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POSITIVE SOLUTIONS FOR A CLASS OF SEMILINEAR
TWO-POINT BOUNDARY VALUE PROBLEMS

Luis SANCHEZ

We study the existence of positive solutions of the periodic, Neumann or Dirichlet
problem for the semilinear equation

u " + f(t, u ) = 0, O^t^T,

where / is a Caratheodory function. Our assumptions in each case are such that
the problem possesses a lower solution or an upper solution.

1. INTRODUCTION

Let / : [0, T] x [0, +oo) -> I be a Caratheodory function (that is, measurable
in the first variable and continuous in the second one) and consider the differential
equation

(0) u" + /(*, u) = 0.

We are concerned with the problem of finding solutions of equation (0) subject to
boundary conditions of periodic, Neumann, or Dirichlet type. By definition of / , these
are nonnegative solutions, that is u(t) ^ 0 for all t £ [0, T]. In some cases we study the
special form of (0) in which f(t, u) — g(u) — h(t), where g: [0, +oo) —> R is continuous
and h € Lx(0, T). In the general case we assume, without further mention, that f{t, u)
has the following property: for each k > 0 there exists a function ip £ L1 (0, T) such
that, for almost every t G [0, T] and every tt 6 [0, k] we have

|/(t, u)\ < <p{i).

Many authors have studied this problem, not only for equation (0) but also for
semilinear elliptic equations in KN. Recent work on the solvability of (0) may be
found in the papers of Castro and Shivaj [4], Nkashama and Santanilla [11], Schaaf and
Schmitt [16] and references of those papers. As long as the PDE case is concerned we
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440 L. Sanchez [2]

confine ourselves to draw the attention of the reader to articles by Amann [1], Smoller
and Wasserman [17], De Figueiredo [6], Brezis-Oswald [3] and Costa and Goncalves
[5].

As is well known, the method of lower and upper solutions yields not only existence
of a solution but it also locates the solution between given bounds. To use this method,
one must be able to construct a lower solution u and an upper solution u of (0) (with
the appropriate boundary condition) so that 0 ^ u ^ u. The results presented in
this paper aim at obtaining existence when a lower solution is given but no upper
solution is known, or vice versa, or if a lower solution and an upper solution are given
in the wrong order: thus our assumptions will involve the existence of one such lower or
upper solution. We shall see that, adding some assumption on the local or asymptotic
behaviour of f(t, u), we are still in a position to guarantee, in some instances, the
existence of a solution.

2. PERIODIC SOLUTIONS

We start by analysing a special form of equation (0), namely

(1) u"+g(u) = h(t)

with periodic boundary conditions

(2) w(0) = u(T), w'(0) = u'(T).

Here, T > 0, h £ £^0 , T) and g: [0, oo) —> E is a continuous function.

Let us introduce some notation. The symbol || || will denote the usual norm of

£p(0, T), 1 ^ p < oo. For each function h £ Ll{Q, T), we write h-h + h, where

so that h has mean value zero on (0, T).

We shall make use of the fixed point index of a compact map in the positive cone
of a Banach space (see [1] for instance). Let

C+ = {u £ C[0, T): u(0) = u(T) and «(<) ^ 0 , V* £ [0, T]}

be the positive cone in the space of continuous, T-periodic functions. If fi is a bounded
open set in C + , and F: Q —* C+ is a compact mapping such that F has no fixed
points on the boundary d+£l of Q relative to C+, we denote by i+(F, SI) the fixed
point index of F in fi.

In our first results (Theorems 2.1 and 2.2) u(t) = 0 is a subsolution of (l)-(2).
We first prove two lemmas where a slightly stronger hypothesis, which we call (A.I), is
used; this kind of hypothesis appears also in [11].
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[3] Positive solutions 441

LEMMA 2 . 1 . Suppose that there exist 0 < o < b such that

T¥\\
(3) b-a>JU±1
(4) g(u) <hifue(a, b),

and

(A l ) Tiere exists R > 0 such that for all 0 ^ u ^ b and almost everywhere t G [0, t],

we have

g(u) + Ru>h(t).

Then the problem (1) - (2) has at least one solution u(t) ^ 0.

REMARK 2.1. Our hypotheses demand, roughly speaking, that either T be small or
the interval (a, 6) where (4) holds be large. This result is of a kind similar to one of
Zanolin [18, Corollary 2].

PROOF: Let go: [0, oo) —> [0, +oo) be defined as go(u) = h + a — u and consider
the homotopic equations

u" + Xg{u) + (1 - X)go(u) = Xh + (1 - X)h
( O J

w(0) = w(T), u'(0) = u'(T)

and the bounded, open subset of C+
Q = {u£C+: \\u\\00<b}.

We claim that there exist no solutions of (5) on the boundary (relative to C+) of fl,
d+Cl. To see this we first show that, given a solution u G fl of (5) the following estimate
holds:

(6) \u'{t)\ ^ ||ft|| 12 if a < u(t) ^ b.

In order to prove (6) we remark that integrating (5) in [0, T] and using (4) we
conclude that for some s G [0, T) we have u(a) < a. Now let t0 G R be such that
a ^ w(*o) ^ b and u'(to) > 0, for a given solution u G fl. Extending u to K as
a T-periodic function and using the above remark we may choose tj > to such that
a < u[t) ^ b if t0 < t < ti and u'(*0 = 0. Then (5) yields

-«'(t0) + / l (gx(u)-h)dt = A / l hdt
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where we have set g\(u) = Xg(u) + (1 - A)po(«) • The integrand in the left-hand side is
negative because of (4), so that

-u'(t0) Z -A / h~dt > - \\h\\ /2

and (6) holds. A similar argument applies if u'(<o) < 0.

Now let u 6 d+Sl be a solution of (5). Then HttH^ = b and we may choose
h < h < U such that u(h) = u(t3) = a, u(t2) = 6 and a < u(<) ̂  b if ti ^ t < t3.

Using (6) we deduce that

b-a = u(t2)-u(h) <(<2-*i
l l

b - a = u(t2) - u{t3) s$ (ts - t2) f'~'

and it follows that

2(6 - a)

a contradiction with (3). Thus our claim is proved.

Denote by K: £^0 , T) -> W2' 1(0, T) the inverse of the linear differential operator
—u" + Ru with periodic conditions (2). We take R in (Al) so large that also go(u) +

Ru ^ h whenever u ^ 0. Let

N{\, u) = gx(u) + Ru-Xh-(l- A)fc.

Then N is a continuous mapping of [0,1] x fl into the positive cone of £1(0, T); it
takes bounded sets into bounded sets. Since K is a positive linear operator, the product
KN: [0, 1] x fi -* C+ is compact and we see that (5) may be written simply as

(7) u = KN(X, u), ueTl.

Prom what we have proved above and the homotopy invariance of the fixed point index
we get

(8) i+(KN(l, .), fl) = i+(KN(0, .), 0).

When A = 0, the only solution of (7) is u = a 6 fl as (5) shows. By linearisation we

easily obtain

i+(KN(0, .), a) - 1.

Therefore (8) and the existence property of the fixed point index implies that (7)

is solvable in Q for A = 1 as well. D

LEMMA 2 . 2 . Suppose that there exist 0 < a < b such that (Al), (4) are satisfied

and

(g(u) --R)du<-Lh.

Then problem (1) - (2) has at least one solution w ̂  0.
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REMARK 2.2. Unlike condition (3), (9) holds if fe is sufficiently small (regardless of

the period).

PROOF: Take a function g0 of the form go(u) = h + k(a — u) where k > /i|| .

(b — a)~ , so that, for any A £ [0, 1], we have

,6 \\h\\
(10)

where g\ = \g + (1 — X)go • Consider fi and the homotopy (5) as in the proof of
Lemma 2.1. Let us show that (5) has no solution in d+il. For, if u is such a solution,
we may choose ti < t% such that u(<i) = a, u(<2) — b, a ^ u(t) ^ 6 if ti ^ t ^ £2> and
then multiplying (5) by u' and integrating we have

u'Cti)2 [b ,

2 Ja

Using the estimate (6) we obtain:

{gx{u)-h)du > - [**
Jtx

hn> dt > -

a contradiction with (10). Hence we compute, as in the preceeding lemma,

i+(KN(0, .), fl) = 1

and the proof is complete. D

THEOREM 2 . 1 . Suppose that g(Q) ^ h(t) {or almost every t £ [0, T) and there
exist 0 < a < b satisfying (3) and (4). Then the problem (l)-(2) has at least one
solution u(t) ^ 0.

PROOF: Let e > 0 and consider the perturbed equation

(1). v." + g(u) = h{t) - e.

Choose a < a' < b' < b so that b'-a' > T \\h\\ /4. Then if e is sufficiently small all the
assumptions of Lemma 2.1 are satisfied with respect to (l)e-(2). Lemma 2.1 implies
that (l)e-(2) has a solution ue(t) such that 0 ^ ue(t) ^ b. A standard argument shows
that the family (ue) is (bounded and) equicontinuous in C[0, T], Passing to the limit
along a convenient subsequence as e —» 0 yields the result. D

Using Lemma 2.2 and a similar approximation argument, one proves:

https://doi.org/10.1017/S0004972700030331 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030331


444 L. Sanchez [6]

THEOREM 2 . 2 . Suppose that g(0) ^ h(t) for almost every t G [0, T] and there
exist 0 < o < b such that (4) and (9) are satisfied. Then problem (l)-(2) has at least
one solution u(t) ^ 0.

In our next theorem the assumptions imply in particular that we have a lower

solution u(t) = a > 0 and an upper solution u(t) = 0 (thus in the wrong order) for

problem (0)-(2). Precisely, let us state (see [11]):

(A2) There exists R G (0, i^T'2} such that f(t, u) < Ru for all t G [0, T] and u ^ 0.

The significance of the bound for R in (A2) is the following. If 0 < R < 7T2/T2,

then the (unique) solution of

u" +Ru = h(t)

«(0) = u(T), «'(0) - u'{T)

where h G i 1 (0 , T) and h is nonnegative, is itself nonnegative. In fact, multiplying
(11) by cosy/R(t — t0), then by sin\/JR(< —10) and integrating over [t0, to + T] (we
assume that h(t) is T-periodically extended) we are left with a linear system which

yields
to+T

h{t)[sin VR(t -to) + sin VRT - (t - to)]dt

2\[R\\- COSy/RT)

and the remark easily follows.

THEOREM 2 . 3 . Let f{t, u) satisfy (A2). Assume also that there exist a > 0
and £ > 0 such that

(12) f(t, u) ^ 0 , for all u G [a, o + e] and almost everyt G [0, T]

and either R < 2T~2 or there exists a G LX(Q, T) such that, for t G [0, T] and u ^ 0,

(13) /(*, u) > a(t).

Then problem (0)-(2) has at least one solution u ^ 0.

PROOF: Choose a' < a, close to a. Consider the homotopic equations

(14) u" + Xf(t, u) + (1 - \)a(u - a1) = 0

«(0) - u(T), «'(0) = u'(T)

where <r G (0, it) and 0 < A ^ 1. We claim that there exists A > 0 such that, if u(t)

is a solution of (14) for some A G [0, 1] and minu ^ a, then

(15) u{t) < A for all t G [0, T).
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To prove this, assume first that R < 2T~2. Using Proposition 3.1 in [8] we obtain for

solutions of (14) the inequality

IKIIooW [^f{t,u) + (l-X)a{u-a')]+dt^R udt.
Jo Jo

If we choose tm £ [0, T] such that u(tm) ^ o , we have

rT ft nrp2
Wu'W^ ^RTa + R dt I u'(s)ds^RTa+—~\\u'\\OB,

Jo Jtm
 z

so that Hu'll^ ^ 2RTa(2 - RT2)'1. Therefore (15) is satisfied with A = a +

2RT2a(2 - RT2)'1 + 1. Next assume (13). Then we obtain the estimate

/
Jo

so that (15) holds with A = a + T^a^ + aaT) + 1.

Now we take the bounded, open set

fi = {u € C+: mini* < o, HuH ,̂ < A}.

From what has been proved above we can assert that, if 0 ̂  A < 1, (14) has no solution

in 9+f2. In fact the possibility that minu = a for such a solution u(t) is ruled out by

(12). Otherwise we would be able to choose an interval [to, <i] such that u(to) = a,

u'(ii) ^ 0, u(t) ^ a + e if t G [*o, h] and (14) would imply

0 = u'{ti) + / [\f(t, u) + (1 - \)a{u - a'))dt > 0,
Jto

a contradiction. Rewriting (14) as

u = S[Ru - \f(t, u) - (1 - \)a{u - o1)]

where 5 is the inverse of the linear operator u" + Ru with periodic conditions (which,
as the remark preceeding the theorem shows, sends nonnegative functions into C+), we
conclude: either (0)-(2) has a solution u £ £2 or i+(SN(l, .), SI) = 1, where

N(\, u) = Ru- Xf(t, u) - (1 - X)tr(u - a'),

in which case (0)-(2) has a solution u 6 ft. This ends the proof. U
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REMARK 2.3. Assuming that / is continuous in [0, T] x R+, it is easily seen that the
proof works (even in a simpler form) if (12) is stated simply as

(12') / ( * , o ) > 0 , te[0,T].

In the next theorem we return to equation (1), and u(t) = 0 is again a subsolution.

THEOREM 2 . 4 . Suppose that

(16) g(0) ^ h(t) for almost every t £ [0, T],

that L: — lim (hu — G(u)) exists, where G(u) — / " g(8)ds, (u ^ 0), and for some

R > 0 we Aave

(17) Au - G(u) ^L ifu^R.

Then problem (l)-(2) has at least one solution u ^ 0.

PROOF: Let us extend g to (—oo, 0], denning g(u) — g(0) if u < 0 and let us still
denote by G(u) the primitive of the extended function. Consider the C1 functional

Jo '

defined in the Sobolev space H^, = {u £ FJ(0, T): u(0) = u(T)}. It is easily seen that
the method used in [14, Theorem 1] or [15, Theorem 1] may be adapted to show that
J attains a minimum in H\-: it is enough to check that (i) the function hu — G(u) is
bounded below, and (ii) lim hu — G(u): = V exists and hu — G(u) ^ L' if u ^ 0.

v—* — oo

Now (ii) follows from (16) and the fact that hu - G(u) = (h - g(0))u if u < 0. For
the same reason we have V — 0 or L' = +oo; also L > —oo on account of (17),
and (i) holds. Hence J has indeed a minimum attained at some function u(t) which
solves (l)-(2) with the extended function g. It remains to show that u(t) ^ 0 for all
t G [0, T]. This is a straightforward consequence of (16) and the definition of g(u) for
u<0. D

REMARK 2.4. Theorems 2.1, 2.2 and 2.4 extend naturally to the case where one con-
siders the Neumann boundary condition u'(0) = 0, u'(T) — 0. As long as Theorem 2.3
is concerned, the only difference is that in the assumption A2 one should write

(see [7]).
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3 . DlRICHLET BOUNDARY CONDITIONS

In this section we consider the boundary value problem

(18) u" + /(*, u) = 0

(19) u(0) = 0, u(n) = 0,

where the Caratheodory function / is defined in [0, TT] X R+ and is such that, for each
K > 0, there exists a function a € Z^O, TT) such that \f(t, u)\ < a(t) if i £ [0, TT]
and 0 ^ u ^ K. To motivate our setting of the problem some remarks are in order.
Let m G L°°(0, TT) be a function such that m(t) > 0 in a set of positive measure and
denote by fi(rn) the first positive eigenvalue of the linear problem (see [10])

u" + \m(t)u = 0,
(20) ^ ;

u(0) = 0, u(7r) = 0.

Then, if

lim inf iikUl =a(t), hm sup fc^ =b{t)
u—»0+ U u—»+oo u

and /x(a) < 1 < fj.(b),

we can construct a lower solution u > 0 and an upper solution u of (18)-(19), such that
u ^ u (see [5]) or else we can solve the problem through minimisation of the associated
functional, see [3]. A quite different situation occurs if

Um sup !^lH - a(t), Urn inf ^ - ^ = b(t)
u-0+ u «—+oo U

and n(a) > 1 > |i(6);

this may be studied through the fixed-point index (see [1]) or the time map (see [12]).
Here we are interested in starting from an hypothesis similar to this one but only
where the behaviour near zero is concerned; we then add a one-sided Landsman-Lazer
condition. Note that if fi{a) > 1 holds as above, it is easy to see that (18)-(19) has a
(small) positive upper solution. Precisely, we state:

(A3) Let F(t, u) — J^ f(t, a)da. We assume that f(t, 0) = 0 almost everywhere and
that there exist e > 0 and a function a G L°°(0, 7r), a(t) ^ 0 almost everywhere, such
that for almost every t £ [0, n] and 0 ^ u ^ e, we have

F(t, u) < a(t)u2/2
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and fj.(a) > 1.

For convenience we now write f(t, u) = u + p(t, u) and accordingly (18) turns into

(18') u"+u + p(t,u) = 0.

It is easily seen that (A3) implies that p(t, u) is negative somewhere to the right of
zero, for small u.

THEOREM 3 . 1 . Let f satisfy (A3) and, with the notation introduced in (18'),

assume that there exists a /unction (3 € £1(0, 7r) such that, for almost every t 6 [0, T]
and u ^ 0,

(20) \P(t, u)\

moreover let p satisfy the Landesman-Lazer condition

(21) / p+(t)sintdt >0
Jo

where p+(t) — liminf p(t, u). Then (18)-(19) has a (nontrivial) nonnegative solution.
tA—>-|-OO

PROOF: Extend f(t, u) to all values of u e R by setting f(t, u) = 0 if u < 0.
For simplicity, we denote by the same symbol the corresponding extensions of p(t, u),
F(t, u). Let P(t, v.) = Jo p(t, a)da. We consider the functional

which is of class C1 in HQ(0, IT) , and we look for a critical point u ^ 0 of J. To prove

that such a critical point exists we use the mountain-pass lemma [2].

STEP 1. J has a strict local minimum at the origin. This is an easy consequence of the
injection HQ(0, IT) C C[0, TT] which, combined with the fact that (A3) obviously holds
for |w| ̂  e with respect to the extended function F(t, u), shows that, for some 6 > 0,
||w|| < 8 (where ||u|| is a norm of u in H\{0, n)) implies

Since fi(a) > 1, the quadratic form in the right-hand side is positive definite in
J?J(O, 7r). In particular we can fix 8 > 0 and c > 0 such that

(22) J(u) ^ c if ||u|| = 8.
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STEP 2. There exists v 6 Hl(0, n), with ||v|| large, such that J(v) ^ 0. In fact, it

can be shown as in [9, p.39] or [14, Theorem 4.1] that (21) implies

lim J(6sin/) = - c o .
b—<+oo

STEP 3. J satisfies the Palais-Smale condition. Indeed let u n £ HQ(0, 7r) and M G R

be such that

J (« n ) < M, J'(un) -» 0.

It suffices to show that (un) is bounded since the remaining properties of (un) follow

in a standard way, see [13]. We have, because of (20),

^-dt^ f F(t,un)dt
* Jun>o

j ^dt+ j P(t,un)dt
un>0 * Jun>0

where cj = \\0\\i • Sph'tting un as usual into u n = ansint + wn,

(an G R, JQ wn(t) sin tdt = 0) , and letting c^, cj , c^ denote positive constants inde-
pendent of n ,

(23)

Now we argue by contradiction: suppose that \an\ —> oo (at least along some subse-

quence). Then from (23) easily follows, as in the proof of Theorem 4.1 in [14], that

vn z= —- —» 0 in I7o(O> T ) and uniformly in [0, TT].

We must examine two possible cases: (i) an —» +<x>, and (ii) an —» —oo. Since
wn — an(sint + vn), we have un(t) —> +oo if t £ (0, TT) in case (i). Since p(t, u) = — u

if w < 0 and (20) holds, the sequence p(t, un(t)) is bounded below by an integrable
function, and Fatou's lemma implies

/ liminfp(<, un(t))sintdt ^ hm / p(t, un(t))sintdt = 0
Jo "-*00 Jo
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where the last equality comes from

Since p+(t) ^ liminf p(t, un(t)), we have reached a contradiction with (21). In case (ii)

we may choose N G N such that if n ^ N, un(i) < 0 in [TT/3, 2TT/3] - I. Using the

decomposition, for n ^ N,

/ p(t, un(t))sintdi = f \un(t)\ sintdt + f p(t, un(t)) sin tdt
Jo Ji J[o,*]\i

and noting that the integrand in the last integral is bounded below, we conclude that

lim / p(t, un(t)) sintdt = +oo,
Jo

again a contradiction. This ends the proof of Step 3.

From Steps 1 to 3 we conclude that J has a critical value ^ c. In particular the

corresponding critical point is a nonzero function u(t). This function is a solution of

(18)—(19) with the extended function. But then an elementary version of the maximum

principle implies that u(t) ^ 0 for all t £ [0, T], and the proof of the theorem is

complete. U

REMARK 3.1. It is easy to see that the same proof works, as in [14], with (20) replaced

for the less restrictive hypothesis:

P(t, u) nlim sup z— — 0.
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