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We investigate the spatial distribution and dynamics of the vortices in rotating
Rayleigh–Bénard convection in a reduced Rayleigh number range 1.3 ≤ Ra/Rac ≤ 83.1.
Under slow rotations (Ra ≈ 80 Rac), the vortices are distributed randomly, which is
manifested by the size distribution of the Voronoi cells of the vortex centres being
a standard Γ distribution. The vortices exhibit Brownian-type horizontal motion in
the parameter range Ra � 10 Rac. The probability density functions of the vortex
displacements are, however, non-Gaussian at short time scales. At modest rotating
rates (4 Rac ≤ Ra � 10 Rac), the centrifugal force leads to radial vortex motions, i.e.
warm cyclones (cold anticyclones) moving towards (outwards from) the rotation axis.
The horizontal scale of the vortices decreases with decreasing Ra/Rac, and the size
distribution of their Voronoi cells deviates from the Γ distribution. In the rapidly rotating
regime (1.6 Rac ≤ Ra ≤ 4 Rac), the vortices are densely distributed. The hydrodynamic
interaction of neighbouring vortices results in the formation of vortex clusters. Within
clusters, cyclones exhibit inverse-centrifugal motion as they submit to the outward motion
of the strong anticyclones, and the radial velocity of the anticyclones is enhanced. The
radial mobility of isolated vortices, scaled by their vorticity strength, is shown to be a
simple power function of the Froude number. For all flow regimes studied, we show that
the number of vortices with a lifespan greater than t decreases exponentially as exp(−t/τ)

for large time, where τ represents the characteristic lifetime of long-lived vortices.
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1. Introduction

Buoyancy-driven convection is relevant to many natural flows in the atmosphere, oceans
and planetary systems (Marshall & Scott 1999; Vallis 2006; Jones 2011). A rich variety
of vortex structures arises during buoyant convection, especially in the presence of
background rotations (Hopfinger & van Heijst 1993). Vortices are often referred to as
coherent structures that consist of recirculating flows with roughly circular streamlines.
The dynamics of vortices plays an important role in determining fluid motions and
turbulent transport, ranging from small-scale turbulence to planetary-scale circulations
(Fernando & Smith 2001). The dynamics of convective vortices can be studied using a
paradigmatic model, rotating Rayleigh–Bénard convection (RBC), i.e. a fluid layer heated
from below and rotated about a vertical axis. In rotating RBC, the fluid flows are governed
by a set of non-dimensional parameters including the Rayleigh number (Ra) describing
the strength of thermal forcing, the Ekman number (Ek) representing the rotating effect,
the Froude number (Fr) for the strength of the centrifugal force, the Prandtl number
(Pr) for the fluid properties, and the aspect ratio Γa describing the geometry of the fluid
domain:

Ra = gα ΔT H3

κν
, Ek = ν

2Ω2H
, Fr = Ω2D0

2g
, Pr = ν

κ
, Γa = D0/H. (1.1a–e)

Here, g denotes the gravity acceleration, ΔT is the applied temperature difference, D0
and H are the horizontal and vertical length scales of the fluid domain, respectively, and
α, κ and ν are the thermal expansion, thermal diffusivity and kinematic viscosity of the
working fluid. Ω is the applied rotating velocity along a vertical axis.

A number of previous investigations report that for rapidly rotating RBC, the convective
flows are organized by the Coriolis force into columnar vortices (Boubnov & Golitsyn
1986; Sakai 1997; Vorobieff & Ecke 2002; Portegies et al. 2008; King et al. 2009; Grooms
et al. 2010; Kunnen, Clercx & Geurts 2010; Julien et al. 2012; Shi et al. 2020). The
structure of a columnar vortex can be described by the theory of thermal wind balance,
which states that vertical velocity gradients are caused by horizontal temperature gradients
in the flow field (Kundu & Cohen 2008):

2Ω
∂u
∂z

= −αg êz × ∇T. (1.2)

When observed in the lower fluid level, upwelling warm fluid elements rotate in the same
direction as the system when they experience horizontal advection, forming cyclones.
Oppositely, cold downwelling fluid elements are organized into anticyclones. Under
thermal wind balance, the horizontal gradient in the right-hand side of (1.1a–e) alters
the vertical velocity and vorticity in magnitude along the vertical axis, and their signs
around the middle plane. Both types of vortices are tall, thin, coherent convection columns
with their horizontal scale given by l = (2π4)1/6 Ek1/3 H for high-Pr fluids in the limit of
rapid rotations (Chandrasekhar 1961; Julien & Knobloch 1998; Aurnou, Bertin & Grannan
2018). The number density n of the columnar vortices increases when Ek decreases. It is
found in previous studies that n can be described by a power function of Ek, i.e. n ∝ Ekαn

(Boubnov & Golitsyn 1986; Sakai 1997; Vorobieff & Ecke 2002; Kunnen et al. 2010).
Different scaling exponents αn varying from −1.5 to −0.4 are reported in these studies,
which is presumably ascribed to the different fluid heights where measurements are made
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and the various criteria are used to identify vortices. The mean spacing between the
columnar vortices is given by dv ∝ √

1/n (Sakai 1997), assuming that the vortices are
distributed uniformly. However, when the spatial distribution of the vortices is not uniform,
as observed by Chong et al. (2020) and Ding et al. (2021) in rapidly rotating RBC, the
vortex spacing dv is not simply a square-root function of n, thus a more comprehensive
description of the vortex spatial distribution is required.

The flow structure of the columnar vortices in rotating RBC was investigated in
numerical simulation (Julien et al. 1996) and in laboratory experiments (Vorobieff & Ecke
1998). These studies discovered that each columnar vortex is surrounded by a shielding
layer. The signs of vorticity, temperature anomaly and vertical velocity in the shield
layer are opposite to those in the vortex core region. Portegies et al. (2008) proposed a
theoretical model for the flow structures of the columnar vortices, in which they consider
linearized governing equations of fluid motion and provide analytical solutions for the
radial profiles of temperature fluctuations, vertical velocity and vorticity. An asymptotic
theory of rapidly rotating RBC was developed by Sprague et al. (2006) and Grooms
et al. (2010), where they suggested that in the limit of extremely rapid rotations, the
columnar vortex structure is steady and axially and vertically symmetric, and predicted
that the poloidal stream function of the vortices can be described by the zero-order Bessel
function of the first kind (Grooms et al. 2010). It follows that both the radial profiles of
the azimuthal velocity and the vertical vorticity can be expressed by prescribed Bessel
functions. These predictions appeared to match with numerical simulations (Grooms et al.
2010; Nieves, Rubio & Julien 2014). Recently, Shi et al. (2020) performed spatially
resolved measurements of the fine structures of the columnar vortices. Their results
reveal that the asymptotic theory predicts accurately the velocity and vorticity profiles
of the vortices in the flow regime of rotation-dominated convection, but deviates from the
experimental results in weakly rotating convection. The three-dimensional experimental
vorticity structure of vortices was measured by Fujita et al. (2020) through scanning
velocity fields at different heights.

Numerical simulations in the full parameter space of rotating convection have revealed
distinct flow structures with increasing buoyancy forcing, namely, cellular convection
(Cell), convective Taylor columns (Columns), plumes and geostrophic turbulence (Julien
et al. 2012; Nieves et al. 2014; Stellmach et al. 2014). It is shown that in the flow
regime of Columns, the shield structure of the columnar vortices weakens with increasing
Ra and finally disappears. The violent vortex interactions then destroy the coherent
columns and lead to the formation of plume-like structures (Stellmach et al. 2014). Rajaei,
Kunnen & Clercx (2017) performed measurements of the spatial vorticity autocorrelations
to reveal the periodicity of the flow structures. Their experimental results indicated a
sharp change in the slope of the correlation function, indicating a transition from the
cellular–columnar state to the plume state. Shi et al. (2020) measured the vorticity
gradient at the shielding layer to determine quantitatively the strength of the vortex shield
structures. They showed that the mean vorticity gradient followed two distinct scaling
relations with increasing Ra, and suggested a flow state transition from weakly rotating
convection to rotation-dominated, geostrophic convection.

Along with the large number of studies devoted to exploring the flow structures
and spatial distribution of the vortices in rotating RBC, some efforts have been made
to inspect the dynamics of these vortices. Early experiment observations suggest that
these convective vortices exhibit diverse dynamical states of horizontal motion, ranging
from quasi-stationary, vortex merging to intensive advection (Boubnov & Golitsyn
1986; Zhong, Ecke & Steinberg 1993; Sakai 1997; Vorobieff & Ecke 2002; King &
Aurnou 2012). Chong et al. (2020) demonstrate through both experiment and numerical
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simulation that the vortices undergo horizontally diffusive motion and resemble that of
inertial Brownian particles, i.e. they move ballistically in a short time but then diffusively
in a large time scale. They reported that the diffusion motion of the vortices is in the
type of pure Brownian motion, since the vortex velocity autocorrelation function decays
exponentially in time, and the transition from ballistic to diffusive motion is sharp. Under
rapid rotations, the centrifugal force plays a role in influencing the vortex motion. Noto
et al. (2019) observed the radial acceleration of the vortices in rotating RBC. Hu et al.
(2021) used a convection cell placed at a distance away from the rotation axis in which
they can vary the Froude number with a fixed Ekman number to study the centrifugal
effects. They reported an onset of flow bifurcation above which the relatively cold and
warm vortices moved in opposite directions, with cold (warm) vortices concentrated
in the far (near) region. Ding et al. (2021) proposed an extended Langevin equation
incorporating centrifugal (centripetal) force to interpret the radial motion of cold (warm)
vortices:

r̈ + ṙ/tc ∓ ζ r = ξ(t), (1.3)

where r represents the radial position of the vortex centre, tc is the relaxation time scale,
ζ is the centrifugal coefficient, and ξ denotes the stochastic term correlated in time in
the form of the delta function, i.e. white noise. The analytical solution of this model
gives the first moment of radial displacement at a large time scale as an exponential
function,

〈r/r0〉ξ ∝ exp(±λ∗t), (1.4)

where the radial mobility λ∗ ≈ |1/(2tc) − √
1/(4t2c) ± ζ | represents the fastest growth

(or slowest decay) rate for anticyclones (cyclones). The plus and minus signs in (1.4)
represent solutions for cold and warm vortices, respectively. This model sheds light on
the ‘super-diffusive’ behaviour of vortex motion (Noto et al. 2019; Ding et al. 2021),
which is a result of the directional radial motion. Ding et al. (2021) also reported
in the centrifugation-dominated flow regime the counterintuitive effect of hot vortices
moving outwards from the rotation axis collectively, which is interpreted as a result of
long-range vortex interactions. Recently, Ding et al. (2022) reported that when periodic
topographic structures are constructed on the heated boundary in rotating RBC, the
stochastic translational motion of the columnar vortices can be strictly controlled to form
stationary convection patterns with prescribed symmetries.

Despite previous studies of vortex motion in rotating RBC, a definitive relationship
between the radial velocity of the vortices and its driven force, i.e. the centrifugal
buoyancy, has yet to be established. The challenge in establishing their relationship arises
from the complication caused by the formation of vortex clusters (Ding et al. 2021). In such
a fluid system with its flow field characterized by horizontally meandering vortices, an
important question arises concerning the connection between vortex distribution and their
horizontal motion. Additionally, in the context of translational vortex motion, the lifespan
of the vortices is an essential aspect that accounts for the stable spatial distribution of
the vortex number density as observed in experiments. The long-lived convective vortices
are shown to play a crucial role in the transport of heat and material across large-scale
regions (Gascard et al. 2002). However, the statistical properties of the lifespan of vortices
in rotating RBC remain unexplored.

We present in this paper an extensive investigation of the vortex distribution, lifespan
and dynamics in rotating RBC across a wide range of control parameters (see experimental
details in § 2). Discussions of the vortex spatial distribution are presented in § 3, followed
by the vortex displacement distribution in § 4. The regimes of vortex dynamics are given
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Vortex dynamics in rotating Rayleigh–Bénard convection

in § 5. A simple relation between vortex radial motion and Froude number is derived in
§ 6. The lifespan of vortices is discussed in § 7. A summary and discussion of the results
are provided in § 8.

2. Experimental and numerical methods

2.1. Experimental set-up and parameters
The experimental apparatus was designed for high-resolution flow field measurements
in rotating RBC (Chong et al. 2020; Shi et al. 2020; Ding et al. 2021). Here, we
present only its essential features. The bottom plate of the convection cell was made
of oxygen-free, high-conductivity copper. Its bottom side was covered uniformly by
parallel straight grooves. A main heater made of resistance wires was epoxied into the
grooves. Seven thermistors were installed into the bottom plate, at vertical distance 3.5 mm
from the top surface of the plate. The main heater was operated in a digital feedback
loop in conjunction with these thermistors to hold the bottom-plate temperature as a
constant with a stability of a few millikelvins. For the purpose of flow visualization,
we used a top plate made of a 5 mm thick sapphire disc. A thermal bath that
contained circulating coolant was constructed over the sapphire plate and regulated its
temperature. During the experiment, the temperature fluctuation of the top plate was within
0.005 K.

The temperature difference between the bottom plate and the ambient air may induce
thermal perturbations to the experiment. To eliminate this temperature difference, a bottom
adiabatic shield was installed under the bottom plate. This thermal shield was covered by
a bottom-shield heater, with a thermistor located at the centre of the shield. A second
auxiliary heater was wound around the periphery of the shield, and the local temperature
there was measured by a second thermistor. Both heaters worked in conjunction with
their relevant thermistors to maintain the bottom-shield temperature the same as the
bottom-plate temperature.

In between the top and bottom plates was a cylindrical sidewall made of plexiglas
with a thickness of 3 mm. Thermal protection towards the sidewall was provided by a
separate thermal side shield. It was a thin cylindrical ring made of aluminium, with a spiral
aluminium tube wound on its outer surface. A circulating flow of coolant passed through
the aluminium tube kept the side-shield temperature at the mean fluid temperature. Most
of the spatial volume in between the thermal shields and the convection cell was filled
with low-density open-pore foam to prevent convective air flows. The aforementioned
two coolant circuits were brought into the rotary table through a rotary union. It was a
four-passage feed through equipped with a slip ring for electrical leads. The rotary table
rotated clockwise driven by an electric servo-motor. All components of the convection cell
were installed on the rotary table.

In the present study, we used two cylindrical cells with an inner diameter D0 = 240 mm,
and fluid height H = 63.0 (120.0) mm, yielding the aspect ratio Γa = D0/H = 3.8 (2.0).
Deionized water was the working fluid, with a constant Prandtl number Pr = ν/κ = 4.38.
The experiment was conducted in the range 2.0 × 107 ≤ Ra ≤ 2.7 × 108 of the Rayleigh
number Ra = αg ΔT H3/κν (where α is the isobaric thermal expansion coefficient, g is
the acceleration of gravity, ΔT is the applied temperature difference, κ is the thermal
diffusivity, and ν is the kinematic viscosity). For each dataset with the same Ra, all
measurements were made at constant ΔT , with Ω varying from 0.31 to 5.0 rad s−1. The
Ekman number Ek = ν/(2ΩH2) spanned 1.7 × 10−5 ≤ Ek ≤ 2.7 × 10−4. The Froude
number Fr = Ω2D0/2g was within 1.2 × 10−3 ≤ Fr ≤ 0.31. The convection in the
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Group 10−7Ra Γ Regime 105Ek Ra/Rac Fr

EXP1 2.0 3.8 Cell 1.79, 1.92, 2.24 1.30, 1.43, 1.76 0.272, 0.237, 0.174
Columns 2.68 2.26 0.121
Plumes 3.36, 4.47, 5.37 3.07, 4.57, 5.87 0.077, 0.044, 0.030

BD 13.4, 26.8 20.9, 54.8 0.005, 0.001

EXP2 3.0 3.8 Cell 1.68, 1.79 1.80, 1.97 0.309, 0.272
Columns 1.92, 2.24 2.16, 2.67 0.237, 0.174
Plumes 2.68, 3.36, 4.47, 3.43, 4.66, 6.93, 0.121, 0.077, 0.044,

5.37 8.90 0.030
BD 8.95, 13.4, 26.8 18.0, 31.6, 83.1 0.011, 0.005, 0.001

EXP3 14 2.0 Cell 0.493 1.54 0.272
Columns 0.617, 0.740 2.09, 2.68 0.174, 0.121
Plumes 0.925, 1.23, 1.48 3.64, 5.39, 6.91 0.077, 0.044, 0.030

EXP4 27 2.0 Columns 0.493 3.09 0.272
Plumes 0.617, 0.740, 0.925, 4.18, 5.36, 7.27, 0.174, 0.121, 0.077,

1.23 10.8 0.044

DNS 2.0 4.0 Cell 1.78, 1.90, 2.22 1.30, 1.42, 1.76 0.270, 0.240, 0.174
Columns 2.66 2.26 0.120
Plumes 3.33, 3.67, 4.44, 3.07, 3.51, 4.57, 0.077, 0.064, 0.040,

5.41, 7.00, 9.18 5.99, 8.55, 12.4 0.029, 0.017, 0.010
BD 12.1, 18.2, 26.6 18.3, 32.2, 54.7 0.006, 0.003, 0.001

Table 1. Parameters of all experimental runs. Results for Γ = 3.8, 2.0 are acquired from convection cells with
H = 63, 120 mm, respectively. The dynamical regimes are determined based on Julien et al. (2012), Kunnen
(2021) and Lu et al. (2021). BD is an abbreviation for the buoyancy-dominated regime.

experiment is assured by examining the reduced number Ra/Rac greater than 1, where
Rac = (8.7 − 9.63 Ek1/6) Ek−4/3 (Niiler & Bisshopp 1965) is the critical value for the
onset of convection in a horizontally infinitely large system. More information about
various parameter regimes is reported in table 1.

We conducted measurements of the horizontal velocity field (ux, uy) using a particle
image velocimetry system installed on the rotary table. A thin light sheet powered by
a solid-state laser illuminated the seed particles in a horizontal plane at fluid height
z = H/4. Images of the particle were captured through the top sapphire window by
a high-resolution camera (2456 × 2058 pixels). Two-dimensional velocity fields were
extracted by cross-correlating two consecutive particle images. Each velocity vector
was calculated from an interrogation window (32 × 32 pixels), with 50 % overlap
of neighbouring sub-windows to ensure sufficient resolution of the velocity field
(Westerweel, Elsinga & Adrian 2013; Shi et al. 2020). Thus we obtained 154 × 129
velocity vectors on each frame, reaching resolution 2.0 mm for the velocity field. We
identify the vortices through a two-dimensional Q-criterion. Considering the quantity
Q = (Tr A)2 − 4 det A with the velocity gradient tensor A = [∂(ux, uy)/∂(x, y)], we define
the vortex centre as the minimum of Q within a vortex region satisfying Q < −Qstd. Here,
Qstd is the standard deviation of Q over the measured area r ≤ D0/4 (Chong et al. 2020;
Ding et al. 2021). We adopt the method of vortex tracking introduced in Ding et al. (2021)
to obtain vortex trajectories.

974 A43-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.852


Vortex dynamics in rotating Rayleigh–Bénard convection

2.2. Numerical method
In the direct numerical simulations (DNS), we solved the three-dimensional Navier–Stokes
equations within the Boussinesq approximation:

Du
Dt

= −∇P +
(

Pr
Ra

)1/2

∇2u + θ ẑ +
(

Pr
Ra Ek2

)1/2

u × ẑ − 2r Fr
D

θ r̂, (2.1)

Dθ

Dt
= 1

(Ra Pr)1/2 ∇2θ, (2.2)

∇ · u = 0. (2.3)

Here, u is the fluid velocity, and θ and P are the reduced temperature and pressure.
Equations (2.1)–(2.3) were non-dimensionalized using H, ΔT and the free-fall

velocity Uf = √
αg ΔT H. The top (bottom) plate was isothermal with temperature

θt = −0.5 (θb = 0.5), and the sidewall was thermally insulated. As for the momentum
boundary condition, all boundaries were no-slip. These equations were solved using
the multiple-resolution version of CUPS (Kaczorowski & Xia 2013; Chong, Ding &
Xia 2018), which was a fully parallelized DNS code based on a finite-volume method
with fourth-order precision. To improve computational efficiency without any sacrifice in
precision, we used a multiple-resolution strategy. The grid resolutions along the radial,
azimuthal and vertical directions were 140 × 384 × 160 for the momentum and pressure
fields, and 280 × 768 × 160 for the temperature field. We examine the ratios between the
vertical grid spacing and the local Kolmogorov and Batchelor length scales. The maximum
value of these two ratios for all cases is about 1.2, and for most of the cases, these two ratios
are well below unity. Additionally, the thickness of the Ekman boundary layer decreases
as Ek decreases. We ensured that there were no fewer than 11 grid points within the
Ekman layer even for the smallest Ek of the present work, to resolve the Ekman boundary
layer sufficiently. The simulations were performed in a cylindrical domain with Γa = 4,
Ra = 2.0 × 107, Pr = ν/κ = 4.38 and 1.3 ≤ Ra/Rac ≤ 55.

3. Vortex spatial distribution

In the rotating RBC, the spatial distribution and organization of the convective vortices
depend sensitively on the strength of rotation and buoyancy. To demonstrate the
distribution of the columnar vortices, we present in figure 1 Voronoi diagrams of the vortex
centres for two reduced Rayleigh numbers, Ra/Rac = 8.90 and 2.67. The background
colour of these diagrams represents the distribution of the Q field, where vortices are
shown in reddish colour, and the bluish areas in between indicate regions of high flow
strain. We see that under weak rotations, the vortices appear to be located randomly with a
broad size distribution for Ra/Rac = 8.90. The Voronoi cells become smaller on average
but seemingly have an even size distribution for rapid rotations (Ra/Rac = 2.67).

In the following analysis, we consider the probability density functions (PDFs) of
Voronoi cell area of the vortices. It has been shown that for randomly distributed entities
in d-dimensional space (d ≤ 3), the PDF of their Voronoi areas (volumes) normalized by
the mean is the standard Γ distribution (Ferenc & Néda 2007; Tagawa et al. 2012):

P(x) = [(3d + 1)/2](3d+1)/2

Γ [(3d + 1)/2]
x(3d−1)/2 exp(−[(3d + 1)/2]x). (3.1)
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Figure 1. Spatial distribution of the vortices for (a) weakly rotating convection and (b) rotation-dominated
convection. The solid line network constitutes the Voronoi diagram of the vortex centres. The background
colouration represents the distribution of the quantity Q/Qstd , with blue (yellow) dots denoting the
centres of anticyclones (cyclones). Experimental results for Ra = 3.0 × 107 and for (a) Ra/Rac = 8.90 and
(b) Ra/Rac = 2.67.

Here, the denominator is a Γ function. For two-dimensional distributions (d = 2), we have
P2(x) = 77/22−7/2x5/2 exp(−7x/2)/Γ (7/2). The Voronoi diagram offers a qualitative
scheme to describe the spatial distributions of entities in densely populated systems
(Ferenc & Néda 2007; Tagawa et al. 2012). For example, the clustering effect of particles
in turbulence leads to an increase of the standard deviation of the scaled Voronoi volumes
of the particles, and thus the PDF of the Voronoi volumes deviates from the standard Γ

distribution (Tagawa et al. 2012).
Figure 2(a) shows the PDFs of the Voronoi cell areas A of the vortices normalized

by the mean value P(A/〈A〉). We see that for Ra/Rac = 83.09, P(A/〈A〉) follows closely
the standard Γ distribution P2(x). With increasing rotation rates (decreasing Ra/Rac),
the PDFs of the Voronoi cell area show behaviour different from that of the standard Γ

distribution. We see that the PDFs have a smaller possibility for very large and small cells
than for random distributed ones, but a larger probability for A/〈A〉 ≈ 1. These results
suggest that the vortices are indeed randomly distributed for a sufficiently large Ra/Rac.
The size distribution of the Voronoi cells of the vortices becomes relatively uniform when
Ra/Rac decreases.

Figures 2(b) and 2(c) present the mean value 〈A〉 and the standard deviation σ(A/〈A〉) of
the Voronoi cell area as functions of Ra/Rac. Our experimental and numerical data show
that 〈A〉 decreases monotonically with decreasing Ra/Rac, signifying an increasing vortex
number density. The standard deviation σ(A/〈A〉), however, exhibits the interesting trend
that for Ra/Rac = 83.09, it reaches approximately the value of a standard Γ distribution,
σ0 = √

(3d + 1)/2 = √
2/7. With decreasing Ra/Rac, σ(A/〈A〉) decreases and reaches

a minimum value at Ra/Rac ≈ 4. When Ra/Rac ≤ 4, σ(A/〈A〉) starts to increase. The
emergence of the minimum of σ(A/〈A〉) at Ra/Rac ≈ 4 can be seen also in figure 2(a).
The decreasing of σ(A/〈A〉) for Ra/Rac ≥ 4 implies the homogenized size distribution
of the Voronoi cells with decreasing Ra/Rac in the weakly rotating regime where the
vortices are sparsely distributed. For Ra/Rac ≤ 4, however, the increase of σ(A/〈A〉) may
be ascribed to the formation of large-scale vortex clusters, as we will discuss in § 6.
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Figure 2. (a) The PDFs of the Voronoi cell area P(A/〈A〉) for various Ra/Rac. The solid curve represents
the two-dimensional Γ distribution P2(A/〈A〉). (b) The normalized mean area 〈A〉/H2 of the Voronoi cells as
a function of Ra/Rac. (c) The rescaled standard deviation σ(A/〈A〉)/σ0 as a function of Ra/Rac, with σ0 =√

2/(3d + 1) = √
2/7. Open symbols: experimental data for Ra = 3.0 × 107. Closed symbols: numerical data

for Ra = 2.0 × 107.

4. Probability density distribution of vortex displacements

Through tracking the horizontal motion of the vortices, we obtain their trajectories r(t) and
calculate the mean square displacement (MSD) for the vortices for a given time interval
t, i.e. 〈δr2〉(t) = 〈(r(t + t0) − r(t0))2〉t0 , where 〈 · 〉t0 denotes the average over all time
stamps t0 and all vortex trajectories. Figure 3(a) shows results of 〈δr2〉/t as a function
of t for various Ra/Rac. We see that in the weakly rotating regime with Ra/Rac ≥ 8.9,
〈δr2〉/t can be well described as

〈δr2〉/t = 2D[1 − tc/t(1 − exp(−t/tc))], (4.1)

which implies that the vortex motion is Brownian-type, random motion. Here, tc represents
the transitional time from the ballistic to the diffusive regime, and D is the diffusivity
(Chong et al. 2020).

To gain deep insight into the stochastic properties of the vortex motion under weak
rotations, we study the PDFs of the vortex displacement P(dx, dt) in one dimension dx
for different time intervals dt. Figures 3(b) and 3(d) show experimental and numerical
data for Ra/Rac = 18.0, respectively. We see that for a large time interval dt ≥ tc, P(dx)
is Gaussian to good precision, as one would expect for normal Brownian motion. For
a very small time interval dt ≤ tc, however, P(dx) appears to deviate from a Gaussian
function. In order to estimate the deviation of P(dx) from a Gaussian distribution with
decreasing dt, we calculate the excess kurtosis α, which characterizes the departure from
Gaussianity, α = 〈(dx − 〈dx〉)4〉/[3〈(dx − 〈dx〉)2〉2] − 1. Thus α = 0 indicates a perfect
Gaussian distribution, and a large α signifies a departure from Gaussian. Figure 3(c) shows
the results of α as a function of dt/tc for four sets of Ra/Rac. One sees that α ≤ 0.1
for large time interval dt ≥ tc. However, when dt decreases below tc, α increases rapidly
and becomes significant for very small dt. Results of MSDs and PDFs of the vortex
displacement (figure 3) suggest that on very short time scales, the vortex undergoes
non-Gaussian yet ballistic motion. A full theoretical interpretation of such dynamical
properties of vortices remains to be studied.

974 A43-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.852


S.-S. Ding and others

0

0

0.5
α

1.0

1.5

5 10 15

102

100

10–1

10–2

10–3

–4 –2 0 2 4

31.62

0.56tc
1.67tc
3.33tc
6.67tcRa/Rac

18.02
8.90
3.43
2.67

–0.02 –0.01 0.01 0.020
t (s)

〈δr
2
〉/t

 (
m

2
 s

–
1
)

dx (m)

dx/σ(dx)

100

10–1

10–2

10–3

–4 –2 0 2 4
dx/σ(dx)

P(
d

x)
P(

d
x)

–0.4 –0.2 0.2 0.40

dx

101100

100

101

10–1

10–2

10–6

10–5

101

102

100

103

102101
0

0.1
0.2
0.3
0.4
0.5

t/tc

Ra/Rac

α
 (t

 =
 t c)

dt

0.5tc
1.0tc
2.0tc
4.0tc

dt

(b)(a)

(c) (d )

Figure 3. (a) Results for 〈δr2〉/t as a function of t for various Ra/Rac. The dashed lines present the theoretical
fits to the data for weakly rotating convection based on (4.1). The dash-dotted line indicates a scaling
〈δr2〉 ∼ t2 in the ballistic regime. Results for Ra = 3.0 × 107. (b,d) The PDFs of the vortex displacement P(dx)
at various time intervals dt. Experimental (b) and numerical (d) data for Ra/Rac = 18.0. Insets in (b,d) show the
rescaled PDFs P(dx/σ(dx)) where the vortex displacement dx is normalized by its standard deviation σ(dx).
(c) The non-Gaussian parameter α as a function of t/tc. Numerical results for Ra/Rac = 54.0 (red squares),
18.25 (green circles), 12.45 (grey diamonds) and 8.55 (purple hexagons). Inset in (c) shows α as a function of
Ra/Rac for t = tc. Open symbols: experimental data for Ra = 3.0 × 107. Closed symbols: numerical data for
Ra = 2.0 × 107.

Here, we infer that in a small time scale, the random motion of the vortices, driven
by the turbulent fluctuations of the background flows, is largely disturbed by the passing
vortices. The vortex interactions, such as merging (annihilation) of same (opposite) sign
neighbouring vortices, result in intermittent but deterministic horizontal movements of
the vortices in a short time. The observed PDFs of the vortex displacement in this time
scale are thus non-Gaussian. As the time interval dt increases and so does the vortex
displacement dx, the intermittent perturbation from a single adjacent vortex gives way
to the complex interactions from multiple neighbouring vortices that appear to have
stochastic spatiotemporal properties. In addition, owing to the large-amplitude background
turbulent fluctuations that dominate the vortex motion in large time scales, the PDF of the
vortex displacements returns to Gaussianity. We investigate the non-Gaussian parameter
α as a function of Ra/Rac for a given time interval dt = tc in the inset plot of figure 3(c).
Our experimental and numerical data suggest that in this weakly rotating regime, α

increases when Ra/Rac decreases. A similar trend of increasing α with decreasing
Ra/Rac is found when other time intervals dt are chosen. With decreasing Ra/Rac, the
diffusivity of a vortex becomes weaker (Chong et al. 2020), and the mean travelling
distance of the vortices decreases. Then each vortex comes across fewer vortices. As a
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Vortex dynamics in rotating Rayleigh–Bénard convection

result, the interaction between adjacent vortices becomes more intermittent. Moreover, the
magnitude of the background turbulent fluctuations decreases with decreasing Ra/Rac.
Its impact on the random motion of vortices becomes less significant than that of the
intermittent vortex interaction. For these reasons, we see that the stochastic motion of
vortices becomes more non-Gaussian, as reflected by the increase of α.

5. Regimes of vortex motion

Figure 3(a) shows that with the increasing rotating rate (Ra/Rac ≤ 4), the MSD of the
vortices increases faster than a linear function at large times. Such behaviour of the vortices
is ascribed to the centrifugal force that gives rise to the radial vortex motion. Based on our
Langevin model incorporating the centrifugal force (introduced in § 1), the radial velocity
of vortices is expected to be proportional to their radial position,

〈ur〉ξ = λ∗r. (5.1)

Here, λ∗ = |1/(2tc) − √
1/(4t2c) ± ζ | is the radial mobility for anticyclones and cyclones,

respectively, and 〈 · 〉ξ denotes the ensemble average over the vortex trajectories (Ding
et al. 2021).

Figure 4 shows, as functions of the radial position, the mean values of the radial velocity
〈ur〉ξ , number density 〈n〉ξ and vorticity magnitude 〈|ω|〉ξ of both types of vortices. Four
distinct flow regimes are identified clearly. We first find in a weakly rotating regime
(Ra/Rac = 54.8 and Fr = 0.030) that 〈ur〉ξ for both types of vortices fluctuates around
zero, indicating the absence of radial motion (figure 4a). In this flow regime, we note that
the mean values of number density 〈n〉ξ and vorticity magnitude 〈|ω|〉ξ for cyclones are
significantly greater than those for anticyclones (figures 4e,i). This is the case because
anticyclones are downwelling vortices generated from the top boundary. When observed
at the lower half of the fluid layer, they travel a longer distance to the measured fluid height
(z = H/4) than the upwelling vortices (cyclones), and their momentum and vorticity have
been largely dissipated by the background turbulence. (Values of 〈n〉ξ and 〈|ω|〉ξ for the
two types of vortices would be equal if measured at z = H/2; see discussions in Ding et al.
2021.) In the sidewall region (r/R > 0.85), large fluctuations of all the measured variables
appear owing to the intensive perturbation of the flow field by the boundary zonal flows
(de Wit et al. 2020; Zhang et al. 2020).

When the rotating rate increases (Ra/Rac = 4.57, Fr = 0.044), we see that 〈ur〉ξ
of anticyclones (cyclones) is larger (smaller) than zero, indicating that anticyclones
(cyclones) move away from (towards) the rotation axis under the centrifugal force.
Figure 4(b) shows that 〈ur〉ξ increases (or decreases) linearly with r for anticyclones
(cyclones), which is well predicted by (5.1). Cyclonic vortices still possess a greater
number density and vorticity magnitude than those of anticyclones at the measurement
height (figures 4f ,j). With further increase of Ω , the centrifugal effect becomes dominant.
For Ra/Rac = 2.26, Fr = 0.12, we note that unexpectedly, 〈ur〉ξ for both vortices is
positive and increases linearly with r in the inner region (figure 4c), signifying that
cyclones exhibit outward motion that is opposite to the centrifugal effect. For both types
of vortices, 〈ur〉ξ reaches a maximum at a radial position that depends on Ra/Rac, and
then decreases with larger r in the outer region. In the central region, we find that both
the number density and vorticity magnitude of anticyclones exceed those of the cyclones
(figures 4g,k). In the limit of rapid rotation with Ra/Rac = 1.43, Fr = 0.24, the cyclones
are found to take up the inward radial motion with 〈ur〉ξ decreasing linearly with r in
the inner region (figure 4d). The profiles of 〈n〉ξ (r) and 〈|ω|〉ξ (r) for both types of vortices
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Figure 4. Plots of (a–d) ensemble-averaged radial velocity 〈ur〉ξ , (e–h) vortex density 〈n〉ξ , and (i–l) vorticity
amplitude 〈|ω|〉ξ as functions of r/R, where 〈〉ξ denotes the ensemble average. Results are for Ra = 2.0 × 107

with (a,e,i) Ra/Rac = 54.8 and Fr = 0.030, (b, f,j) Ra/Rac = 4.57 and Fr = 0.044, (c,g,k) Ra/Rac = 2.26
and Fr = 0.12, and (d,h,l) Ra/Rac = 1.43 and Fr = 0.24. Red triangles (blue circles) denote cyclonic
(anticyclonic) data.

show similar radial dependence, suggesting that the symmetry of the vorticity field restores
near the onset of convection.

We further investigate the parameter regime in which the inverse-centrifugal motion
of cyclones occurs. We define the region boundary rc for anomalous vortex motion as
the mean radial velocity of cyclones 〈ur〉ξ ≥ 0 for r ≤ rc, and 〈ur〉ξ < 0 for r > rc. As
shown in figure 4(c), rc is thus the second zero crossing of the radial profile 〈ur〉ξ (r).
Figure 5(a) shows rc/R as a function of Ra/Rac. We find rc = 0 for Ra/Rac ≥ 4, and
rc exceeds zero when Ra/Rac decreases below 4, reaching a peak at Ra/Rac ≈ 2. With
further decreasing in Ra/Rac, we see that rc decreases, and the experimental data indicate
the trend that rc eventually approaches zero near the onset of convection Ra/Rac ≈ 1. Near
onset, our numerical data show a higher value of rc than the experimental one, presumably
owing to the insufficient numerical data evaluating the velocity profile 〈ur〉ξ (r). Otherwise,
results of rc/R for various Ra collapse approximately onto one single curve. We calculate
in the central region (r ≤ 0.5R) the ratios of the number density γn and the vorticity
magnitude γω of the anticyclones over the cyclones. Figures 5(b) and 5(c) present results
of γn and γω as functions of Ra/Rac, respectively. We see that data of γn and γω for
various Ra also exhibit similar dependence of Ra/Rac. For Ra/Rac > 10, γn and γω are
constants irrespective of Ra/Rac, while γn and γω increase when Ra/Rac ≤ 10, and have
a maximum at Ra/Rac ≈ 2. When Ra/Rac < 2, the two ratios γn and γω decrease with
further decreasing Ra/Rac, and approach unity at the onset of convection.

The observed asymmetry of the vorticity field in the anomalous regime is attributed to
the centrifugal effect. As the centrifugal force drives continuously hot (cold) fluid parcels
towards (away from) the centre of the convection cell, the background fluid temperature
in the central region increases and exceeds global mean fluid temperature (Hart & Olsen
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Figure 5. (a) The region boundary rc/R for the inverse-centrifugal motion of cyclones. (b) The ratio γn of
the number density of anticyclones over cyclones. (c) The ratio γω of vorticity amplitude of anticyclones
over cyclones. Results are shown as functions of Ra/Rac. Data for Ra = 2.0 × 107 and Γa = 3.8 (circles),
Ra = 3.0 × 107 and Γa = 3.8 (up-triangles), Ra = 1.4 × 108 and Γa = 2.0 (squares), and Ra = 2.7 × 108 and
Γa = 2.0 (down-triangles). The open circles are numerical data.

1999; Liu & Ecke 2011; Horn & Aurnou 2019). Thus in the central region, the temperature
difference of the cold anticyclones from the background fluid becomes greater than that
of the warm cyclones. Since such a temperature anomaly is proportional to the buoyancy
forcing on the vortices, it is positively correlated to the vorticity magnitude of the vortices
(Portegies et al. 2008; Grooms et al. 2010). It is also believed that the fluid warming
in the central region enhances the stability of the anticyclonic flows, leading to a larger
population of anticyclones. As a result, we find in figures 5(b) and 5(c) that both the
number density and the vorticity magnitude of the anticyclones exceed the cyclonic values.

The aforementioned vortex dynamics and symmetric properties of the vorticity field
reveal four distinct flow regimes depending on the rotation rates. (I) A randomly diffusive
regime in the slow rotating limit, with Ra being one order in magnitude larger than Rac.
In this flow regime, the vortices move in a random manner, yielding 〈ur〉ξ ≈ 0, and
rc/R is close to zero. Since at the measured fluid height the cyclones have a greater
population as well as a larger vorticity magnitude than the anticyclones, γn and γω are
both less than unity but independent of Ra/Rac. (II) A centrifugation-influenced regime
(4 ≤ Ra/Rac � 10) where the magnitude of 〈ur〉ξ increases linearly with r (figure 4b).
We observe that warm cyclones (cold anticyclones) move radially inwards (outwards),
which is in agreement with the centrifugal effect. (III) An inverse-centrifugal regime
(1.6 ≤ Ra/Rac ≤ 4) in which the cyclones exhibit anomalous outward motion in the inner
region with r ≤ rc (figure 4c). In this flow regime, anticyclones become the dominant
flow structures in the sense that both γn and γω greatly exceed unity (figures 5b,c). In the
outer region (r ≥ rc), the centrifugal effect of fluid warming becomes insignificant, and we
observe their inward cyclonic motion, as 〈ur〉ξ for cyclones decreases with increasing r and
becomes negative. (IV) The asymptotic regime in the rapid rotation limit (Ra/Rac < 1.6),
where rc approaches zero and the opposite radial motions of cyclones and anticyclones
recover (figure 4h).

6. Vortex centrifugal motion

6.1. Formation of vortex clusters
We have seen that in the inverse-centrifugal regime, the symmetry of the vorticity field
is broken, with the anticyclonic vortices dominating the cyclones in both strength and
population. We show below that in this regime, the vortices self-organize into clusters in
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Figure 6. (a) Spatial distribution of vortex clusters. The polygons represent the Voronoi tessellations of the
vortex centres. Voronoi cells within the same vortex cluster are presented in the same colour and enclosed by
thick lines. The blue (red) dots denote the centroids of anticyclonic (cyclonic) vortices, with arrows indicating
their velocity direction. Experimental data in a region r ≤ 0.7R are shown. (b) The normalized cluster length
L/H as a function of cluster size N. The dashed line represents the fitted power function L/H = AcNβc , where
Ac = 0.079 and βc = 0.81. Data in (a,b) are for Ra = 3.0 × 107 and Ra/Rac = 1.97. (c) The exponent βc as a
function of Ra/Rac for various Ra. Open circles: Ra = 2.0 × 107. Solid triangles: Ra = 3.0 × 107.

which the anticyclones dominate the long-range correlated vortex motion, leading to the
inverse-centrifugal motion of the cyclones.

Figure 6(a) presents an example of instantaneous spatial distribution and motion of the
vortices in the inverse-centrifugal regime. We find that the adjacent vortices often move
in similar directions and aggregate locally, forming vortex clusters. Here, we adopt the
following two criteria to identify vortex clusters (see e.g. Chen et al. 2012):

(1) the distance between two neighbouring vortices is smaller than 1.5 times the mean
vortex diameter;

(2) the angle between the velocity of two adjacent vortices is less than θ∗.

Our analysis over the range 30◦ ≤ θ∗ ≤ 75◦ confirms that the results of correlated
vortex motion are not sensitive to the choice of θ∗. In the following, we discuss statistical
properties using θ∗ = 60◦.

In figure 6(a), vortex clusters are identified using the aforementioned criteria. In this
Voronoi diagram of vortex centres, each cluster is enclosed by thick lines, with Voronoi
cells within the same cluster presented in the same colour. We define the cluster length L as
the largest distance between two vortex centres within the cluster, and compute the number
of vortices N with each cluster. Figure 6(b) shows L as a function of N for Ra = 3 × 107

and Ra/Rac = 1.97. We find that L(N) can be well fitted by a power function L = AcNβc .
Assuming that the distance between two adjacent vortices dvv is independent of N, the
power exponent βc then reveals the dimensional properties of clusters. When βc = 0.5,
vortices in a cluster are distributed isotropically in a two-dimensional plane. When βc = 1,
vortices line up to form one-dimensional clusters. Figure 6(c) shows that within the full
parameter range of Ra/Rac studied, βc increases slightly from 0.80 to 0.87 with increasing
Ra/Rac, suggesting a fractal property of the vortex clusters: vortices in a cluster have
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Figure 7. (a) The PDFs of the distance l between an anticyclone and its neighbouring cyclones within a cluster,
normalized by the radius of the anticyclone ra. The vertical dashed line shows a maximum p(l/ra) at l = lm =
cra. (b) Vorticity profile ω(s/ra) of an opposite-signed vortex pair along the centreline s. The anticyclonic
radius ra is defined by the radial position where ω(s/ra) crosses zero. Open circles: experimental data. Solid
line: the scaled zero-order Bessel functions J0(ks/ra)ω(0)/J0(0), where k = 2.405 is the first zero of J0. The
two vertical dashed lines indicate the centres of the anticyclone and the cyclone at s1 = 0 and s2 = cra. The
inset shows the vorticity distribution of this vortex pair, with the dashed line being the centreline. (c) Schematic
plot of the interaction between a pair of opposite-signed convective columnar vortices at the upper layer (top)
and lower layer (bottom). The blue curve represents the vorticity profile of a downwelling vortex, which creates
a background vorticity field that influences the motion of an adjacent upwelling vortex (denoted by the red
circle). Data are for Ra = 3.0 × 107 and Fr = 0.27.

a weak preference to be arranged along one direction, while the horizontal span of the
cluster is not isotropic but dependent on the orientation.

Within each cluster, the vortices exhibit long-range correlated motions. We attribute
these correlated vortex motions to the vortex–vortex interaction that occurs in a convection
state where the vortices are distributed densely. Figure 7(a) shows the PDF p(l/ra) of
the distance l between a downwelling vortex (anticyclone when observed in the lower
half fluid layer) and its neighbouring upwelling vortices for various Ra/Rac. Here, ra is
the radius of the downwelling vortex. One sees that p(l) has an apparent maximum at
lm = cra = 1.593ra. Here, the constant c is the ratio of the first minimum to the first zero of
the zero-order Bessel function J0. Since p(l) represents the probability of finding upwelling
vortices at a distance l from a downwelling vortex, it reflects the interactions between
adjacent counter-rotating vortices. Figure 7(b) shows an example of the vorticity profile
ω(s) of two opposite-signed neighbouring vortices, with the coordinate s measuring the
distance to the centre of the downwelling vortex along the connecting line. We see that
within the core region (s < lm), the vorticity profile ω(s) is well described by J0(s), and
ω(s) reaches a first minimum at s = lm, where p(l) is maximum. Such a pairwise vorticity
profile is commonly observed within vortex clusters in our experiment.

We provide the following interpretation for the most probable vortex separation lm. We
consider the motion of warm, upwelling vortices in the vicinity of a cold, downwelling
vortex. Observed in the lower half fluid layer (z < H/2), the cold vortex gives rise to a
negative background vorticity gradient in the core region (s < lm), but a positive vorticity
gradient outside the vortex core (s > lm) (see a schematic drawing in figure 7c). The
theory of vortex motion on a vorticity gradient (Schecter & Dubin 1999) suggests that
an upwelling vortex, which possesses negative vorticity in the lower half-layer in our
case, moves down the vorticity gradient due to the background shear flow. Thus inside
the core region (s < lm), the upwelling vortex moves away from the downwelling vortex
centre, but moves towards it when s > lm. Since a vortex with positive vorticity moves up
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Figure 8. Ensemble-averaged radial velocity 〈ur〉ξ of the vortices as a function of r/R for various cluster
sizes N. Data are for (a) cyclones and (b) anticyclones. Results for Ra = 2.0 × 107 and Ra/Rac = 2.26.

a background vorticity gradient, the upwelling vortex undergoes the same translational
motions in the upper half-layer. As a result, we find s = lm to be the most probable
radial position where an upwelling vortex is located as shown in figure 7(a). For the same
reason, one finds most probably a downwelling vortex at a radial distance s = crc from an
upwelling vortex centre (with rc being the radius of the upwelling vortex). Therefore, we
conclude that two opposite-signed convective columnar vortices have a trend of forming a
stable pair and exhibit correlated motions.

6.2. Centrifugal motion of clustered vortices
We have shown that it is the interaction between adjacent opposite-signed vortices that
organizes individual vortices to form vortex clusters. Within each vortex cluster, the
translational motion of the vortices is closely correlated and restricted with each other.
In the following, we make comparative studies of the radial motions of clustered vortices
(inside clusters) and isolated vortices (outside clusters).

Figure 8 shows the ensemble-averaged radial velocity 〈ur〉ξ for the vortices in clusters
with various sizes N. For isolated cyclones that move individually (i.e. N = 1), 〈ur〉ξ is
negative and its magnitude increases approximately linearly with r, indicating the normal
inward motion of cyclones. However, for clustered cyclones (N ≥ 2), 〈ur〉ξ becomes
positive, which implies anomalous outward motion. We see that the slope of 〈ur〉ξ (r)
increases when N increases up to 5. Therefore, clustered cyclones gain a larger velocity
of inverse-centrifugal motion when the cluster size increases. The velocity profile of
anticyclones exhibits a cluster size dependence similar to that of the cyclones, except that
for N = 1, 〈ur〉ξ (r) is positive, since isolated anticyclones move outwardly.

We determine the slope λu of the velocity profile through fitting the data 〈ur〉ξ in the
region 0 ≤ r ≤ 0.5R using (5.1). Results for λu as a function of cluster size N for Ra/Rac =
2.67 are shown in figure 9(a). We see clearly that in this inverse-centrifugal regime, λu for
cyclones changes sign when N exceeds 1. Data for both types of vortices suggest a similar
trend for N ≥ 2, i.e. λu increases with N for small cluster sizes and reaches a maximum at
N = 5. We also note that for small cluster size, λu is considerably larger for anticyclones
than for cyclones.

When vortices inside a cluster move collectively, they share a similar radial velocity
profile 〈ur〉ξ (r). It is thus reasonable to consider all vortices inside the cluster as a single
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Figure 9. Mobility λu of vortex motion determined from the slope of 〈ur〉ξ (r): (a) λu as a function of N for
Ra = 2.0 × 107 and Ra/Rac = 2.26; (b) λu as a function of Ra/Rac for various Ra. Open symbols are data for
isolated anticyclones (N = 1). Solid symbols are data for clustered anticyclones (N > 1).

structure that undergoes radial motion driven by the centrifugal force. Here, we interpret
the radial motion of vortex clusters using a Langevin-type equation analogous to (1.2) in
§ 1 (see also discussions in Ding et al. 2021). For a given initial radial position of a cluster,
its radial mobility is given by λu ≈ |1/(2tc) − √

1/(4t2c) + ζ |, where the relaxation time
tc = M/η for the cluster’s motion is given by the inertia mass M of all vortices inside the
cluster, η is the dynamic viscosity, ζ = Ω2〈δT〉 is the coefficient of the net centrifugal
force for all clustered vortices, and 〈δT〉 is the averaged temperature anomaly of the vortex
cluster. Since in the inverse-centrifugal regime both the population and vorticity strength
of anticyclones overrides that of cyclones, the net centrifugal force is positive, thus the
vortex cluster moves outwardly.

As shown in figure 9(a), the mobility of clusters λu is in the order of 10−3 s−1, and
tc ≈ 10 s in the inverse-centrifugal regime (see Ding et al. 2021); we find 1/(2tc) � λu,
ζ�1/(2tc)2, thus λu ≈ ζ tc = Ω2〈δT〉M/η. With increasing cluster size N, the inertia
mass M of the cluster increases. We suggest that it is the dominating factor for an enlarged
λu for clusters of intermediate size (N ≈ 5). For very large cluster sizes (N ≥ 5), we infer
that viscous damping may become significant to influence cluster motion, and thereby λu
decreases.

Figure 9(b) presents λu as a function of Ra/Rac for isolated (N = 1, open symbols)
and clustered (N > 1, solid symbols) anticyclones. Data for two sets of Ra are shown
for comparison. One sees that for a given Ra and Ra/Rac, λu is greater for clustered
anticyclones than for isolated anticyclones. For all cases, λu has a maximum at Ra/Rac ≈
2. We see that the maximum λu for clustered anticyclones is nearly twice that of the
isolated ones for both Ra numbers. We also see that λu increases further when a larger
Ra is chosen. These results demonstrate that the radial motion of anticyclones is enhanced
by the collective motion to a great extent.

6.3. Froude number dependence of the vortex mobility
The mobility λu represents the primary features of radial motion for both isolated and
clustered vortices. We suggest that the non-monotonic dependence of λu on Ra/Rac
shown in figure 9(b) is thus owing to the decreasing vorticity magnitude |ω| that
competes with the increasing rotation rate Ω . Following discussions in § 6.2, we have
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Figure 10. (a) The mobility λa/|ω| of all vortices scaled by the vorticity magnitude as a function of Fr.
(b) The scaled mobility λs/|ω| of isolated vortices as a function of Fr. Results are for Ra = 2.0 × 107 (red
circles) and Ra = 3.0 × 107 (black triangles). Open symbols: cyclones. Solid symbols: anticyclones. The solid
line represents a power-function fit with exponent 1.40 ± 0.13.

λu ≈ ζ tc = Ω2 δT m/η. The temperature anomaly δT of the convective vortices represents
the buoyancy forcing, which is predicted to be proportional to the vorticity magnitude of
the vortices (Portegies et al. 2008; Grooms et al. 2010). Thus the mobility of clusters can
approximate to λu ≈ c∗(z)Ω2 |ω| m/η, with the coefficient c∗(z) depending on the fluid
depth. This approximate relation implies that the mobility of the vortices is determined
not only by the rotating rate but also by the vorticity magnitude of the vortices.

In figure 10, we show the scaled mobility λa/|ω| as a function of Fr for both types of
vortices. Here, λa is determined by linear fitting of the radial velocity profile 〈ur〉ξ (r)
shown in figure 9 for both isolated (N = 1) and clustered (N > 1) vortices. Since
λa/|ω| = c∗(z)Ω2m/η, the scaled mobility is expected to increase when the rotation rate
increases. Our experimental results in figure 9(a) show that this is the case, as λa/|ω|
for both cyclones and anticyclones grows rapidly with increasing Fr in the full parameter
range studied. Meanwhile, we see that results for λa/|ω| are scattered, and there exists a
notable difference between the cyclonic and anticyclonic data for given Fr and Ra.

We suggest that the vortex interaction of vortices forming clusters may disturb individual
vortex motion and modify the vortex mobility. In support of this argument, we determine
the mobility λs for isolated vortices, calculating the slope of the velocity profile 〈ur〉ξ (r)
(e.g. shown in figure 9) for both cyclones and anticyclones for the case of N = 1. Results
for λs/|ω| are shown as a function of Fr in figure 10(b). We see that the discrepancy of
λs/|ω| between isolated cyclones and anticyclones is minor. Moreover, data for λs/|ω| for
various Ra collapse onto a power-law function λs/|ω| ∝ Fr1.40±0.13 in the full parameter
range of Fr studied, suggesting a general scaling relationship. These results imply that the
mobility of isolated vortices scaled by the magnitude of their vorticity can be determined
adequately by the Froude number.

7. Vortex lifespan

Observations of the evolution of vortex structures suggest that the generation and
disappearance of the vortices occur seemingly randomly in time. In this section, we present
the statistical analysis of the lifespan of vortices. We calculate the number N(t) of vortices
that have a lifespan longer than time t. Figure 11 shows the results for N(t)/N0 as a function
of time for various Ra/Rac. Here, N0 is the number of all vortices observed over the course
of the experiment. We see that for both types of vortices, N(t)/N0 decreases exponentially
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Figure 11. Results of N(t)/N0 as a function of time for (a) cyclones and (b) anticyclones, for Ra = 3.0 × 107.
The solid curves represent the fitted exponential function N(t)/N0 = A exp(−t/τ).

in large time limits. The solid lines in figure 11 represent the fitted exponential functions
to the data, that is, N(t)/N0 = A exp(−t/τ), with τ being the characteristic lifespan of the
vortices, and A a fitting coefficient. The exponential decay law of N(t) in figure 11 can be
understood considering that each vortex has a constant disappearing probability p in unit
time. The decreasing rate is expected to be proportional to the number of existent vortices,
i.e. dN/dt = −pN. This simple model leads to the exponential decay law for N(t), and
yields the characteristic vortex lifespan τ = 1/p of the long-lived vortices.

Meanwhile, we notice that in a short time (t � τ ), N(t) decays faster than the fitted
exponential curves, as shown in figure 11, suggesting that short-lifespan vortices may
die out with a higher probability. It could be that a subset of these vortices arises from
vortex interactions or background turbulence, and exhibits distinct behaviour of evolution
compared to the long-lived, coherent vortices. Nevertheless, these short-lifespan vortices
have little influence on the statistical properties of the vortex lifespan τ .

The characteristic lifespan τ for both types of vortices at different Ra/Rac is shown
in figure 12. For a given Ra, the lifespan of anticyclones shows a clear increasing
trend with decreasing Ra/Rac (figure 12a). The lifespan of cyclones, however, exhibits
a non-monotonic dependence on Ra/Rac. Figure 12(b) shows that a local minimum of τ

appears within the inverse-centrifugal regime 1.6 ≤ Ra/Rac ≤ 4, which is attributed to
the fact that cyclones undergo the normal inward motion in the outer region (r > rc), but
are forced to move outwardly in the inner region (r < rc) owing to the vortex clustering
effect (see figure 5c). The convergent radial motion of the cyclones results in a relatively
short lifespan τ on average, maintaining a constant vortex number density as observed in
the experiment.

To compare the lifespan of the two types of vortices, we show in figure 12(c), as a
function of Ra/Rac, the ratio γτ of the lifespan of anticyclones over the cyclones. We see
that the lifespan of anticyclones is around one order of magnitude shorter than that of
cyclones in the flow regime (I) (when Ra/Rac ≥ 10). As Ra/Rac decreases below 10, γτ

increases. When the system enters into the inverse-centrifugal regime (III) (Ra/Rac ≤ 4),
the lifespan of anticyclones starts to override that of cyclones. The remarkable similarity
in the Ra/Rac dependence of γτ , γn and γω (see figures 5b,c) suggests that the vortex
lifespan is strongly influenced by the centrifugal effects.
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Figure 12. The characteristic lifespan τ of (a) anticyclones and (b) cyclones, as a function of Ra/Rac. (c) The
ratio γτ of the lifespan of anticyclones to that of cyclones, as a function of Ra/Rac.

We examine the radial dependence of the vortex lifespan in flow regimes where
the radial motion of vortices is prominent. Here, we calculate the number Nr0(t) of
vortices that arise at an initial radial position r0 ± 0.05R and have a lifespan larger
than t. Figures 13(a) and 13(b) show Nr0/N0 as a function of time for cyclones and
anticyclones, respectively, for various r0, with N0 being a normalization coefficient. Here,
Nr0/N0 appears to depend sensitively on the initial radial position r0, and for each r0,
Nr0/N0 follows persistently the exponential decay in time. In figures 13(c) and 13(d),
we show results of the lifespan τ as a function of r0 for two types of vortices. It is
notable that τ depends sensitively on the initial location for Ra/Rac = 2.67, while in
the centrifugation-influenced regime (Ra/Rac = 4.66), τ appears relatively constant with
varying r0. In the inverse-centrifugal regime (Ra/Rac = 2.67), the lifespan of cyclones
decreases with increasing r0 in the inner region (r � rc), reaching a minimum at the
region boundary (r0 ≈ rc), followed by an increase in the outer region (r � rc). Hence
cyclones around the boundary of the inverse-centrifugal region have the shortest lifespan.
For anticyclones, τ decreases monotonically with r0. These results also reveal that vortices
generated within the inner region (r0 < rc) possess in general a longer lifespan than
vortices generated in the outer region. We suggest two reasons that may be responsible
for vortices in the inner region having longer lifespans. First, since vortex clusters form
mostly in the inner region (see figure 6a), they have larger inertia and are more stable
against perturbations from the background turbulent flows, which stabilizes the structure
of the vortices within. Second, annihilation and merging events of adjacent vortices occur
less frequently within clusters as the clustered vortices are moving in a collective manner.

8. Summary and discussions

A major emphasis of previous studies in rotating convection has been on the flow structures
of the convective vortices in rotating RBC (Vorobieff & Ecke 2002; Sprague et al. 2006;
Portegies et al. 2008; Grooms et al. 2010; Nieves et al. 2014; Rajaei et al. 2017; Shi et al.
2020) and partly on their stochastic translational motions (Sakai 1997; King & Aurnou
2012; Noto et al. 2019; Chong et al. 2020; Ding et al. 2021). We investigate here their
spatial distribution, lifespan and radial motion in the parameter ranges 2.0 × 107 ≤ Ra ≤
2.7 × 108, 1.7 × 10−5 ≤ Ek ≤ 2.7 × 10−4 and 1.2 × 10−3 ≤ Fr ≤ 0.31, which cover four
flow regimes of vortex motion: (I) random vortex diffusion, (II) centrifugal-forced
radial motion, (III) inverse-centrifugal motion, and (IV) asymptotic centrifugal motion.
We report that under slow rotations with Ra � 10 Rac, the vortices undergo Brownian-type
random motion, i.e. the mean square displacement (MSD) of the vortices increases first
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Figure 13. Results for Nr0/N0 as a function of time for (a) cyclones and (b) anticyclones arising at various
initial radial positions. Data are for Ra/Rac = 2.67, Ra = 3 × 107. The characteristic lifespan τ of (c) cyclones
and (d) anticyclones as a function of r0/R for two sets of Ra/Rac. Solid symbols: Ra/Rac = 2.67. Open
symbols: Ra/Rac = 4.66. The vertical dashed lines denote the inverse-centrifugal region boundary r0 = rc
for Ra/Rac = 2.67.

in time as t2 in the ballistic regime, and then linearly in the diffusive regime. Our close
inspection of the PDFs of the vortex displacements reveals that, however, the ballistic
motion of the vortices is non-Gaussian at small time intervals. Furthermore, we show that
in the limit of slow rotations (Ra ≈ 80 Rac), the vortices are randomly distributed over the
horizontal plane, with the PDFs of the Voronoi cell areas of the vortices well described by
the standard Γ distribution.

With modest strength of rotations, the centrifugal force influences the dynamics of the
vortices. We observed that in this flow regime with 4 Rac ≤ Ra ≤ 10 Rac, cyclones move
radially towards the rotation axis, while anticyclones migrate outwards. Thus the MSD
of the vortices increases faster than a linear function of time at a large time. Moreover,
we note that the ensemble average of the radial velocity 〈ur〉ξ of cyclones (anticyclones)
is negative (positive) and decreases (increases) linearly with respect to r. The centrifugal
motion of the vortices in a background of turbulent fluctuation can be interpreted through
an extended Langevin model incorporating centrifugal acceleration. In this flow regime,
we find that the horizontal scale of the vortices, and thus the mean area A of vortex Voronoi
cells, decreases with increasing rotating rate. The size distribution of the Voronoi cells
deviates from the standard Γ distribution, as reflected by the decreasing of their standard
deviation σ(A/〈A〉).

Under rapid rotations with 1.6 Rac ≤ Ra ≤ 4 Rac, the mean area of the Voronoi cells
of the vortices decreases significantly, signifying that the vortices are distributed densely.
In this convection state, the hydrodynamic interaction of neighbouring vortices becomes
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prominent to influence the vortex dynamics. We report the existence of a most probable
separation between two adjacent counter-rotating vortices that tend to form a vortex
pair and move collectively. Such vortex interactions eventually lead to the formation of
large-scale vortex clusters. As a result, the size of the vortex Voronoi cells becomes
diversified, thus σ(A/〈A〉) increases with decreasing Ra/Rac. In this flow regime, the cold
anticyclones override the warm cyclones in vorticity strength, population and lifespan,
a flow field asymmetry brought about by the centrifugal effect. Within vortex clusters,
the motion of the weak cyclones thus submits to that of strong anticyclones and moves
outwardly in a collective manner. Within each vortex cluster, the translational motion of
the vortices is long-range correlated. We show that such correlated motion of the clustered
vortices exerts essential influences on their dynamics. With increasing cluster size N, the
radial velocity 〈ur〉ξ (r) for clustered cyclones and anticyclones increases faster with r,
thus both types of vortices gain a larger translation velocity moving outwardly. Despite
the complicated Fr dependence of the scale vortex mobility λa/|ω| for all vortices, we
discover in the full parameter range of Fr a simple power-law scaling λs/|ω| ∝ Fr1.4 for
isolated vortices for various Ra and vortex types.

Finally, an intriguing aspect of rotating convection systems is the lifespan τ of the
coherent vortices. We report that the number of vortices N(t) with a lifespan exceeding
t decays exponentially in time. Such an exponential decay law suggests that the convective
vortices experience a constant rate 1/τ of disappearance (e.g. through merging or
annihilation events). The fact that spatial- and time-averaged vortex number density n
remains constant implies that the convective vortices are generated with constant rate 1/τ .
Our studies of the statistical properties of the vortex lifespan may provide valuable insights
into the evaluation of the vortex distributions and dynamics in rotating convection.

We have shown in this work the rich and intriguing vortex dynamics in rotating RBC.
There remain numerous issues requiring further investigations. Prominent among those
is the origin of the Brownian but non-Gaussian diffusion of the vortex displacements.
Such non-Gaussian diffusive motion becomes apparent at short time scales. Another
crucial issue awaiting theoretical descriptions is the hydrodynamic interactions among
closely located convective vortices that give rise to the long-range collective motion of
the vortices. What are the implications of the vortex dynamics presented in this study
for the correlated vortex motion observed in giant gaseous planets and other large-scale
geophysical and astrophysical flows (Li et al. 2020; Gavriel & Kaspi 2021, 2022; Mura
et al. 2021)? We expect future progress in answering these questions.
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