aap/1240319575 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319575


Scan statistics of Lévy noises and marked empirical processes SGSA • 17

Then the distribution of σ−1n−d/2 supR∈R(n)Z(R) converges as n → ∞ to the distribution of
supR∈R(1)W(R).

Proof. The Lévy sheet �Z corresponding to the noise Z and the Brownian sheet �W

corresponding to the noise W are respectively defined by

�Z(x1, . . . , xd) = Z([0, x1] × · · · × [0, xd ]),
�W (x1, . . . , xd) = W([0, x1] × · · · × [0, xd ]).

By the invariance principle for multidimensionally indexed random fields (see, e.g. [5]),

σ−1n−d/2�Z(n·) ⇒ �W (·) as n → ∞, (3.1)

where ‘⇒’ denotes the weak convergence in the Skorokhod space D([0, 1]d). We define a
continuous functional F : D([0, 1]d) → R by

F(�) = sup
R∈R(1)

�(R), � ∈ D([0, 1]d),

where �(R) is defined in a straightforward way (so that, e.g. �Z(R) = Z(R) and �W (R) =
W(R)). It follows from (3.1) that the random variable

F(σ−1n−d/2�Z(n·)) = σ−1n−d/2 sup
R∈R(n)

Z(R)

converges in distribution toF(�W (·)) = supR∈R(1)W(R) asn → ∞. This proves the theorem.

Theorem 3.2. Let {Z(R), R ∈ B(Rd)} be a Lévy noise such that, for someµ > 0 and σ 2 > 0,

E[Z(R)] = µ|R|, var Z(R) = σ 2|R|.
Then the distribution of σ−1n−d/2(supR∈R(n)Z(R)− ndµ) converges as n → ∞ to the
standard normal distribution.

Proof. The idea is to show that supR∈R(n)Z(R) behaves essentially like Z([0, n]d) and then
to apply the central limit theorem. We show that, for every a > 0,

P
[

sup
R∈R(n)

Z(R)− Z([0, n]d) ≥ and/2
]

→ 0 as n → ∞. (3.2)

Denoting the left-hand side by Pn and taking ε > 0 small, we have Pn ≤ P ′
n + P ′′

n , where

P ′
n = P

[
sup

R∈R′(n)
Z(R)− Z([0, n]d) ≥ 0

]
,

P ′′
n = P

[
sup

R∈R′′(n)
Z(R)− Z([0, n]d) ≥ and/2

]
,

and R′(n) = {R ∈ R(n) : |R| < (1 − ε)nd} and R′′(n) = {R ∈ R(n) : |R| ≥ (1 − ε)nd}.
Define the centered noise, {Z0(R), R ∈ B(Rd)}, by Z0(R) = Z(R)− µ|R|. Then

P ′
n ≤ P

[
sup

R∈R′(n)
Z0(R)− Z0([0, n]d) ≥ µεnd

]
.
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By the multidimensional invariance principle of [5], applied to Z0, limn→∞ P ′
n = 0. Further-

more,

P ′′
n ≤ P

[
sup

R∈R′′(n)
Z0(R)− Z0([0, n]d) ≥ and/2

]
.

Again, using the multidimensional invariance principle, we see that this converges to

c(ε) = P
[

sup
R∈R(1), |R|≥1−ε

W(R)− W([0, 1]d) ≥ a
]
.

It is easy to see that limε→0 c(ε) = 0. It follows that

lim sup
n→∞

Pn ≤ lim sup
n→∞

P ′
n + lim sup

n→∞
P ′′
n ≤ c(ε).

Letting ε → 0 we obtain limn→∞ Pn = 0, which proves (3.2). Now, the statement of the
theorem follows from the central limit theorem applied to Z([0, n]d) in combination with (3.2).

4. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. In the first two subsections we introduce
some notation and prove technical lemmas which will be used often in the sequel. In what
follows, C > 0 and δ > 0 denote large and small constants, respectively, whose values may
change from line to line.

4.1. Notation and preliminaries

4.1.1. Normalizing constants. Let τ ∈ R be fixed once and for all. For the constants H ∗ and
α∗ to be specified later, define

un = 1

θ∗ (d log n+ (d − 1) log log n+ (d − 1) log d +H ∗ + τ), (4.1)

vn = un

α∗ , ln = v
1/d
n . (4.2)

4.1.2. The space of cubes. A d-dimensional cube (denoted usually by R) is a set of the form
×d
i=1[xi − x/2, xi + x/2], where (x1, . . . , xd) ∈ R

d are the coordinates of the center and x > 0
is the side length. The space of all cubes, denoted by R, will be identified with R

d × (0,∞), a
cube R being identified with the tuple (x1, . . . , xd; x). We denote by |R| = xd the volume of
the cube R.

4.1.3. The underlying Lévy process. Let {ξ(t), t ≥ 0} be a Lévy process satisfying condi-
tions (L1)–(L3) of Section 2. The function ϕ is a real analytic, convex function on (0, θ0).
The zero θ∗ is necessarily unique by convexity of ϕ. It follows from condition (L2) that
E[ξ(1)] < 0. Furthermore, condition (L2) implies that P[ξ(1) > 0] �= 0, and it follows
that ξ(1), being infinitely divisible, can attain arbitrarily large values. Using this, it is not
difficult to show that limθ→θ0 ϕ

′(θ) = ∞. Note also that ϕ′ is monotone increasing and
that ϕ′(0) = E[ξ(1)] < 0. For each α ∈ (E[ξ(1)],∞), let θ(α) be the unique solution of
ϕ′(θ(α)) = α and let σ(α) = √

ϕ′′(θ(α)). Define the Cramér–Chernoff information function
I : [E[ξ(1)],∞) → [0,∞) by

I (α) = sup
θ≥0
(αθ − ϕ(θ)) = αθ(α)− ϕ(θ(α)). (4.3)
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Define
α∗ = ϕ′(θ∗) and σ ∗ = √

ϕ′′(θ∗).
Note that α∗ > 0, θ(α∗) = θ∗, and σ(α∗) = σ ∗.

Lemma 4.1. The function J : (0,∞) → (0,∞) defined by J (α) = I (α)/α has a unique
minimum at α = α∗. Furthermore,

J (α∗) = θ∗, J ′(α∗) = 0, and J ′′(α∗) = 1

α∗σ ∗2 . (4.4)

Proof. Substituting α = α∗ into (4.3) gives I (α∗) = α∗θ∗ − ϕ(θ∗) = α∗θ∗, which proves
that J (α∗) = θ∗. Differentiating (4.3) at α = α∗ we obtain I ′(α∗) = θ(α∗) = θ∗ and
I ′′(α∗) = θ ′(α∗) = 1/ϕ′′(θ(α∗)) = 1/σ ∗2. Substituting this into

J ′(α) = α−2(αI ′(α)− I (α)) and J ′′(α) = α−3(α2I ′′(α)− 2αI ′(α)+ 2I (α)),

we obtain (4.4). In order to show that α = α∗ is the unique minimum of J , note that it follows
from the above equation that J ′(α) = α−2ϕ(θ(α)) and that α = α∗ is the unique solution of
ϕ(θ(α)) = 0, α > 0.

4.1.4. Large deviations. We need the following precise large deviations theorem due to
Petrov [17].

Theorem 4.1. ([17].) Let {ξ(t), t ≥ 0} be a Lévy process satisfying conditions (L1) and (L3)
of Section 2. Let α ∈ (E[ξ(1)],∞). We have, as v → ∞,

P

[
ξ(v)

v
> α

]
∼ 1√

2πθ(α)σ (α)

1√
v

e−vI (α).

Moreover, the above holds uniformly in α as long as α stays bounded away from E[ξ(1)] and
+∞.

The next lemma is a simple consequence of Markov’s inequality and will be used often in
the sequel.

Lemma 4.2. For every u, v > 0,

P[ξ(v) > u] ≤ exp

{
−uJ

(
u

v

)}
.

Proof. By Markov’s inequality we have, for every θ > 0,

P[ξ(v) > u] ≤ e−uθ E[eθξ(v)] = exp{−uθ + vϕ(θ)} = exp

{
−v

(
uθ

v
− ϕ(θ)

)}
.

Since the above is true for every θ > 0, we obtain

P[ξ(v) > u] ≤ exp

{
−vI

(
u

v

)}
= exp

{
−uJ

(
u

v

)}
,

which completes the proof.

Corollary 4.1. For every u, v > 0,

P[ξ(v) > u] ≤ exp{−θ∗u}.
Proof. Use Lemma 4.2 and recall that J (u/v) ≥ θ∗ by Lemma 4.1.
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4.2. Modulus of the continuity estimate

Let {Z(R), R ∈ B(Rd)} be a Lévy noise such that the underlying Lévy process ξ satisfies
conditions (L1)–(L3) of Section 2, and let� be the corresponding Lévy sheet. The next lemma
gives a large deviations estimate for the supremum of � over [0, c]d , c > 0.

Lemma 4.3. For every θ < θ0 and c > 0, there is a C = C(θ, c) such that

P
[

sup
(x1,...,xd )∈[0,c]d

�(x1, . . . , xd) > u
]
< Ce−θu for all u > 0. (4.5)

Proof. For simplicity, we assume that c = 1. For d = 1, the lemma was proved in [22,
Equation (2.1)]. We use induction over d combined with the method of [22]. Suppose that the
statement of the lemma was proved in dimensions 1, . . . , d − 1. Let

τ1 = inf{x1 ≥ 0 : there exists (x2, . . . , xd) ∈ [0, 1]d−1 such that �(x1, . . . , xd) > u}.
The left-hand side of (4.5) is the probability of the eventA = {τ1 ≤ 1}. We haveA = A1 ∪A2,
where

A1 =
{
τ1 ≤ 1 ∩ sup

(x2,...,xd )∈[0,1]d−1
�(1, x2, . . . , xd) > u− 1

}
,

A2 =
{
τ1 ≤ 1 ∩ sup

(x2,...,xd )∈[0,1]d−1
�(1, x2, . . . , xd) ≤ u− 1

}
.

Now, by the induction hypothesis,

P[A1] ≤ P
[

sup
(x2,...,xd )∈[0,1]d−1

�(1, x2, . . . , xd) > u− 1
]

≤ Ce−θu.

We estimate

P[A2] ≤ P
[
A ∩ inf

(x2,...,xd )∈[0,1]d−1
(�(1, x2, . . . , xd)−�(τ1, x2, . . . , xd)) < −1

]
≤ P

[
A ∩ inf

(x1,x2,...,xd )∈[0,1]d
(�(τ1 + x1, x2, . . . , xd)−�(τ1, x2, . . . , xd)) < −1

]
= P[A] P

[
inf

(x1,x2,...,xd )∈[0,1]d
(�(τ1 + x1, x2, . . . , xd)−�(τ1, x2, . . . , xd)) < −1

]
= P[A] P

[
inf

(x1,x2,...,xd )∈[0,1]d
�(x1, x2, . . . , xd) < −1

]
= p P[A] for some p < 1.

We obtain P[A] = P[A1]+P[A2] ≤ Ce−θu+p P[A] for somep < 1, from which the statement
of the lemma follows.

In the sequel, we will often use the following technical lemma which estimates the continuity
modulus of the random field {Z(R), R ∈ R}.
Lemma 4.4. Let c > 0 be a fixed constant. Let x > cd and q < cx1−d . Define a set of cubes
B = [−q/2, q/2]d × [x, x + q]. Let R0 = [−(x − q)/2, (x − q)/2]d be the intersection of
all cubes from B, and define the random variable M by

M = sup
R∈B

Z(R)− Z(R0).
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Then, for every θ < θ0, there is a constant C = C(c, θ) such that, uniformly in x and q,

P[M > t] ≤ Ce−θt for all t > 0.

Proof. We show that E[eθM ] < C(c, θ); the lemma then follows from Markov’s inequality.
For h = (h1, . . . , hd), hi > 0, and ε1, . . . , εd ∈ {−1, 0, 1}, define a rectangle

R(ε1, . . . , εd;h) = I (ε1;h1)× · · · × I (εd;hd),
where

I (εi;hi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
−x − q

2
,
x − q

2

]
if εi = 0,[

x − q

2
,
x − q

2
+ hi

]
if εi = 1,[

−x − q

2
− hi,−x − q

2

]
if εi = −1.

Note that R(0, . . . , 0;h) = R0 (in particular, the left-hand side does not depend on h). Let

M(ε1, . . . , εd) = sup
h∈[0,3q/2]d

Z(R(ε1, . . . , εd;h)).

The random variables M(ε1, . . . , εd) are independent and

M ≤
∑

(ε1,...,εd )∈{−1,0,1}d\(0,...,0)
M(ε1, . . . , εd). (4.6)

Furthermore, if r is the number of +1s and −1s among εi and if r �= 0, then the random variable
M(ε1, . . . , εd) has the same distribution as the supremum of an r-dimensionally indexed Lévy
sheet on [0, 3

2q(x − q)(d−r)/r ]r . Since 3
2q(x − q)(d−r)/r ≤ 3

2qx
d−1 < 3

2c by the assumption
of the lemma, we have, by Lemma 4.3,

E[exp{θM(ε1, . . . , εd)}] < C(c, θ).

To complete the proof of the lemma, use (4.6).

4.3. Cubes of nearly optimal size

4.3.1. Idea of the proof of Theorem 2.1. Now we are ready to start the proof of Theorem 2.1.
We are interested in the high-crossing probability P[supR∈R(n)Z(R) > un]. Intuitively, too
small or too large cubes have asymptotically no chance to contribute to the above probability
(for large cubes, this is due to the assumption that the mean of the Lévy noise is negative). We
will see later that, asymptotically, the probability P[Z(R) > un] achieves its maximum if the
volume of cube R is equal to vn (equivalently, if its side length is equal to ln). Furthermore,
we will see that cubes of volume differing from the optimal volume, vn, by a quantity of order
more than

√
vn have asymptotically no chance to contribute to the extremes of the field Z.

In this subsection we are dealing with cubes of nearly optimal size, that is with cubes whose
volume differs from vn by a quantity of order

√
vn. To be more precise, we fix a very large

A > 0 and define

l−n = (vn − A
√
vn)

1/d , l+n = (vn + A
√
vn)

1/d . (4.7)

The main result of this subsection is Lemma 4.11, below, in which the limit, as n → ∞, of
P[supR∈RA(n)

Z(R) ≤ un] is calculated, where RA(n) is the set of cubes from R(n) whose
side lengths are in the interval [l−n , l+n ].
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4.3.2. Cubes of nearly optimal size. First we evaluate the high crossing probability P[Z(R) >
un] for cubes R having the optimal volume, vn.

Lemma 4.5. We have, as n → ∞,

P[ξ(vn) > un] ∼
√
α∗

√
2πθ∗σ ∗

1√
un

exp{−θ∗un}.

Proof. The proof follows from Theorem 4.1.

Now we consider cubes with volume differing from the optimal volume by a quantity of
order

√
vn. Comparably to cubes of optimal volume, the high crossing probability changes by

a constant factor.

Lemma 4.6. We have, as n → ∞,

P[ξ(vn + s
√
vn) > un + t] ∼ e−θ∗t exp

{
− (α

∗s)2

2σ ∗2

}
P[ξ(vn) > un].

The above holds uniformly in s and t as long as s = O(1) and t = o(
√
un).

Proof. Let αn = (un + t)/(vn + s
√
vn). Note that limn→∞ αn = α∗. We obtain, by

Theorem 4.1,

P[ξ(vn + s
√
vn) > (un + t)] ∼ 1√

2πθ∗σ ∗
1√
vn

exp{−(un + t)J (αn)}.

Now, an easy calculation shows that αn = α∗(1 − s/
√
vn + o(1/

√
vn)) as n → ∞. Using

Lemma 4.1, we obtain

J (αn) = θ∗ + 1

2

α∗s2

σ ∗2vn
+ o

(
1

vn

)
.

It follows that

P[ξ(vn + s
√
vn) > (un + t)] ∼

(
1√

2πθ∗σ ∗
1√
vn

exp{−θ∗un}
)

e−θ∗t exp

{
− (α

∗s)2

2σ ∗2

}
.

The statement of the lemma follows by noting that the first factor on the right-hand side is
asymptotically equivalent to P[ξ(vn) > un] by Lemma 4.5.

Let qn = l1−d
n = v

(1−d)/d
n . Note that if d = 1, qn = 1, whereas otherwise limn→∞ qn = 0.

In the next lemma we consider a high-crossing probability over a set having a size of order qn
in the space of cubes.

Lemma 4.7. For x > 0 and a fixed m ∈ N, define a set of cubes

Bm
x (n) =

[
−mqn

2
,
mqn

2

]d
× [x, x +mqn].

Then, for some constantHm > 0, the following asymptotic equality holds as n → ∞ uniformly
in x as long as x ∈ [l−n , l+n ]:

P
[

sup
R∈Bm

x (n)

Z(R) > un

]
∼ Hm P[ξ(xd) > un]. (4.8)
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Proof. Let R0 = [−(x − mqn)/2, (x − mqn)/2]d be the intersection of all cubes from
Bm
x (n). Note that |R0| = |x −mqn|d = xd +O(1) as n → ∞. Applying Lemma 4.6 twice,

we obtain
P[Z(R0) > un − t] ∼ eθ

∗t P[ξ(xd) > un]. (4.9)

Let
Mn = sup

R∈Bm
x (n)

Z(R)− Z(R0).

Then it is easy to see that Z(R0) andMn are independent and thatMn converges in distribution
as n → ∞ to the random variable

M∞ = sup
(l1,...,ld ;l)∈[−m/2,m/2]d×[0,m/2]

d∑
i=1

(
ξi

(
li + l + 1

2

)
− ξi

(
li − l − 1

2

))
,

where ξ1(·), . . . , ξd(·) are independent copies of the Lévy process {ξ(t), t ∈ R}. Denote the
probability on the left-hand side of (4.8) by Pn. Then

Pn =
∫ ∞

−∞
P[Z(R0) > un − t] dP[Mn = t].

Using (4.9), we obtain, at least formally, as n → ∞,

Pn ∼
(∫ ∞

−∞
eθ

∗t dP[M∞ = t]
)

P[ξ(xd) > un],

which proves the lemma with Hm = E[exp{θ∗M∞}]. In the rest of the proof we justify this
step. Take T > 0 large. We have

Pn

P[ξ(xd) > un] =
∫ ∞

−∞
P[Z(R0) > un − t]

P[ξ(xd) > un] dP[Mn = t]

=
∫ T

−T
P[Z(R0) > un − t]

P[ξ(xd) > un] dP[Mn = t]

+
∫ u

1/3
n

T

P[Z(R0) > un − t]
P[ξ(xd) > un] dP[Mn = t]

+
∫ ∞

u
1/3
n

P[Z(R0) > un − t]
P[ξ(xd) > un] dP[Mn = t]

+
∫ −T

−∞
P[Z(R0) > un − t]

P[ξ(xd) > un] dP[Mn = t]
= I + II + III + IV.

Since, by Lemma 4.6, the convergence in (4.9) is uniform for t ∈ [−T , T ] and since Mn

converges in distribution to M∞, we obtain

lim
n→∞ I =

∫ T

−T
eθ

∗t dP[M∞ = t].

The convergence in (4.9) remains uniform for t = o(
√
un). Using the fact that, by Lemma 4.4,

applied to Mn, E[exp{θMn}] < C(θ,m) for every θ < θ0, we obtain

II ≤
∫ u

1/3
n

T

Ceθ
∗t dP[Mn = t] < Ce−δT for some δ > 0.
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To estimate the third term, note that P[Z(R0) > un − t] ≤ exp{−θ∗(un − t)} by Corollary 4.1
and that P[ξ(xd) > un] ≥ cu

−1/2
n exp{−θ∗un} by Lemma 4.6. Thus,

III ≤
∫ ∞

u
1/3
n

exp{−θ∗(un − t)}
cu

−1/2
n exp{−θ∗un}

dP[Mn = t] ≤ Cu
1/2
n

∫ ∞

u
1/3
n

eθ
∗t dP[Mn = t].

The right-hand side of the above inequality converges to 0 as n → ∞ since E[exp{θMn}] < C

for every θ < θ0 by Lemma 4.4. Thus, limn→∞ III = 0.
We estimate the last term:

IV ≤ P[Z(R0) > un + T ]
P[ξ(xd) > un] .

It follows from Lemma 4.6 applied twice that the right-hand side of the above inequality
converges to e−θ∗T as n → ∞ and, hence, lim supn→∞ IV ≤ e−θ∗T . The statement of the
lemma follows from above by letting n → ∞ first and then T → ∞.

Let sn be a sequence satisfying sn = O(ln), sn > 1. In the next lemma we evaluate the
high-crossing probability of the scan statistic taken over the set of all cubes of nearly optimal
volume with centers contained in [0, sn]d .

Lemma 4.8. Let LA(n) = [0, sn]d × [l−n , l+n ]. Then, as n → ∞,

P
[

sup
R∈LA(n)

Z(R) > un

]
∼ H ·

(∫ A

−A
exp

{
− (α

∗t)2

2σ ∗2

}
dt

)
sdnv

d−1/2
n P[ξ(vn) > un]. (4.10)

Here, H ∈ (0,∞) is a constant defined by

H = 1

d
lim
m→∞

Hm

md+1 . (4.11)

Proof. Define
Lm
A(n) = mqnZ

d+1 ∩ LA(n).

For R = (x1, . . . , xd; x) ∈ Lm
A(n), let

Bm
R (n) =

[
x1 − qn

2
, x1 +

(
m− 1

2

)
qn

]
×· · ·×

[
xd − qn

2
, xd +

(
m− 1

2

)
qn

]
×[x, x+mqn],

and define BmR (n) = Bm
x1,...,xd ;x(n) to be the random event {supQ∈Bm

R (n)
Z(Q) > un}. Denote

the probability on the left-hand side of (4.10) by Pn. Then

Pn ≤ Sm1 (n), (4.12)

where

Sm1 (n) =
∑

R∈Lm
A(n)

P[BmR (n)] =
(
sn

mqn

)d ∑
x∈mqnZ∩[l−n ,l+n ]

P[Bm0,...,0;x(n)].

Applying Lemma 4.7 and then Lemma 4.6 yields

P[Bm0,...,0;x(n)] ∼ Hm P[ξ(vn) > un] exp

{
− α∗2

2σ ∗2

(xd − vn)
2

vn

}
.
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If the values of x are inmqnZ ∩ [l−n , l+n ] then the values of (xd − vn)/
√
vn form a lattice in the

interval [−A,A], whose (variable) mesh size is asymptotically equivalent to md/
√
vn. Thus,

approximating the Riemann sum by an integral, we obtain

∑
x∈mqnZ∩[l−n ,l+n ]

P[Bm0,...,0;x(n)] ∼ Hm P[ξ(vn) > un]
(√

vn

md

∫ A

−A
exp

{
− (α

∗t)2

2σ ∗2

}
dt

)
.

This shows that

Sm1 (n) ∼ 1

dmd+1Hm ·
(∫ A

−A
exp

{
− (α

∗t)2

2σ ∗2

}
dt

)
sdnv

d−1/2
n P[ξ(vn) > un].

Since the above is true for everym, we find, by lettingm → ∞, that the left-hand side of (4.10)
is asymptotically not greater than the right-hand side of (4.10). In order to prove the converse,
we use the Bonferroni inequality,

Pn ≥ Sm1 (n)− Sm2 (n), (4.13)

where Sm1 (n) is as above and

Sm2 (n) =
∑

R1,R2∈Lm
A(n)

R1 �=R2

P[BmR1
(n) ∩ BmR2

(n)].

The sum Sm1 (n)was already treated above. The proof will be completed in Lemma 4.10, below,
where it will be shown that Sm2 (n) can be asymptotically ignored as n → ∞ and m → ∞.

So, we are going to estimate Sm2 (n). For a cube R = (x1, . . . , xd; x), let

BR(n) =
[
x1 − qn

2
, x1 + qn

2

]
× · · · ×

[
xd − qn

2
, xd + qn

2

]
× [x, x + qn]

and let BR(n) be the random event {supR∈BR(n)
Z(R) > un}. Let R1, R2 ∈ LA(n) be two

cubes. Denote by 
 = 
(R1, R2) = |R1 �R2| the volume of the symmetric difference of R1
and R2.

Lemma 4.9. For arbitrary cubes R1, R2 ∈ LA(n), we have

P[BR1(n) ∩ BR2(n)] ≤ C exp{−δ
(R1, R2)} P[ξ(vn) > un].
Proof. For a cube R = (x1, . . . , xd; x), h = (h1, . . . , hd), hi > 0, and (ε1, . . . , εd) ∈

{−1, 0, 1}d , let
R(ε1, . . . , εd;h) = I1(ε1;h1)× · · · × Id(εd;hd),

where

Ij (εj ;hj ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
xj − x − qn

2
, xj + x − qn

2

]
if εj = 0,[

xj + x − qn

2
, xj + x − qn

2
+ hj

]
if εj = 1,[

xj − x − qn

2
− hj , xj − x − qn

2

]
if εj = −1.
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LetR1(ε1, . . . , εd;h) andR2(ε1, . . . , εd;h) be defined analogously withR replaced byR1 and
R2, respectively. Let h(n) = ( 3

2qn, . . . ,
3
2qn), and let

R̄1 =
⋃

(ε1,...,εd )∈{−1,0,1}d
R1(ε1, . . . , εd;h(n)).

Define

R′
2(ε1, . . . , εd;h) = R2(ε1, . . . , εd;h) ∩ R̄1,

R′′
2 (ε1, . . . , εd;h) = R2(ε1, . . . , εd;h) \ R̄1.

Note that R′
0 := R′

2(0, . . . , 0;h) and R′′
0 := R′′

2 (0, . . . , 0;h) do not depend on h. Let

M ′ =
∑

{ε1,...,εd }∈{−1,0,1}d\{0,...,0}
sup

h∈[0,3qn/2]d
Z(R′

2(ε1, . . . , εd;h)),

M ′′ =
∑

{ε1,...,εd }∈{−1,0,1}d\{0,...,0}
sup

h∈[0,3qn/2]d
Z(R′′

2 (ε1, . . . , εd;h)).

Finally, fix some small a > 0 and let

B ′ = {Z(R′
0)+M ′ > un + a
}, B ′′ = {Z(R′′

0 )+M ′′ > −a
}.

We trivially have

P[BR1(n) ∩ BR2(n)] = P[BR1(n) ∩ BR2(n) ∩ B ′] + P[(BR1(n) ∩ BR2(n)) \ B ′]
≤ P[B ′] + P[BR1(n) ∩ B ′′]
= P[B ′] + P[BR1(n)] P[B ′′].

By Lemma 4.7, with m = 1, we have P[BR1(n)] ≤ C P[ξ(vn) > un]. Thus, in order to prove
the lemma, we need to show the following two inequalities:

P[B ′] ≤ C exp{−δ
(R1, R2)} P[ξ(vn) > un], (4.14)

P[B ′′] ≤ C exp{−δ
(R1, R2)}. (4.15)

We prove (4.14). Take ε > 0 sufficiently small. Then

P[B ′] =
∫ ∞

0
P[Z(R′

0) ≥ un + a
− t] dP[M ′ = t]

=
∫ (1−ε)un

0
P[Z(R′

0) ≥ un + a
− t] dP[M ′ = t]

+
∫ ∞

(1−ε)un
P[Z(R′

0) ≥ un + a
− t] dP[M ′ = t]
= I + II.

To estimate I , suppose first that |R′
0| > ε′vn, where ε′ is much smaller than ε. As in Lemma 4.4,
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we have E[eθM ′ ] < C(θ) for every θ < θ0. Then, by Petrov’s theorem,

I =
∫ (1−ε)un

0
P[Z(R′

0) ≥ un + a
− t] dP[M ′ = t]

≤
∫ (1−ε)un

0
Cu

−1/2
n exp{−θ∗(un + a
− t)} dP[M ′ = t]

≤ Cu
−1/2
n exp{−θ∗un}e−δ


∫ ∞

0
eθ

∗t dP[M ′ = t]
≤ Ce−δ
 P[ξ(vn) > un].

Now suppose that |R′
0| < ε′vn. Then, by Lemma 4.2, and if ε′ is small enough,

I ≤ P[Z(R′
0) > εun] < exp{−(1 + δ)θ∗un}.

To estimate II, note that, by Lemma 4.4 and if ε is sufficiently small,

II ≤ P[M ′ > (1 − ε)un] ≤ exp{−(1 + δ)θ∗un}.
This proves (4.14). We now prove (4.15). By symmetry, we may assume that |R1 \ R2| ≤
|R2 \ R1| and, hence, |R′′

0 | ≥ 
/2 −O(1). By the Markov inequality, for t > 0 small,

P[B ′′] = P[Z(R′′
0 )+M ′′ > −a
]

≤ eta
 E[exp{tZ(R′′
0 )}] E[etM ′′ ]

≤ Ceta
 E[exp{tZ(R′′
0 )}]

= C exp{ta
+ |R′′
0 |ϕ(t)}

≤ C exp

{

(2ta + ϕ(t))

2

}
.

Now, since a > 0 is small enough and ϕ′(0) < 0, we may choose t > 0 so small that
2ta + ϕ(t) < 0. This proves (4.15).

Lemma 4.10. With the notation of Lemma 4.8 and its proof,

lim
m→∞ lim sup

n→∞
Sm2 (n)

sdnv
d−1/2
n P[ξ(vn) > un]

= 0.

Proof. For each R ∈ LA(n), the set Bm
R (n) may be written as a union of md+1 sets of the

form BQ(n), where Q ∈ qnZd+1 ∩ LA(n). For two cubes Q1,Q2 ∈ qnZ
d+1 ∩ LA(n), we

write Q1 ∼m Q2 if there is an R ∈ Lm
A(n) such that both BQ1(n) and BQ2(n) are subsets of

Bm
R (n). It is not difficult to see that

Sm2 (n) ≤
∑

Q1,Q2∈qnZd+1∩Ln
A

Q1�
mQ2

P[BQ1(n) ∩ BQ2(n)].

Applying Lemma 4.9, we obtain

Sm2 (n) ≤ C P[ξ(vn) > un]
∑

Q1,Q2∈qnZd+1∩Ln
A

Q1�
mQ2

exp{−δ
(Q1,Q2)}.
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If Q1 = qnw1 and Q2 = qnw2 for w1, w2 ∈ Z
d+1, then 
(Q1,Q2) > c‖w1 − w2‖ for some

c > 0, where ‖ · ‖ is any norm on R
d+1. The lattice Z

d+1 can be decomposed into a disjoint
union of discrete cubes of side lengthm, where the cubes have the formw+Km forw ∈ mZ

d+1

and Km = {0, . . . , m − 1}d+1. For w1, w2 ∈ Z
d+1, we write w1 ∼m w2 if w1 and w2 are

contained in the same cube of the form described above. It is clear thatQ1 ∼m Q2 if and only
if w1 ∼m w2. It follows that

Sm2 (n) ≤ C P[ξ(vn) > un]
∑

w1,w2∈Z
d+1∩q−1

n ([0,sn]d×[l+n ,l−n ])
w1�

mw2

exp{−δ‖w1 − w2‖}.

The set Z
d+1 ∩ q−1

n ([0, sn]d × [l+n , l−n ]) contains O(1)sdn v
d−1/2
n points. If (for sufficiently

large c) ‖w1 − w2‖ > cm then w1 �
m w2. Using this, we obtain

Sm2 (n) ≤ C P[ξ(vn) > un]sdnvd−1/2
n (I + II),

where

I =
∑

w∈Z
d+1

‖w‖≥cm

e−δ‖w‖, II = 1

md+1

∑
w1∈Km,w2∈Z

d+1

‖w1−w2‖≤cm

exp{−δ‖w1 − w2‖}.

Both I and II do not depend on n, and a straightforward calculation shows that limm→∞ I =
limm→∞ II = 0. This completes the proof of Lemma 4.10.

Now we can complete the proof of Lemma 4.8. Equation (4.10) and, in particular, the
existence of the limit in (4.11) follow from the Bonferroni inequalities, (4.12) and (4.13), as
well as from the above asymptotic equalities for Sm1 (n) and Sm2 (n). It remains to only show
that H > 0.

We have

Pn ≥
∑

R∈Lm
A(n)

P[BR(n)] −
∑

R1,R2∈Lm
A(n)

R1 �=R2

P[BR1(n) ∩ BR2(n)] = I − II.

By the above, I is asymptotically greater than cm−(d+1)sdn v
d−1/2
n P[ξ(vn) > un] for some

c > 0, whereas

II ≤ C P[ξ(vn) > un]sdnvd−1/2
n m−(d+1)

∑
w∈mZd+1

e−δ‖w‖.

It follows that if m is sufficiently large then Pn ≥ I − II ≥ csdnv
d−1/2
n P[ξ(vn) > un] for some

c > 0. It follows that the constant H in (4.10) is positive.

Remark 4.1. Let the constantH ∗ in (4.1) be defined byH ∗ = logH −d log(α∗θ∗). Then the
statement of Lemma 4.8 may be written as

P
[

sup
R∈LA(n)

Z(R) > un

]
∼ DA

e−τ

(n/sn)d
,

where

DA = α∗(
√

2πσ ∗)−1
∫ A

−A
exp

{
− (α

∗t)2

2σ ∗2

}
dt.

To see this, recall Lemma 4.5.
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Finally, we are ready to prove the main result of this subsection.

Lemma 4.11. Let RA(n) = [0, n]d × [l−n , l+n ]. We have

lim
n→∞ P

[
sup

R∈RA(n)

Z(R) ≤ un

]
= exp{−DAe−τ }.

Proof. The set RA(n) can be decomposed into (n/sn)d translates of the set LA(n), which
was considered in Lemma 4.8 and Remark 4.1. The lemma then follows from the Poisson limit
theorem: the only problem to overcome is that the events under consideration are dependent.

Let sn = ln. For (m1, . . . , md) ∈ Z
d ∩ [0, n/sn]d , let

LA(n;m1, . . . , md) = [m1sn, (m1 + 1)sn] × · · · × [mdsn, (md + 1)sn] × [l−n , l+n ],
and define the random event LA(n;m1, . . . , md) = {supR∈LA(n;m1,...,md)

Z(R) > un}. By
Lemma 4.8 and Remark 4.1,

P[LA(n;m1, . . . , md)] ∼ DA
e−τ

(n/sn)d
. (4.16)

Now we want to apply the Poisson limit theorem to the events

{
LA(n;m1, . . . , md), (m1, . . . , md) ∈ Z

d ∩
[

0,
n

sn

]d}
.

Note that the events are only finite-range dependent. More precisely, the eventsLA(n;m′
1, . . . ,

m′
d) and LA(n;m′′

1, . . . , m
′′
d) are independent if |m′

i − m′′
i | > 1 for at least one i = 1, . . . , d.

In order to justify the use of the Poisson limit theorem, we have to show that

P[LA(n;m′
1, . . . , m

′′
d) ∩ LA(n;m′′

1, . . . , m
′′
d)] = o

((
n

sn

)−d)
as n → ∞, (4.17)

where them′′
i = m′

i + εi, εi ∈ {−1, 0, 1}, are not all 0; see, e.g. Theorem 1 of [4]. To this end,
we use Lemma 4.8 again, this time for s′n = 3ln. We obtain

P

[ ⋃
(ε1,...,εd )∈{−1,0,1}d

LA(n,m
′
1 + ε1, . . . , m

′
d + εd)

]
∼ 3dDA

e−τ

(n/sn)d
.

On the other hand, by (4.16),

∑
(ε1,...,εd )∈{−1,0,1}d

P[LA(n,m′
1 + ε1, . . . , m

′
d + εd)] ∼ 3dDA

e−τ

(n/sn)d
.

Then (4.17) follows by the Bonferroni inequality.

4.4. Cubes of nonoptimal size

In this subsection we deal with cubes whose volume differs significantly from the optimal
volume, vn. More precisely, we consider cubes with volume outside the interval [vn −
A

√
vn, vn + A

√
vn]. We show that, if A → ∞ and n → ∞, these cubes do not contribute to

the extremal behavior of the random field {Z(R), R ∈ R(n)}. Let ε > 0 be sufficiently small.
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Lemma 4.12. There is δ > 0 such that the following inequality holds uniformly in s and t as
long as |s| ≤ ε

√
vn and t = o(

√
un):

P[ξ(vn + s
√
vn) > un + t] ≤ Ce−θ∗t exp{−δs2} P[ξ(vn) > un].

Proof. Let αn = (un + t)/(vn + s
√
vn). Note that αn ∈ [(1 − η)α∗, (1 + η)α∗], where

η = η(ε) is small if ε is small. By Petrov’s theorem,

P[ξ(vn + s
√
vn) > un + t] ≤ C

1√
vn

exp{−(un + t)J (αn)}. (4.18)

An easy calculation shows that, for some c > 0,

(αn − α∗)2 ≥ c(s2 − o(1))v−1
n as n → ∞.

Applying Lemma 4.1 and recalling Lemma 4.5, we obtain, for some δ > 0,

J (αn) ≥ θ∗ + δ
s2

vn
.

Substituting this into (4.18), we obtain the statement of the lemma.

Let A > 0 be large. Recall that l−n and l+n were defined in (4.7).

Lemma 4.13. Define a set of cubes R1(n) = [0, n]d × [(1 − ε)ln, l
−
n ], and let

Pn(A) = P
[

sup
R∈R1(n)

Z(R) > un

]
.

Then, for c(A) = lim supn→∞ Pn(A), we have limA→∞ c(A) = 0.

Proof. Recall that qn = l1−d
n . Define the set Bx(n) = [−qn/2, qn/2]d ×[x, x+ qn]. Then

Pn(A) ≤
(
n

qn

)d ∑
x∈qnZ∩[(1−ε)ln,l−n ]

P
[

sup
R∈Bx(n)

Z(R) > un

]
. (4.19)

Given x ∈ [(1 − ε)ln, l
−
n ], define a cube

R0 =
[
− 1

2(x − qn)
,

1

2(x − qn)

]d
,

and defineM = supR∈Bx(n)
Z(R)− Z(R0). Note thatM and Z(R0) are independent and that

|R0| = xd +O(1). We have

P
[

sup
R∈Bx(n)

Z(R) > un

]
≤ P[Z(R0) > un] +

∫ ∞

0
P[Z(R0) > un − t] dP[M = t]

= P[Z(R0) > un] +
∫ u

1/3
n

0
P[Z(R0) > un − t] dP[M = t]

+
∫ ∞

u
1/3
n

P[Z(R0) > un − t] dP[M = t]
= I + II + III.
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Let s = sn(x) be chosen such that xd = vn − s
√
vn. By Lemma 4.12,

I ≤ C exp{−δs2} P[ξ(vn) > un].

We estimate the second term by first using Lemma 4.12 and then using Lemma 4.4:

II ≤ C exp{−δs2} P[ξ(vn) > un]
∫ u

1/3
n

0
eθ

∗t dP[M = t]
≤ C exp{−δs2} P[ξ(vn) > un].

Using Corollary 4.1 and then Lemma 4.4, the third term may be estimated by

III ≤
∫ ∞

u
1/3
n

exp{−θ∗(un − t)} dP[M = t]

= exp{−θ∗un}
∫ ∞

u
1/3
n

eθ
∗t dP[M = t]

≤ C exp{−θ∗un} exp{−δu1/3
n }.

Bringing all three estimates together and recalling Lemma 4.5, we obtain

P
[

sup
R∈Bx(n)

Z(R) > un

]
≤ Cu

−1/2
n exp{−θ∗un} exp{−δs2} + C exp{−θ∗un} exp{−δu1/3

n }.

It follows from (4.19) that Pn(A) ≤ I ′ + II′, where

I ′ = C

(
n

qn

)d
u

−1/2
n exp{−θ∗un}

∑
x∈qnZ∩[(1−ε)ln,l−n ]

exp{−δsn(x)2},

II′ = C

(
n

qn

)d
exp{−θ∗un} exp{−δu1/3

n }
∑

x∈qnZ∩[(1−ε)ln,l−n ]
1.

It is easy to see that limn→∞ II′ = 0. We estimate I ′. If x ∈ qnZ ∩ [(1 − ε)ln, l
−
n ] then the

possible values of sn(x) form a lattice in [A,∞) with mesh size O(u−1/2
n ). Thus, estimating

the Riemann sum by an integral, we obtain

I ′ ≤ C

(
n

qn

)d
exp{−θ∗un}

∫ ∞

A

exp{−δs2} ds < C

∫ ∞

A

exp{−δs2} ds.

The statement of the lemma follows.

Lemma 4.14. Let R2(n) = [0, n]d × [0, (1 − ε)ln], and define

Pn = P
[

sup
R∈R2(n)

Z(R) > un

]
.

Then limn→∞ Pn = 0.
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Proof. The proof starts similarly to the proof of the previous lemma. For x ∈ [0, (1 − ε)ln],
define a set of cubes Bx(n) = [−qn/2, qn/2]d × [x, x + qn]. Then

Pn ≤
(
n

qn

)d ∑
x∈qnZ∩[0,(1−ε)ln]

P
[

sup
R∈Bx(n)

Z(R) > un

]
. (4.20)

Define, as in the proof of the previous lemma,

R0 =
[
− 1

2(x − qn)
,

1

2(x − qn)

]d

and M = supR∈Bx(n)
Z(R)− Z(R0) (if x < qn, we set R0 = ∅). Note that M and Z(R0) are

independent. We have

P
[

sup
R∈Bx(n)

Z(R) > un

]
≤ P[Z(R0) > un] +

∫ ∞

0
P[Z(R0) > un − t] dP[M = t]

= P[Z(R0) > un] +
∫ εun/2

0
P[Z(R0) > un − t] dP[M = t]

+
∫ ∞

εun/2
P[Z(R0) > un − t] dP[M = t]

= I + II + III.

To estimate the first term, we use Lemma 4.2 and the fact that |R0| < (1 − ε)dvn (and, thus,
un/|R0| > (1 + δ)α∗):

I ≤ exp

{
−unJ

(
un

|R0|
)}

≤ exp{−(1 + δ)θ∗un}.

The second term is estimated analogously, using Corollary 4.1 and Lemma 4.4:

II ≤
∫ εun/2

0
exp

{
−(un − t)J

(
un − t

|R0|
)}

dP[M = t]

≤
∫ εun/2

0
exp{−(1 + δ)θ∗(un − t)} dP[M = t]

= exp{−(1 + δ)θ∗un}
∫ εun/2

0
e(1+δ)θ∗t dP[M = t]

≤ C exp{−(1 + δ)θ∗un}.
To estimate the third term, we again use Corollary 4.1 and Lemma 4.4:

III ≤
∫ ∞

εun/2
exp{−θ∗(un − t)} dP[M = t]

= exp{−θ∗un}
∫ ∞

εun/2
eθ

∗t dP[M = t]
≤ C exp{−(1 + δ)θ∗un}.
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Bringing the three estimates together, we obtain

P
[

sup
R∈Bx(n)

Z(R) > un

]
≤ C exp{−(1 + δ)θ∗un}.

It follows from (4.20) that

Pn ≤ C

(
n

qn

)d
exp{−(1 + δ)θ∗un}

∑
x∈qnZ∩[0,(1−ε)ln]

1,

which converges to 0 as n → ∞. This completes the proof.

Lemma 4.15. Define R+
1 (n) = [0, n]d × [l+n , (1 + ε)ln], and let

Pn(A) = P
[

sup
R∈R+

1 (n)

Z(R) > un

]
.

Then, for c(A) = lim supn→∞ Pn(A), we have limA→∞ c(A) = 0.

Proof. The proof follows analogously to the proof of Lemma 4.13.

Lemma 4.16. Let R+
2 (n) = [0, n]d × [(1 + ε)ln, n], and define

Pn = P
[

sup
R∈R+

2 (n)

Z(R) > un

]
.

Then limn→∞ Pn = 0.

Proof. Let ql = l1−d , and, for x ∈ [l, l + 1], define a set of cubes Bx = [−ql/2, ql/2]d ×
[x, x + ql]. Let M and R0 be defined as in the previous lemmas. Then Pn ≤ P ′

n + P ′′
n , where

P ′
n =

[l2n]∑
l=[(1+ε)ln]

(nq−1
l )d

∑
x∈qlZ∩[l,l+1]

P
[

sup
R∈Bx

Z(R) > un

]
,

P ′′
n =

n∑
l=[l2n]

(nq−1
l )d

∑
x∈qlZ∩[l,l+1]

P
[

sup
R∈Bx

Z(R) > un

]
.

If l ∈ [(1 + ε)ln, l
2
n] then we use the estimate

P
[

sup
R∈Bx

Z(R) > un

]
≤ P[Z(R0) > un] +

∫ ∞

0
P[Z(R0) > un − t] dP[M = t]

= I + II.

The first term may be estimated using Lemma 4.2 and the fact that |R0| ≥ (1 + ε)vn:

I ≤ exp{−(1 + δ)θ∗un}.
To estimate the second term, use additionally Lemma 4.4:

II ≤
∫ ∞

0
exp{−(1 + δ)θ∗(un − t)} dP[M = t]

≤ exp{−(1 + δ)θ∗un}
∫ ∞

0
e(1+δ)θ∗t dP[M = t]

< C exp{−(1 + δ)θ∗un}.
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Using this, we obtain P ′
n ≤ CndlCn exp{−(1 + δ)θ∗un}, which converges to 0 as n → ∞. Now

suppose that l ∈ [l2n, n]. Then (the constant b is large)

P
[

sup
R∈Bx

Z(R) > un

]
≤ P[Z(R0) > −bun] + P[M > bun] = I + II.

Since |R0| > cl2dn = cv2
n, c > 0, the first term may be estimated using, e.g. Petrov’s theorem:

P[Z(R0) > −bun] ≤ C exp

{
−cv2

nI

(
bun

v2
n

)}
< C exp{−δv2

n} < C exp{−δu2
n} < Cn−D

for any given D. To estimate the second term, we use Lemma 4.4:

P[M > bun] < C exp{−bθ∗un} < 1

nD

for any given D if b is sufficiently large. Bringing everything together, we obtain

P ′′
n ≤ Cnd

2+1lCn n
−D,

which converges to 0 for large D. Thus, limn→∞ P ′′
n = 0. This completes the proof of the

lemma.

4.5. Proof of Theorem 2.1

Now we are able to complete the proof of Theorem 2.1. Ignoring trivial boundary effects,
we have, for every A > 0,

P
[

sup
R∈R(n)

Z(R) ≤ un

]
≤ P

[
sup

R∈RA(n)

Z(R) ≤ un

]
.

Letting n → ∞ and applying Lemma 4.11 to the right-hand side, we obtain

lim sup
n→∞

P
[

sup
R∈R(n)

Z(R) ≤ un

]
≤ exp{−DAe−τ }.

Now, letting A → ∞ and using the fact that limA→∞DA = 1, we obtain

lim sup
n→∞

P
[

sup
R∈R(n)

Z(R) ≤ un

]
≤ exp{−e−τ }. (4.21)

On the other hand, we have

P
[

sup
R∈R(n)

Z(R) ≤ un

]
≥ P

[
sup

R∈RA(n)

Z(R) ≤ un

]
− P

[
sup

R∈R(n)\RA(n)

Z(R) > un

]
.

Again, by Lemma 4.11, the first term on the right-hand side converges to exp{−DAe−τ } as
n → ∞. By Lemmas 4.13, 4.14, 4.15, and 4.16,

lim
A→∞ lim sup

n→∞
P
[

sup
R∈R(n)\RA(n)

Z(R) > un

]
= 0.

Thus, letting n → ∞ first and then A → ∞, we obtain

lim inf
n→∞ P

[
sup

R∈R(n)
Z(R) ≤ un

]
≥ exp{−e−τ }. (4.22)

The statement of the theorem follows from (4.21) and (4.22).

https://doi.org/10.1239/aap/1240319575 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1240319575


Scan statistics of Lévy noises and marked empirical processes SGSA • 35

5. Proof of Theorem 1.1

In this section we deduce Theorem 1.1 from Theorem 2.1 using a relation between marked
empirical processes and compound Poisson processes stated below.

Proof of Theorem 1.1. First, let {(Ui,Xi), i = 1, . . . , n} be a marked empirical process, as
in Section 1. On the other hand, let {Vi, i ∈ N} be a Poisson point process on R

d with unit
intensity. To each point Vi we attach a mark Yi . We suppose that the Yi are i.i.d. with the same
distribution as the marks Xi used in the construction of the marked empirical process, and that
the Yis do not depend on the Vis. For a Borel set R, let

Z(R) =
∑

i∈N : Vi∈R
Yi.

The compound Poisson process Z is an example of Lévy noise. Now we are going to show that
Z satisfies conditions (L1)–(L3) provided that X1 satisfies conditions (X1)–(X3). First note
that if ϕ is the logarithmic moment generating function of X1 then the logarithmic moment
generating function of Z([0, 1]d) is ψ(t) = eϕ(t) − 1. Thus, if ϕ is finite on [0, θ0) and has a 0
at θ∗, then the same holds for ψ . Finally, it is clear that if X1 is nonlattice then Z([0, 1]d) is
also nonlattice. This shows that conditions (L1)–(L3) are satisfied.

We denote by Nt = #{i ∈ N : Vi ∈ [0, t]d} the number of points of the compound Poisson
process contained in the cube [0, t]d . For n ∈ N, let Tn = inf{t > 0 : Nt = n + 1}. Then we
have the equality in distribution

{Xn(R), R ∈ R(1)} ∼ {Z(TnR), R ∈ R(1)}. (5.1)

To see this, consider the right-hand side of (5.1) conditioned on {Tn = t}. Under this condition,
the cube [0, t)d contains n points of the Poisson point process {Vi, i ∈ N} which have the same
distribution as n points chosen independently and uniformly in [0, t)d . Thus,

{Z(TnR), R ∈ R(1)} | {Tn = t} ∼ {Xn(R), R ∈ R(1)}.
Since this is true for every t , we obtain (5.1).

Define T +
n = (n + n2/3)1/d and T −

n = (n − n2/3)1/d . Noting that E[N(n+n2/3)1/d ] =
var[N(n+n2/3)1/d ] = n+ n2/3 and using the central limit theorem, we obtain

lim
n→∞ P[Tn > T +

n ] = lim
n→∞ P[N(n+n2/3)1/d < n+ 1] = 0.

Analogously, we have limn→∞ P[Tn < T −
n ] = 0.

We have

P
[

sup
R∈R(1)

Xn(R) ≤ un1/d

]
= P

[
sup

R∈R(Tn)
Z(R) ≤ un1/d

]

≤ P
[

sup
R∈R(Tn)

Z(R) ≤ un1/d ∩ Tn ≥ T −
n

]
+ P[Tn < T −

n ]

≤ P
[

sup
R∈R(T −

n )

Z(R) ≤ un1/d

]
+ P[Tn < T −

n ]

= P
[

sup
R∈R(T −

n )

Z(R) ≤ uT −
n

+ o(1)
]

+ P[Tn < T −
n ].
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Now, the first term converges to exp{−e−τ } by Theorem 2.1, whereas the second term was
shown to converge to 0. This shows that

lim sup
n→∞

P
[

sup
R∈R(1)

Xn(R) ≤ un1/d

]
≤ exp{−e−τ }. (5.2)

On the other hand,

P
[

sup
R∈R(1)

Xn(R) ≤ un1/d

]
= P

[
sup

R∈R(Tn)
Z(R) ≤ un1/d

]

≥ P
[

sup
R∈R(T +

n )

Z(R) ≤ un1/d ∩ Tn ≤ T +
n

]

≥ P
[

sup
R∈R(T +

n )

Z(R) ≤ un1/d

]
− P[Tn > T +

n ]

= P
[

sup
R∈R(T +

n )

Z(R) ≤ uT +
n

+ o(1)
]

− P[Tn > T +
n ].

As above, the first term converges to exp{−e−τ } by Theorem 2.1, whereas the second converges
to 0. This shows that

lim inf
n→∞ P

[
sup

R∈R(1)
Xn(R) ≤ un1/d

]
≥ exp{−e−τ }. (5.3)

To complete the proof of Theorem 1.1, combine (5.2) with (5.3) and note that

un1/d = 1

θ∗ (log n+ (d − 1) log log n+H ∗ + τ)+ o(1) as n → ∞.
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