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Abstract

For a quadratic Markov branching process (QMBP), we show that the decay parameter
is equal to the first eigenvalue of a Sturm–Liouville operator associated with the partial
differential equation that the generating function of the transition probability satisfies.
The proof is based on the spectral properties of the Sturm–Liouville operator. Both the
upper and lower bounds of the decay parameter are given explicitly by means of a version
of Hardy’s inequality. Two examples are provided to illustrate our results. The important
quantity, the Hardy index, which is closely linked to the decay parameter of the QMBP,
is deeply investigated and estimated.
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1. Introduction

The motivation for the present paper is to study the decay properties of quadratic Markov
branching processes. We give the formal definition as follows.

Definition 1.1. A quadratic Markov branching process is a continuous-time Markov chain with
state space Z+ = {0, 1, . . .} determined by the q-matrix Q = {qij; i, j ∈Z+} defined by

qij =
{

i2bj−i+1 if j ≥ (i − 1)≥ 0,

0 otherwise,
(1.1)
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where {bj : j ∈Z+} is a given real sequence which satisfies the usual nontrivial conditions

bj ≥ 0 (j �= 1), −b1 =
∑
j �=1

bj, b0 > 0, and
∞∑

j=2

bj > 0. (1.2)

Let md and mb be the mean death and mean birth rates, respectively. Then we have

md = b0 and mb =
∞∑

j=2

(j − 1)bj. (1.3)

When md ≥ mb, the jump chain almost surely hits the absorbing zero state. Thus, there is
a unique Q-function. Uniqueness may not hold if md < mb, but in all cases, the forward
Kolmogorov system has exactly one solution, which is the Feller minimal solution; see [6, 3].
The corresponding Markov process {Z(t); t ≥ 0} is called a quadratic Markov branching pro-
cess, henceforth referring to as a QMBP. Note that the quadratic branching process no longer
obeys the branching property.

Let

B(s) =
∞∑

j=0

bjs
j (1.4)

denote the generating function of the sequence {bj; j ≥ 0}. As a power series, this generating
function has a convergence radius �−1

b = lim sup
n→∞

n
√

bn. Clearly, �b ≥ 1.

The generating function B(s) possesses the following simple yet useful properties, whose
proof is well known and thus omitted here.

Proposition 1.1. The generating function B(s) is a convex function of s ∈ [0, �b), and hence the
equation B(s) = 0 has at most two roots in [0, �b) and, in particular, in [0, 1]. More specifically,
if B′(1) ≤ 0, then B(s) > 0 for all s ∈ [0, 1), and 1 is the only root of the equation B(s) = 0 in
[0, 1].

It is easy to see that B′(1) = mb − md, which explains the probability interpretation of the
important quantity B′(1).

Let the following assumption hold in the rest of the present paper.

Assumption 1.1. Assume that B′(1) < 0; that is to say, md > mb.

Let P(t) = (Pij(t)) denote the transition function where Pij(t) = P(Zt = j | Z0 = i). Denote
the communicating class for the transition function P(t) by C. By the assumption given in
Definition 1.1, it is easy to see that for our QMBPs, the communicating class C is just N=
{1, 2, · · ·}. The decay parameter of the process is defined by

λC = − lim
t→∞

1

t
log Pij(t). (1.5)

General theory asserts that the limit exists and that it is independent of i, j ∈ C. It is easy to
show that

λC = inf

{
λ ≥ 0:

∫ ∞

0
Pij(t)e

λtdt = ∞, i, j ∈ C

}
. (1.6)
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For a review of this topic, we refer the readers to van Doorn and Pollett [21]. A very use-
ful representation for the decay parameter can be found in Theorem 3.3.2(iii) of Jacka and
Roberts [12].

In nearly all stochastic models that can be well modeled by a continuous-time Markov chain
with absorbing states, obtaining and/or estimating the corresponding decay parameter is a very
important topic. The main aim of this paper is to investigate this question for QMBPs.

The structure of this paper is as follows: after the introductory Section 1, we state our
main conclusions in Section 2; the proofs will be given in Sections 3 and 5. Examples will be
provided in Section 4.

2. Main results

Our first main result is a representation theorem for the decay parameter λC of the QMBP
by means of the classical generating function method. Let {Fi(s, t); i ∈Z+} be the generating
functions of the Q-function P(t) of the QMBP. That is,

Fi(s, t) =
∞∑

j=0

Pij(t)s
j, i ≥ 0.

Define

w(s) = 1

B(s)
, J = (0, 1), (2.1)

where B(s) is defined in (1.4).
Consider the differential expression M defined by

My := (−sy′(s))′, y ∈H= L2(J, w). (2.2)

It is known by Chen [3] that Fi(s, t) is the unique solution of the equation

∂

∂t
Fi(s, t) = −w−1MFi(s, t), (s, t) ∈ (0, 1) × (0, ∞), (2.3)

with initial condition

Fi(s, 0) = si.

To solve the partial differential equation (2.3), we will make use of Sturm–Liouville theory.
We first find the suitable self-adjoint realization (S, D(S)) of the minimal operator Smin of
(M, w) on J (see Definition 3.1 below), and then study the spectral properties of (S, D(S)). The
following is our representation theorem for λC for the QMBP.

Theorem 2.1. The decay parameter λC for the QMBP is equal to the first eigenvalue �0 of the
self-adjoint Sturm–Liouville operator (S, D(S)) in the Hilbert space L2(J, w) defined by

Sg = w−1Mg for g ∈ D(S), (2.4)

D(S) = {y + cv1 : y ∈ Dmin, c ∈R}, (2.5)
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where Dmin is the domain of Smin, and v1 is a C∞(J) function such that

v1(s) =
{

1 when 0 < s < c1,

0 when c2 < s < 1,
(2.6)

with some 0 < c1 < c2 < 1.

Remark 2.1. The identity (2.5) means that the dimension of the quotient space D(S)/Dmin of
D(S) and Dmin is 1. That is to say, the deficiency index of the differential expression M on J is
d = 1. The function v1 is not unique and can be taken as any function ṽ such that ṽ − v1 ∈ Dmin.

By Theorem 2.1, to find the decay parameter λC for the QMBP is just to find the first
eigenvalue �0 of the self-adjoint operator (S, D(S)). Then, by means of the variational formula
for the first eigenvalue �0, we obtain upper and lower bounds on λC.

Theorem 2.2. The variational formula for the decay parameter λC is

λC = inf

{ ∫ 1
0 s
(
g′(s)

)2ds∫ 1
0 g2(s)w(s)ds

: g �≡ 0, g ∈ C∞
c (J)

}
. (2.7)

Furthermore, λC has the lower and upper bounds

1

4D2
≤ λC ≤ 1

D2
, (2.8)

where D2 is given by

D2 := sup
s∈(0,1)

{
(−log s) ·

(∫ s

0

1

B(r)
dr

)}
. (2.9)

From Theorems 2.1 and 2.2, particularly from (2.8) and (2.9), we see that to estimate the
value of D2 is a key issue. Let us agree to call D2 the Hardy index. The following corollaries
concentrate on discussing the Hardy index.

Corollary 2.1. We have that

b0 − mb

4(log 2)2
≤ λC ≤ b0

(log 2)2
.

Sharper bounds for λC can be given as follows.

Corollary 2.2. We have that

b0 − mb

4(log(1 + √
κ1))2

≤ λC ≤ mb − κ2

κ2(log(1 + √
κ2))2

, (2.10)

where κ1 = mb
b0

,

κ2 = mb

A(s0) + s0 · mb
,

A(s) is determined by A(s) = B(s)
1−s , and s0 is determined by the equation −mb = A′(s0), which

guarantees that 0 < s0 < 1 and that κ1 < κ2.
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Corollary 2.3. If B′′(1) < 2b0, then

b0 − mb

4(log(1 +√κ ′
1))2

≤ λC ≤ b0 − mb

(log(1 +√κ ′
2))2

, (2.11)

where

κ ′
1 = B′′(1)

2b0
, κ ′

2 =
∑∞

j=2 bj

b0
.

Remark 2.2. There are two kinds of bounds on the quantity D2 in (2.9), in Corollaries 2.2 and
2.3, respectively. It can easily be seen that the upper bound in Corollary 2.2 is better than the
one in Corollary 2.3 if and only if mb < 1

2 B′′(1). Also, the lower bound in Corollary 2.2 is
better than the one in Corollary 2.3 if and only if

log(1 + √
1 + k2)

log(1 +√k′
2)

>
A(s0) + mb · s0 − mb

b0 − mb
.

Furthermore, the assumption B′′(1) < 2b0 is not necessary for the lower bound on λC in
Corollary 2.3.

We can find new and better upper and lower bounds for λC by using the result for Example 2
discussed in Section 4.

Corollary 2.4. There exist s1 ∈ (0, 1) and s2 ∈ (0, 1) such that

1

4φ2(s2)
≤ λC ≤ 1

φ1(s1)
, (2.12)

where

φ1(s) = (−log s)
∫ s

0

dr

(1 − r)
[
b0 + (b0 + b1)r + 1

2 A′′(0)r2
] ,

and

φ2(s) = (−log s)
∫ s

0

dr

(1 − r)
[
b0 + (b0 + b1)r + 1

2 A′′(1)r2
] ,

A(s) is determined by A(s) = B(s)
1−s , and s1 and s2 are determined by sups∈(0,1) φ1(s) = φ1(s1)

and sups∈(0,1) φ2(s) = φ2(s2), respectively.

Remark 2.3. Here, φi(s), i = 1, 2, are elementary functions; see (4.10) for their analytical
expressions. The point si is the unique stationary point of the function φi(s) in (0, 1), which
can be obtained through basic numerical methods. Hence, both sups∈(0,1) φ1(s) = φ1(s1) and
sups∈(0,1) φ2(s) = φ2(s2) can be evaluated easily.

The proofs of these four corollaries can be found in Section 5.

3. Sturm–Liouville theory and the proofs of Theorems 2.1 and 2.2

For any interval J of the real line, we denote by L1(J, R) the linear space of real-valued
Lebesgue-integrable functions defined on J. The notation L1

loc(J, R) is used to denote the linear
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space of functions y satisfying y ∈ L1([α, β], R) for all compact intervals [α, β] ⊆ J. As usual,
we also write these respectively as L1(J) and L1

loc(J) for simplicity. The class of absolutely
continuous functions on the compact interval [α, β] is denoted by AC[α, β]. Also, we denote by
ACloc(J) the collection of real-valued functions which are absolutely continuous on all compact
intervals [α, β] ⊆ J.

3.1. Sturm–Liouville theory

For the differential expression M given by

My(s) := −(p(s)y′(s))′ + q(s)y(s), on J,

with
J = (a, b), −∞ ≤ a < b ≤ ∞, 1/p, q, w ∈ L1

loc(J, R), (3.1)

and the expression domain of M being functions y such that y, py′ ∈ ACloc(J), the following
definitions are taken from Zettl [22].

Definition 3.1. (The maximal and minimal operators.) The maximal domain Dmax of M on J
with weight function w > 0 is defined by

Dmax =
{

g ∈ L2(J, w) : g, pg′ ∈ ACloc(J), w−1Mg ∈ L2(J, w)
}

.

Define

Smaxg = w−1Mg, for g ∈ Dmax,

S′
ming = w−1Mg, for g ∈ Dmax such that g has compact support on J.

Then Smax is called the maximal operator of (M, w) on J, S′
min is called the preminimal operator,

and the minimal operator Smin of (M, w) on J is defined as the closure of S′
min. The domain of

Smin is denoted by Dmin.

Any self-adjoint extension of the minimal operator Smin satisfies

Smin ⊂ S = S∗ ⊂ Smax.

It is well known that the domain D(S) is determined by two-point boundary conditions which
depend on the classification of the endpoints as limit-circle or limit-point.

Definition 3.2. Consider the Sturm–Liouville equation

My(s) = �w(s)y(s), � ∈R, on J. (3.2)

The endpoint a

• is regular if, in addition to (3.1),

1/p, q, w ∈ L1((a, d), R)

holds for some (and hence any) d ∈ J;

• is limit-circle (LC) if all solutions of the equation (3.2) are in L2((a, d), w) for some
(and hence any) d ∈ (a, b);

• is limit-point (LP) if it is not LC.
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Similar definitions are made at the endpoint b. An endpoint is called singular if it is not regular.
It is well known that the LC and LP classifications are independent of � ∈R.

Lemma 3.1. Let (M, w) be given as in (2.1) and (2.2). Then both s = 0 and s = 1 are singular,
and the endpoints s = 0 and s = 1 are LC and LP, respectively. Moreover, the deficiency index
of M on J is d = 1.

Proof. It is clear that 1
s /∈ L1((0, d),R) and w /∈ L1((d, 1),R) for any d ∈ (0, 1). Hence, the

endpoints s = 0 and s = 1 are singular.
Let v̄1(s) ≡ 1 and v2(s) = log s on (0, 1). Taking � = 0, it is easy to see that v̄1, v2 are

nontrivial linearly independent solutions of the equation

My(s) = (−sy′(s))′ = �w(s)y(s).

Since

w(s) = 1

(1 − s)A(s)
,

where A(s) > 0 and is analytic on [0, 1] (see Lemma 5.1 below), we see that v̄1, v2 ∈
L2((0, d), w) and v̄1 /∈ L2((d, 1), w) with d ∈ (0, 1). Hence, by Definition 3.2, the endpoints
t = 0 and t = 1 are LC and LP, respectively. Hence, the deficiency index of M on J is d = 1;
see Theorem 10.4.5 of Zettl [22]. �

Lemma 3.2. Let v1 ∈ C∞(J) be given as in (2.6). Then

D(S) =
{

y ∈ Dmax : lim
s→0+ sy′(s) = 0

}
(3.3)

= {y + cv1 : y ∈ Dmin, c ∈R} (3.4)

is a self-adjoint domain. Moreover, (S, D(S)) is the unique self-adjoint extension of Smin such
that y(s) = s − 1 belongs to the domain D(S).

Proof. The function v1 can be constructed by means of the smooth cut-off function; see
Davies [8, p. 47] for details. Let v2(s) = log s and � = 0.

Let p(s) = s. For y and z in the expression domain of M, the Lagrange sesquilinear form [ , ]
is given by

[y, z] := ypz′ − zpy′.

It is known that for any y, z ∈ Dmax, both limits

[y, z](0) = lim
s→0+ [y, z](s), [y, z](1) = lim

s→1− [y, z](s)

exist and are finite. See Zettl [22, Lemma 10.2.3].
It is clear that v1, v2 are nontrivial real solutions of the equation

My(s) = (−sy′(s))′ = �w(s)y(s)

on (0, c1) satisfying [v1, v2](s) = 1, s ∈ (0, c1). When y ∈ Dmax, we have that
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[y, v1](0) = lim
s→0+ [y, v1](s) = − lim

s→0+ sy′(s),

[y, v2](0) = lim
s→0+ [y, v2](s) = lim

s→0+ (y(s) − s log sy′(s)).

Since 0 is LC and 1 is LP, Theorem 10.4.5 of Zettl [22] says that D(S) is a self-adjoint
domain if and only if there exist A1, A2 ∈R, with (A1, A2) �= (0, 0), such that

D(S) = {y ∈ Dmax : A1 · [y, v1](0) + A2 · [y, v2](0) = 0}
holds. Now, taking (A1, A2) = (1, 0), we obtain (3.3).

It is easy to check that v1, v2 ∈ Dmax. Since [v1, v2](0) = 1, we have v1 /∈ Dmin. It is clear
that sv′

1(s) = 0 on (0, c1). Thus, v1 ∈ D(S)/Dmin. Note that the deficiency index of M on J is
d = 1. Hence, we obtain (3.4).

When y(s) = s − 1, we see that [y, v1](0) = 0, [y, v2](0) = −1. If (A1, A2) �= (0, 0) satisfies
A1 · [y, v1](0) + A2 · [y, v2](0) = 0, then A1 �= 0, A2 = 0. Hence, (3.3) is the unique self-adjoint
extension of Smin such that y(s) = s − 1 belongs to the domain D(S). �

Next we will show that the operator (S, D(S)) has the BD property, i.e., it has spectra discrete
and bounded below. Before that, let us briefly make some comments on the BD property. The
criteria for empty essential spectrum (or, say, discrete spectrum) of singular self-adjoint dif-
ferential operators (Sturm–Liouville operators) have been thoroughly explored in the literature
on analysis. The classical method employed is that of oscillation theory; see [10, 9, 20, 2]. In
particular, Theorem 4.1(ii) of [1] gives a necessary and sufficient condition using this theory.
A sufficient condition is given in [20] using the Friedrichs extension theorem. Other necessary
and sufficient conditions are given in [7, 16] using compact embedding theorems.

In the literature on probability, the Sturm–Liouville operator is viewed as a generator of a
diffusion process on the line. This explanation of the probabilistic meaning can be traced back
to Kolmogorov, Feller, and Itô. For a diffusion operator with a killing term, Theorem 7.1(i) of
[5] is an extension of Theorem 4.1(ii) of [1] mentioned above.

There are also easier ways to obtain the same results, such as Theorem 4.1(ii) of [1] and the
method of [20] mentioned above, but we will employ oscillation theory, along the same lines
as [2] and [11], to show Lemma 3.3, since it is more elementary.

Lemma 3.3. The operator (S, D(S)) has the BD property. Moreover, the spectrum σ (S) is real,
simple, and discrete;

σ (S) = {�k ∈R, k = 0, 1, 2, . . .},
�k < �k+1, �k → ∞ (as k → ∞).

If ϕk is an eigenfunction of �k, then ϕk ∈ C∞(J) and has exactly k zeros in J = (0, 1). In
addition, the set of eigenfunctions {ϕk, k ∈Z+} is orthogonal and complete in H= L2(J, w).

Proof. Define

A[α, β] =
{

f : [α, β] →R : f ∈ AC[α, β], f ′ ∈ L2(α, β), and f (α) = f (β) = 0
}

.

We let
B(s) = (1 − s)A(s). (3.5)
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Then A(s) �= 0 and is analytic on |s| < 1. It follows from Lemma 2.2 of Chen [3] that

B(s) > 0 ∀s ∈ [0, 1),

A(s) > 0 ∀s ∈ [0, 1], (3.6)

where in the last inequality A(1) > 0 is from B′(1) = −A(1) < 0 (see Lemma 5.1 below).
The proof is in the spirit of Bailey et al. [2] and Hinton and Lewis [11]. We need only show

that for each real number � there is a δ > 0 (which may depend on �) such that, if [α, β] ⊂ (0, δ)
or [α, β] ⊂ (1 − δ, 1) and y ∈ A[α, β], y �≡ 0, then∫ β

α

{
s(y′(s))2 − �w(s)y2(s)

}
ds > 0. (3.7)

It is clear that we need only show (3.7) for � > 0. We make use of a Hardy-type inequality (see
Hinton and Lewis [11]): if f ∈ A[α, β] with f �≡ 0, then∫ β

α

1

s(log s)2
f 2(s)ds ≤ 4

∫ β

α

s[f ′(s)]2ds. (3.8)

For any � > 0, we have that when s > 0 is small enough,

1

4

1

s(log s)2
− �

(1 − s)A(s)
≥ 1

4

1

s(log s)2
− �

(1 − s)m
> 0,

where m > 0 is the minimum value of A(s) on [0, 1], and it follows from (3.8) that∫ β

α

{
s(y′)2 − �wy2

}
ds ≥

∫ β

α

(1

4

1

s(log s)2
− �

(1 − s)A(s)

)
y2ds > 0.

The well-known inequality

x

1 + x
≤ log(1 + x) ≤ x, ∀x > −1,

implies that when s ∈ (0, 1),

1

s(log s)2
= 1

s
(
log(1 + s − 1)

)2 ≥ 1

s

s2

(1 − s)2
= s

(1 − s)2
.

Hence, for any � > 0, we have that when 1 − s is small enough,

1

4

1

s(log s)2
− �

(1 − s)A(s)
≥ 1

1 − s

(1

4

s

1 − s
− �

m

)
> 0.

Combining this with (3.8), we have that∫ β

α

{
s(y′)2 − �wy2

}
ds ≥

∫ β

α

(1

4

1

s(log s)2
− �

(1 − s)A(s)

)
y2ds > 0.

Therefore, (3.7) holds, which implies that the operator S has the BD property. Since the end-
point s = 1 is LP, the other conclusions are given by the case (8.ii) of Theorem 10.12.1 in Zettl
[22, p. 208] and Theorem XIII 4.2 of Dunford and Schwartz [9, p. 1331]. �
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Denote by 〈f , g〉 the inner product in the space H for every pair of elements f , g in H=
L2(J, w).

Lemma 3.4. If f ∈ Dmin then

〈Sminf , f 〉 ≥
∫ 1

0
s(f ′(s))2ds. (3.9)

Proof. The assumption f ∈ Dmin implies that there exists a series fn with compact support
in J such that fn → f and Sminfn → Sminf in H. Hence, for any 0 < ε < s < 1, we have that as
n → ∞,

−sf ′
n(s) + εf ′

n(ε) =
∫ s

ε

(−rf ′
n(r))′dr

→
∫ s

ε

(−rf ′(r))′dr

= −sf ′(s) + εf ′(ε).

Thanks to (3.3), by letting ε → 0, we see that f ′
n(s) → f ′(s) holds for all s ∈ J.

Moreover, integration by parts implies that

〈Sminf , f 〉 = lim
n→∞ 〈Sminfn, fn〉

= lim
n→∞

∫ 1

0
(−sf ′

n(s))′fn(s)ds

= lim
n→∞

∫ 1

0
s(f ′

n(s))2ds

≥
∫ 1

0
s(f ′(s))2ds,

where the last inequality follows from Fatou’s lemma. �

Lemma 3.5. (S, D(S)) is a nonnegative self-adjoint operator on H.

Proof. Let v1 be given as in (2.6). The identity (3.4) implies that we need only show that
〈S(f + cv1), f + cv1〉 ≥ 0 holds for all f ∈ Dmin and c ∈R. For simplicity, we can assume that
c = 1. Lemma 3.4 implies that

〈S(f + v1), f + v1〉 = 〈Sf , f 〉 + 2〈Sf , v1〉 + 〈Sv1, v1〉

≥
∫ 1

0
s(f ′(s))2ds + 2〈Sf , v1〉 + 〈Sv1, v1〉.

By integration by parts, we see that

〈Sv1, v1〉 =
∫ 1

0
s(v′

1(s))2ds, 〈Sf , v1〉 =
∫ 1

0
sf ′(s)v′

1(s)ds.
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Hence,

|2〈Sf , v1〉| ≤
∫ 1

0
s
[
(f ′(s))2 + (v′

1(s))2
]

dt =
∫ 1

0
s(f ′(s))2ds + 〈Sv1, v1〉.

Thus, we see that 〈S(f + v1), f + v1〉 ≥ 0. �

Corollary 3.1. The first eigenvalue of the operator (S, D(S)) is positive; i.e., �0 > 0.

Proof. Lemma 3.5 implies that �0 ≥ 0. We need only show that 0 is not an eigenvalue. In
Lemma 3.1, we have shown that the nontrivial linearly independent solutions of the equa-
tion Sf ≡ 0 are v̄1(s) ≡ 1 and v2(s) = log s on (0, 1). It is clear that none of the nontrivial
linear combinations of v̄1 and v2 is in D(S), which implies that 0 is not an eigenvalue. Hence,
�0 > 0. �

3.2. Proof of Theorem 2.1

We first provide a representation of the generating function Fi(s, t) with i ≥ 1. Since
Fi(s, 0) /∈ D(S), we cannot apply the eigenfunction expansion theory in H directly. But it is
clear that Fi(s, 0) − 1 ∈ D(S). Hence, to get around this difficulty, we need only consider the
equation of the function F̄i(s, t) = Fi(s, t) − 1.

Since the Feller minimal Q-function is honest when B′(1) < 0 (see [6, 3]), it is clear that by
(3.3), F̄i(s, t) ∈ D(S) for all t ≥ 0. Then we obtain

∂

∂t
F̄i(s, t) = −SF̄i(s, t), (s, t) ∈ (0, 1) × (0, ∞), (3.10)

with initial condition

F̄i(s, 0) = si − 1.

We will derive a series representation of F̄i(s, t) by the eigenfunction method.

Lemma 3.6. In the sense of abstract Cauchy problems, the above partial differential equation
(3.10) has a unique solution (one and only one solution), whose eigenfunction expansion is

F̄i(s, t) =
∞∑

k=0

a(i)
k e−t�kϕk(s), s ∈ (0, 1), (3.11)

where the series converges in L2(J, w), {�k, ϕk(s)} are the spectra of the operator (S, D(S))

given in Lemma 3.3, and the coefficient
{

a(i)
k

}
is given by

a(i)
k = 〈si − 1, ϕk(s)〉. (3.12)

Proof. We resort to the theory of semigroups of linear operators; see Pazy [18, Chapter 4].
First, by Lemma 3.3 and Corollary 3.1, the Hille–Yosida theorem (see Pazy [18, Theorem

1.3.1]) implies that (−S, D(S)) is the infinitesimal generator of a C0 semigroup of contractions
{T(t), t ≥ 0} on L2(J, w).

Second, it follows from Pazy [18, Theorem 4.1.3] that the abstract Cauchy problem (3.10)
has a unique solution u(t) = T(t)f for every initial value f ∈ D(S). Taking f = si − 1, we have
that F̄i(s, t) = T(t)f .
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Third, by the spectral theorem for self-adjoint operators, the solution F̄i(s, t) has the
following representation:

F̄i(s, t) =
∞∑

k=0

e−t�kϕk(s)〈f , ϕk〉 =
∞∑

k=0

a(i)
k e−t�k · ϕk(s). (3.13)

�

The following lemma ensures that the series in (3.11) can be differentiated with respect to s
term by term.

Lemma 3.7. For each fixed t ∈ [0, ∞), the series
∞∑

k=0
a(i)

k e−t�kϕk(s) and
∞∑

k=0
a(i)

k e−t�kϕk
′(s) con-

verge absolutely and uniformly with respect to s on every compact subset of J = (0, 1), where
ϕ′

k means the derivative of ϕk.

Proof. Since f = si − 1 ∈ D(S), we have that Ttf ∈ D(S) from Theorem 2.4(c) of Pazy [18,
p. 5]. Note that the second-order differential operator (S, D(S)) has a complete orthonormal set
{ϕk} of eigenfunctions. Thus, Theorem XIII.4.3 of Dunford and Schwartz [9, p. 1332] implies
that the eigenfunction expansion

Ttf (s) =
∞∑

k=0

a(j)
k e−t�kϕk(s)

converges uniformly and absolutely on each compact subinterval of J = (0, 1), and the series
may be differentiated term by term, with the differentiated series retaining the properties of
absolute and uniform convergence. �

Lemma 3.8. For any i ∈N and for each t ∈ [0, ∞), we have that

Pi1(t) +
∑
j=2

jPij(t)s
j−1 =

∞∑
k=0

a(i)
k e−t�kϕ′

k(s), s ∈ (0, 1). (3.14)

Proof. The uniqueness of the solution to the partial differential equation (3.10) implies that

∞∑
j=0

Pij(t)s
j = Fi(s, t) = 1 +

∞∑
k=0

a(i)
k e−t�kϕk(s), s ∈ (0, 1). (3.15)

Because the series on the left-hand side of (3.15) is an analytic function of s when |s| < 1 and
the series on the right-hand side of (3.15) can be differentiated about s ∈ (0, 1) term by term,
we can differentiate the two series in (3.15) term by term with respect to s. �

Remark 3.1. We can characterize the decay parameter λC using only Equation (3.14). That is
to say, we do not need to take s → 0+ in Equation (3.14) to obtain an explicit expression for
Pi1(t) as in the previous work of Letessier and Valent [15] and Roehner and Valent [19].

Lemma 3.9. The decay parameter λC for the QMBP satisfies the inequality

λC ≥ �0. (3.16)
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Proof. By taking t = 0 in Lemma 3.7, we see that the series

∞∑
k=0

a(i)
k ϕ′

k(s)

is uniformly and absolutely convergent on every compact subset of J = (0, 1). Thus, by the
Weierstrass M-test, the series

∞∑
k=0

a(i)
k e−t(�k−λ)ϕ′

k(s)

is uniformly convergent with respect to t ∈ [0, ∞) for each s ∈ (0, 1).
Observe that P11(t) is dominated by the left-hand side of (3.14), so taking the Laplace

transform and integrating term by term we obtain for each λ < �0 the bound

∫ ∞

0
eλtP11(t)dt ≤

∫ ∞

0
eλt

∞∑
k=0

a(1)
k e−t�kϕ′

k(s)dt = −(Rλf )′(s), s ∈ (0, 1),

where f (s) = s − 1 and Rλ is the resolvent of S. The last equality is again from Theorem
XIII.4.3 of Dunford and Schwartz [9, p. 1332], since Rλf ∈ D(S) (see Pazy [18, p. 9]).

The fact that Rλf ∈ D(S) also implies that
∣∣(Rλf )′(s)

∣∣< ∞ on any compact subinterval of J.
Thus, ∫ ∞

0
eλtP11(t)dt < ∞, 0 ≤ λ < �0, (3.17)

which implies that

λC = sup

{
λ ≥ 0 :

∫ ∞

0
eλtP11(t)dt < ∞

}
≥ �0. (3.18)

�

We are now ready to give the proof of our first main result stated in Section 2.

Proof of Theorem 2.1. We give a proof by contradiction. Suppose λC �= �0. Then it follows
from Lemma 3.9 that λC > �0. Define τ = inf {t ≥ 0, Xt = 0} and

xi(t) = Pi(τ > t) =
∑
j∈N

Pij(t).

Since the set N0 = {i ∈N : qi0 > 0} = {1} is finite, the conclusion in Jacka and Roberts [12]
implies that

λC = − lim
t→∞

log x1(t)

t
.

Thus, for each ε > 0 such that �0 + ε < λC, we obtain that when t is large enough,

et(�0+ε)x1(t) ≤ 1.
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Hence,
lim

t→∞ e�0tx1(t) = lim
t→∞

∑
j∈N

e�0tP1j(t) = 0,

which implies that

lim
t→∞ e�0t

⎡
⎣P11(t) +

∞∑
j=2

jP1j(t)s
j−1

⎤
⎦= 0, s ∈ (0, 1). (3.19)

On the other hand, it follows from Lemma 3.8 that for any s ∈ (0, 1),

0 ≤ lim
t→∞ e�0t[P11(t) +

∞∑
j=2

jP1j(t)s
j−1] = lim

t→∞

∞∑
k=0

a(1)
k e−t(�k−�0)ϕ′

k(s)

= a(1)
0 ϕ′

0(s), (3.20)

where the last equality is from Lebesgue’s dominated convergence theorem and the absolute

convergence of the series
∞∑

k=0
a(1)

k ϕ′
k(s).

By Lemma 3.3, we can take ϕ0(s) > 0, s ∈ (0, 1). Hence,

a(1)
0 =

∫ 1

0
(s − 1)ϕ0(s)w(s)ds < 0. (3.21)

By combining Equations (3.20)–(3.21) with Equation (3.19), we obtain that ϕ′
0(s) ≡ 0, s ∈

(0, 1). Thus, ϕ0(s) ≡ constant in (0, 1), which is a contradiction to Corollary 3.1. Thus, the
proof of Theorem 2.1 is finished. �

3.3. Proof of Theorem 2.2

Denote by G the Hilbert space L2(J, w1) with w1(s) = s. Since

1

w(s)
,

1

w1(s)
∈ L1

loc(J),

the Cauchy–Schwarz inequality implies that H, G⊂ L1
loc(J); the reader can refer to

Corollary 1.6 of Kufner and Opic [14] for details.
Define S = {w(s), w1(s)}. Let us define the Sobolev space with weight S ,

W1,2(J, S),

as the set of all functions f ∈H such that the weak derivative (or say distributional derivative)
Df is again an element of G. Theorem 1.11 of Kufner and Opic [14] says that W1,2(J, S) is a
Hilbert space if equipped with the norm

|‖f |‖2 = ‖f ‖2
H + ‖Df‖2

G.

Let C∞
c (J) denote the space of infinitely differentiable functions φ : J →R with compact

support in J. Since w(s), w1(s), 1
w(s) ,

1
w1(s) ∈ L1

loc(J), it follows from Lemma 4.4 of Kufner and

Opic [14] that C∞
c (J) ⊂ W1,2(J, S). Then we define

W1,2
0 (J, S) = C∞

c (J),
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the closure being taken with respect to the norm of the weighted Sobolev space W1,2(J, S).
Let Q be the quadratic form defined on the domain D′

min of the nonnegative symmetric
operator S′

min by

Q(f , g) = 〈S′
minf , g〉 =

∫ 1

0
sf ′(s)g′(s)ds.

By the Friedrichs extension theorem (see Theorem 4.4.5 of Davies [8]), the quadratic form Q
is closable. Let Q̄ be the closure of Q. Since the domain D(Q̄) of Q̄ is the closure of D′

min with
respect to the norm of the weighted Sobolev space W1,2(J, S), we have that

D(Q̄) = W1,2
0 (J, S).

Lemma 3.10. (S, D(S)) is the Friedrichs extension of (Smin, Dmin). That is to say, Q̄ is the
quadratic form arising from the nonnegative self-adjoint operator (S, D(S)).

Proof. Let (L, D(L)) be the nonnegative self-adjoint operator associated with the closed
quadratic form Q̄. We need only show that D(L) = D(S).

Since (L, D(L)) is a self-adjoint realization of (Smin, Dmin), there exist a1, a2 ∈R with
(a1, a2) �= (0, 0) such that

D(L) = {y + c · (a1v1 + a2v2) : y ∈ Dmin, c ∈R},
where v1, v2 are given in Lemma 3.2. On the other hand, we have that

D(L) ⊂ D
(

L
1
2

)
= D(Q̄).

Hence, a1v1 + a2v2 ∈ D(Q̄) ⊂ W1,2(J, S), which implies that

a1v′
1(s) + a2v′

2(s) ∈G,

i.e., ∫ 1

0

(
a1v′

1(s) + a2v′
2(s)
)2

sds < ∞.

Since v′
1(s) ∈ C∞

c (J) and v′
2(s) = 1

s
, we see that a2 = 0. Hence a1 �= 0 and D(L) = D(S). �

We now provide a proof for our second main result stated in Section 2.

Proof of Theorem 2.2. Since D(Q̄) = C∞
c (J) with respect to the norm of the weighted

Sobolev space W1,2(J, S), we see that C∞
c (J) is a core for Q̄. The variational formula (see

Theorem 4.5.3 of Davis [8]) implies that the first eigenvalue of S can be expressed as

�0 = inf
{
Q(f ) : f ∈ C∞

c (J), ‖f ‖H = 1
}

= inf

{ ∫ 1
0 s
(
f ′(s)

)2ds∫ 1
0 f 2(s)w(s)ds

: f �≡ 0, f ∈ C∞
c (J)

}
.

Hence, we obtain (2.7).
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It is obvious that for any ξ ∈ (0, 1), the function

fξ (s) =
∫ 1

s

1

w1(r)
1(ξ,1)(r)dr, s ∈ (0, 1),

belongs to the domain D(S). Hardy’s inequality (see Theorem 6.2 of Opic and Kufner [17,
p. 65]) implies that the optimal constant C of Hardy’s inequality

(∫ 1

0
f 2(s)w(s)ds

) 1
2

≤ C

(∫ 1

0

(
f ′(s)

)2
w1(s)ds

) 1
2

, f (1) = 0,

satisfies the estimates

D ≤ C ≤ 2D,

where

D = sup
s∈(0,1)

⎧⎨
⎩
(∫ s

0
w(r)dr

) 1
2
(∫ 1

s

1

w1(r)
dr

) 1
2

⎫⎬
⎭.

Hence, we obtain (2.8) and (2.9). This completes the proof of Theorem 2.2. �

4. Examples

We now provide two examples to illustrate the results we obtained in the previous section.
The purpose of providing these two examples is twofold. On the one hand, they show that in
some cases the value of the Hardy index D2 can be given exactly. On the other hand, they will
be helpful in getting better bounds for estimating Hardy index values for general models; see
Section 5.

Example 4.1. (Quadratic birth–death process.) When bj ≡ 0 for all j ≥ 3, the quadratic
branching process (1.1) degenerates to a birth–death process with the birth rate {νn} and death
rate {μn} as follows: {

νn = bn2,

μn = an2.

Here we have set a = b0 and b = b2; the condition B′(1) < 0 means that b < a. Let κ = b
a .

Although this process has been extensively discussed, we are still able to obtain some new
conclusions. In particular, for this special case, we can get the exact value of D2 presented in
(2.9). Indeed, it is fairly easy to show (see below) that

D2 = 1

a − b
sup

s∈(0,1)

{
(−log s)

(
log

1 − κs

1 − s

)}

=
[
log(1 + √

1 − κ)
]2

a − b
, (4.1)

which then implies that

a − b

4
[
log(1 + √

1 − κ)
]2 ≤ λC ≤ a − b[

log(1 + √
1 − κ)

]2 .
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When b → a−, the limit of the lower bound is
a

4
, which is the exact value of the decay

parameter λC when a = b. See Chen [4] or Roehner and Valent [19].
Comparing our results with bounds obtained in Chen [4], we find that our estimates are

better than the estimates in Chen [4, Theorem 4.2],

1

4δ
≤ λC ≤ 1

δ
,

but worse than the improved estimates in Chen [4, Corollary 4.4],

1

δ1
≤ λC ≤ 1

δ′
1

.

For more details on δ, δ1, δ′
1, we refer to Chen [4, Section 4].

To obtain the exact value of D2 for our quadratic birth–death process, we need the following
lemma.

Lemma 4.1. Suppose that σ is a strictly positive constant. Then

log(1 + σ t) log
(

1 + σ

t

)
≤ [log(1 + σ )]2, ∀t ∈ (0, ∞).

Proof. We maximize f (t, s) = log(1 + σ t) log(1 + σ s), (s, t) ∈ (0, ∞) × (0, ∞), subject to
the constraint s − 1

t = 0, using the method of Lagrange multipliers. Let

F(t, s, θ ) = log(1 + σ t) log(1 + σ s) +
(

s − 1

t

)
θ .

Then we have that ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ

1 + σ t
log(1 + σ s) + θ

t2
= 0,

σ

1 + σ s
log(1 + σ t) + θ = 0,

s − 1

t
= 0,

(4.2)

which implies that

1 + σ t

t
log(1 + σ t) = 1 + σ s

s
log(1 + σ s). (4.3)

Consider the function

G(t) = 1 + σ t

t
log(1 + σ t).

Since for t ∈ (0, ∞),

G′(t) = σ

t
− 1

t2
log(1 + σ t) = 1

t2
[σ t − log(1 + σ t)] > 0,
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Equation (4.3) implies that t = s. Together with the third equation of (4.2), we have that t =
s = 1, which implies the desired inequality.

We can also get the result by another, more elementary approach.
Let f (t) = log(1 + σ t) log(1 + σ

t ); then it is clear that f (t) = f ( 1
t ). By differentiating both

sides, we obtain

f ′(t) = − 1

t2
f ′
(

1

t

)
,

which implies that if f ′(t) ≥ 0 for t ∈ (0, 1), then f ′(t) ≤ 0 for t ∈ (1, ∞). Thus, the desired
inequality follows from f (t) ≤ f (1).

Hence it remains to show that f ′(t) ≥ 0 on (0, 1), which can be simplified to

(t2 + σ t) log
(

1 + σ

t

)
≥ (1 + σ t) log(1 + σ t), 0 < t < 1. (4.4)

Now consider g(x) = (1 + σx) log(1 + σx) and the straight line l(x) = (1 + σ ) log(1 + σ )x. It
is easy to see that

g(0) = l(0), g(1) = l(1).

Hence, by the convexity of g(x), we obtain

g(x) < l(x), for x ∈ (0, 1), g(x) > l(x) for x ∈ (1, ∞). (4.5)

Thus, to show (4.4), it suffices to show

(t2 + σ t) log
(

1 + σ

t

)
≥ l(t), 0 < t < 1. (4.6)

Letting s = 1
t yields that (4.6) is equivalent to

(1 + σ s) log(1 + σ s) ≥ l(s), 1 < s < ∞.

This follows immediately from (4.5), which completes the proof. �

Now we are ready to get the D2 value for the quadratic birth–death process. Indeed, for
κ ∈ (0, 1), taking σ = √

1 − κ and 1
x = 1 + σ t, we immediately obtain from Lemma 4.1 that

sup
x∈(0,1)

{
− log x log

1 − κx

1 − x

}
= [log(1 + √

1 − κ)
]2.

Substituting the above identity into (5.4), we have that

D2 =
[
log(1 + √

1 − κ)
]2

(1 − κ)a
. (4.7)

Together with (2.8) and the remark before Theorem 2.2, this yields the conclusions for
Example 4.1.

Example 4.2. (Quadratic branching process with upwardly skipping 2.)
A quadratic branching process is called with upwardly skipping 2 if b0 > 0, b2 ≥ 0, b3 > 0,

and bj ≡ 0 for all j ≥ 4. We are aware that this case has not yet been discussed in the literature.
For this new case, we have

B(s) = (s − 1)[b3s2 + (b2 + b3)s − b0].
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Hence B′(1) < 0 is equivalent to b2 + 2b3 < b0, which then implies that there are three real
roots s0, s1, s2 of B(s) = 0, which satisfy s0 = 1, s1 > 1, and s2 < 0. Moreover, it is fairly easy
to show that the function

φ(s) = (−log s)

(∫ s

0

dr

B(r)

)

is concave on (0, 1) (see Lemma 4.2 below), and there is only one stationary point s0 of the
function φ(s) with 0 < s0 < 1, i.e., φ′(s0) = 0. Hence

D2 = sup
s∈(0,1)

φ(s) = φ(s0),

and

1

4φ(s0)
≤ λC ≤ 1

φ(s0)
. (4.8)

For convenience, let us denote B(s) by B(x), and let x1 = s0, x2 = s1, and x3 = s2; thus x1 = 1,
x2 = c > 1, and x3 = −d with d > c when b3 = 1.

Lemma 4.2. Let the above assumptions on the cubic polynomial B(x) hold. Then we have that
the function

ϕ(x) =
(
log

1

x

)
·
(∫ x

0

1

B(t)
dt

)
, x ∈ (0, 1), (4.9)

is concave on (0, 1).

Proof. Without any loss of generality, we assume that b3 = 1. Then B(x) = (x − 1)(x − c)
(x + d). Hence, by the method of undetermined coefficients, we have the resolution in partial
fractions of the function 1

B(x) :

1

B(x)
= α1

x − 1
+ α2

x − c
+ α3

x + d
,

α2 = 1

(c − 1)(c + d)
> 0, α3 = 1

(d + 1)(d + c)
> 0,

α1 = 1

(1 − c)(1 + d)
= −(α2 + α3).

Thus, for any x ∈ (0, 1),∫ x

0

1

B(t)
dt = α2

∫ x

0

1

1 − t
− 1

c − t
dt + α3

∫ x

0

1

d + t
+ 1

1 − t
dt

= α2 log
1 − x

c

1 − x
+ α3 log

1 + x
d

1 − x
.
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It follows that

ϕ(x) = α2 log
1

x
log

1 − x
c

1 − x
+ α3 log

1

x
log

1 + x
d

1 − x
. (4.10)

Since
∣∣∣ 1

c

∣∣∣< 1 and
∣∣∣ 1

d

∣∣∣< 1, it follows from Lemma 4.3 that both

log
1

x
log

1 − x
c

1 − x

and

log
1

x
log

1 + x
d

1 − x

are concave, which implies that ϕ′′(x) < 0 because α2, α3 > 0. �

The following simple inequality involving the logarithm function is crucial to our later
analysis; the proof of the inequality can be found in, say, Kuang’s book [13, Theorem 53,
p. 293].

Proposition 4.1. If x > 0 and x �= 1, then

log x

x − 1
≤ 1 + x

2x
. (4.11)

We also need the following inequality about a univariate quadratic polynomial. We omit its
proof, since it is very simple.

Proposition 4.2.

p(1 − p)x2 − 4px + p − 1 < 0, ∀x ∈ (0, 1), |p| < 1. (4.12)

Lemma 4.3. Suppose that |p| < 1 is a fixed constant; then the function defined by

f (x) = − log x log
1 + px

1 − x

is a concave function on (0, 1), i.e., f ′′(x) < 0 on (0, 1).

Proof. By the Leibniz rule, we can easily compute the first and the second derivatives of the
function f (x) as follows:

f ′(x) = −1

x
log

1 + px

1 − x
+ 1 + p

(1 − x)(1 + px)
log

1

x
, (4.13)

f ′′(x) = 1

x2
log

1 + px

1 − x
− 2(1 + p)

x(1 − x)(1 + px)
+ (1 + p)(2px + 1 − p)

(1 − x)2(1 + px)2
log

1

x
. (4.14)

It is easy to check that on (0, 1), the function f (x) satisfies the following symmetric relationship:

f (x) = f

(
1 − x

1 + px

)
. (4.15)
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Define the transformation

y = T(x) = 1 − x

1 + px
= 1

p

[
1 + p

1 + px
− 1

]
, x ∈ (0, 1).

By differentiating the symmetric equation (4.15) and using the chain rule and the product rule,
we immediately obtain that when x ∈ (0, 1),

f ′(x) = f ′(y)
∣∣
y=T(x) · −(1 + p)

(1 + px)2
,

f ′′(x) = f ′′(y)
∣∣
y=T(x) ·

[
(1 + p)

(1 + px)2

]2

+ f ′(y)
∣∣
y=T(x) · 2p(1 + p)

(1 + px)3

= 1 + p

(1 + px)3
·
[

1 + p

1 + px
f ′′(y) + 2pf ′(y)

] ∣∣
y=T(x)

= 1 + p

(1 + px)3
· [(1 + py)f ′′(y) + 2pf ′(y)

]∣∣
y=T(x). (4.16)

It follows from Equations (4.13) and (4.14) that

(1 + px)f ′′(x) + 2pf ′(x)

= −2(1 + p)

x(1 − x)
+ 1 − px

x2
log

1 + px

1 − x
+ (1 + p)2

(1 − x)2(1 + px)
log

1

x
. (4.17)

It follows from Proposition 4.1 that for any x ∈ (0, 1) and |p| < 1,

log
1

x
≤
(

1

x
− 1

)
1 + 1

x
2
x

= (1 − x)(1 + x)

2x
,

and log
1 + px

1 − x
≤
(

1 + px

1 − x
− 1

)
1 + 1+px

1−x
2(1+px)

(1−x)

= (1 + p)x

1 − x
· 2 + (p − 1)x

2(1 + px)
.

Substituting the above two inequalities into Equation (4.17) then yields

(1 + px)f ′′(x) + 2pf ′(x)

≤ −2(1 + p)

x(1 − x)
+ 1 − px

x

1 + p

1 − x
· 2 + (p − 1)x

2(1 + px)
+ (1 + p)2

(1 − x)(1 + px)

(1 + x)

2x

= 1 + p

2x(1 − x)(1 + px)

[
p(1 − p)x2 − 4px + p − 1

]
< 0 (by Proposition 4.2).

Finally, substituting the above inequality into Equation (4.16), we immediately obtain the
desired f ′′(x) < 0 on (0, 1). �

By Lemma 4.2, we see that ϕ(x) is concave on (0, 1). It is not difficult to prove that there is
only one point x0 ∈ (0, 1) such that ϕ′(x0) = 0, and we also have

D2 = sup
x∈(0,1)

ϕ(x) = ϕ(x0). (4.18)
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Therefore, for our second example we can estimate λC using the above equality and
Theorem 2.2. That is,

1

4ϕ(x0)
≤ λC ≤ 1

ϕ(x0)
. (4.19)

5. Estimation of Hardy index (proofs of Corollaries 2.1–2.4)

The basic aim of this final section is to estimate the value of the Hardy index D2 for our
QMBPs and to prove Corollaries 2.1–2.4, which were stated in Section 2. To achieve this
aim we need the following simple yet useful lemma which reveals the deep properties of A(s)
(which is defined above, e.g. in (3.5), as A(s) = B(s)

1−s ).

Lemma 5.1. The function A(s) is a positive bounded analytic function on (0, 1) whose deriva-
tives are negative functions on [0, 1]. In particular, A(s) is strictly decreasing on [0, 1] with
minimum value on [0, 1] given by A(1) = b0 − mb and maximum value on [0, 1] given by
A(0) = b0. Also, A(s) is concave on (0, 1).

Proof. Under the condition B′(1) < 0, we know that by Proposition 1.1, B(s) has no zero on
(0, 1). It follows that as a power series, B(s) is analytic on (0, 1), and thus so is the function
A(s). In particular, A(s) is a continuous function of s ∈ (0, 1). Note that

lim
s↓0

A(s) = b0 > 0

and

lim
s↑1

A(s) = lim
s↑1

B(s)

1 − s
= B′(1)

(−1)
= (−1)B′(1) > 0,

which is a finite value.
In short,

lim
s↓0

A(s) = b0, lim
s↑1

A(s) = md − mb = b0 − mb.

It follows that A(s) is positive and bounded on [0, 1]. We now show that A(s) is strictly
decreasing on [0, 1].

Note that for s ∈ (0, 1) we have

A(s) = B(s) ·
∞∑

n=0

sn =
∞∑

j=0

bjs
j ·

∞∑
n=0

sn. (5.1)

Since A(s) is analytic on (0, 1), we may expand A(s) as a power series on (0, 1):

A(s) =
∞∑

n=0

ansn.

Then by (5.1) we get

∀ 0 ≤ n < +∞, an =
n∑

k=0

bk. (5.2)
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Now by (5.2) and (1.2) we get that a0 > 0, a1 < 0, and

∀n ≥ 2, an ≤ 0.

It follows that all the coefficients of all the derivatives of A(s) are definitely nonpositive (and
usually negative, except in the trivial case of a polynomial in which many coefficients are
zero). Therefore, all the derivative functions of A(s) are negative on [0, 1]. In particular, for
any s ∈ [0, 1], A′(s) < 0, and thus

A(s) � on (0, 1).

Therefore
Mins∈[0,1]A(s) = A(1) = b0 − mb ≡ md − mb ≡ (−1)B′(1),

and
Maxs∈[0,1]A(s) = A(0) = b0.

Thus for any s ∈ (0, 1) we have

0 < b0 − mb < A(s) < b0 < +∞.

The fact that A(s) is concave on (0, 1) also easily follows from the fact that A′′(s) ≤ 0 for all
s ∈ (0, 1). �

Using the interesting and useful properties of A(s) stated in Lemma 5.1, we are able to prove
Corollaries 2.1–2.4.

Proof of Corollary 2.1. Note first that the Hardy index D2 represented in (2.9) can be
rewritten as

D2 = sup
x∈(0,1)

{∫ x

0

1

(1 − t)A(t)
dt
∫ 1

x

1

t
dt

}
. (5.3)

By Lemma 5.1, we know that 0 < b0 − mb ≤ A(x) ≤ b0 for all x in [0, 1]. It follows that

1

b0

∫ x

0

1

1 − t
dt
∫ 1

x

1

t
dt ≤

∫ x

0

1

(1 − t)A(t)
dt
∫ 1

x

1

t
dt ≤ 1

b0 − mb

∫ x

0

1

1 − t
dt
∫ 1

x

1

t
dt.

Clearly we have that for all x ∈ (0, 1),∫ x

0

1

1 − t
dt
∫ 1

x

1

t
dt = log(1 − x) log x

≤ 1

4
(log x(1 − x))2

≤ 1

4

(
log

1

4

)2

= (log 2)2.

Hence, we obtain that the quantity D2 in (2.9) satisfies

(log 2)2

b0
≤ D2 ≤ (log 2)2

b0 − mb
,

which completes the proof of Corollary 2.1. �
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In order to show Corollary 2.2, first recall that for the quadratic birth–death process (see
Example 4.1 in Section 4), we have assumed that b0 = a > 0, b2 = b > 0, and bj ≡ 0 for all
j ≥ 3; thus b1 = −(a + b). Then B(x) = a − (a + b)x + bx2 = (1 − x)(a − bx), and the condition
B′(1) < 0 means that b < a. Define κ = b

a . From Equation (2.9), it is easy to see that

D2 = 1

a − b
sup

x∈(0,1)

{
− log x log

1 − κx

1 − x

}
. (5.4)

Proof of Corollary 2.2. As proved in Lemma 5.1, A(s) is strictly decreasing and concave on
[0, 1]. It follows directly that A(s) is sandwiched between the secant line of A(s), denoted by
y1(s), and the tangent line of A(s), denoted by y2(s), which are defined as follows on [0, 1]:

y1(s) = −mb · s + b0, (5.5)

y2(s) = −mb · s + A(s0) + mbs0, (5.6)

where s0 is determined by the equation −mb = A′(s0), which guarantees that 0 < s0 < 1. To be
more exact, we have that

y1(s) ≤ A(s) ≤ y2(s) for all s ∈ [0, 1]. (5.7)

Using (5.4) and (5.7), we easily get that

sup
s∈(0,1)

(−log s)
∫ s

0

dr

(1 − r)y2(r)
≤ D2 ≤ sup

s∈(0,1)
(−log s)

∫ s

0

dr

(1 − r)y1(r)
.

Substituting (5.5) and (5.6) into the above yields that

sup
s∈(0,1)

(−log s)
∫ s

0

dr

(1 − r)(mbs0 + A(s0) − mbr)

≤ D2

≤ sup
s∈(0,1)

(−log s)
∫ s

0

dr

(1 − r)(b0 − mbr)
.

(5.8)

Now, both the rightmost and the leftmost term of (5.8) are in the format of D2 in the quadratic
birth–death process discussed in Example 4.1; thus, by using the conclusions obtained in
Example 4.1 and a little algebra, we immediately obtain

κ2(log(1 + √
κ2))2

mb − κ2
≤ D2 ≤ (log(1 + √

κ1))2

b0 − mb
.

Then (2.10) immediately follows, which completes the proof of Corollary 2.2. �

Using an idea similar to that used in proving Corollary 2.2, we may prove Corollary 2.3 as
follows.

Proof of Corollary 2.3. Recall that

D2 ≡ sup
s∈(0,1)

(−log s)
∫ s

0

dr

(1 − r)A(r)
,
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where A(s) is analytic on (0, 1), and thus there exists ξ ∈ (0, 1) such that

A(s) = A(0) + A′(ξ )s.

But as proved in Lemma 5.1, A′(s) is decreasing on [0, 1], and thus A′(1) ≤ A′(ξ ) ≤ A′(0).

Considering that A′(0) = −
∞∑

j=2
bj and A′(1) = − 1

2 B′′(1), and noting that A(0) = b0, we easily

get that

b0 − 1

2
B′′(1) · s ≤ A(s) ≤ b0 −

⎛
⎝ ∞∑

j=2

bj

⎞
⎠ · s.

Then we claim that

(log(1 +√κ ′
2))2

b0 − mb
≤ D2 ≤ (log(1 +√κ ′

1))2

b0 − mb
. (5.9)

In fact, since B′(1) < 0, we get that

−A′(0)

A(0)
=

∞∑
j=2

bj

b0
< 1.

Now, using a method similar to that used in proving Corollary 2.2, together with the conclu-
sions obtained in Example 4.1, we easily obtain the right-hand side of (5.9). Moreover, under
the condition B′′(1) < 2b0, we may use the conclusions obtained in Example 4.1 once again to
show that the left-hand side of (5.9) is also true. The proof of the conclusions in Corollary 2.3
is finished. �

The basic idea in proving Corollaries 2.2 and 2.3 was to sandwich the function A(s) between
two straight lines and then use the conclusions obtained in Example 4.1. We now prove
Corollary 2.4 by sandwiching the function A(s) between two parabolas and then using the
conclusions obtained in Example 4.2.

Proof of Corollary 2.4. We have

D2 ≡ sup
s∈(0,1)

(−log s)
∫ s

0

dr

(1 − r)A(r)
,

where A(s) is analytic on (0, 1) and thus there exists ξ ∈ (0, 1) such that

A(s) = a0 + a1s + A′′(ξ )

2
s2,

with a0 = b0, a1 = b0 + b1 < 0. However, by Lemma 5.1, A′′(s) is decreasing on (0, 1), and
thus

A′′(1) ≤ A′′(ξ ) ≤ A′′(0);

hence for all s ∈ (0, 1) we have

a0 + a1s + 1

2
A′′(1)s2 ≤ A(s) ≤ a0 + a1s + 1

2
A′′(0)s2.
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It is easy to see that

A′(s) =
∞∑

n=1

nansn−1

and

A′′(s) =
∞∑

n=2

n(n − 1)ansn−2,

and thus

A′′(0) = 2a2 = 2(b0 + b1 + b2) ≤ 0,

A′′(1) =
∞∑

n=2

n(n − 1)an =
∞∑

n=2

n(n − 1)
n∑

k=0

bk ≤ 0.

Now, if we further assume that A′′(1) > −∞, then

−∞ <

∞∑
n=2

n(n − 1)
n∑

k=0

bk ≤ A′′(ξ ) ≤ 2(b0 + b1 + b2) ≤ 0.

For notational convenience, write

E(s) = a0 + a1s + 1

2
A′′(0)s2,

F(s) = a0 + a1s + 1

2
A′′(1)s2.

Then for every s ∈ (0, 1),

(1 − s)F(s) ≤ B(s) ≤ (1 − s)E(s),

and thus

sup
s∈(0,1)

(−log s)
∫ s

0

dr

(1 − r)F(r)
≤ D2 ≤ sup

s∈(0,1)
(−log s)

∫ s

0

dr

(1 − r)E(r)
.

Now, by using our result regarding Example 4.2 and the preliminary remark made before, we
get that the functions

(−log s)
∫ s

0

dr

(1 − r)F(r)

and

(−log s)
∫ s

0

dr

(1 − r)E(r)
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are concave on (0, 1). It follows that, if we let

φ1(s) = (−log s)
∫ s

0

dr

(1 − r)F(r)

and

φ2(s) = (−log s)
∫ s

0

dr

(1 − r)E(r)
,

then there exist s1 ∈ (0, 1) and s2 ∈ (0, 1) such that

sup
s∈(0,1)

(−log s)
∫ s

0

dr

(1 − r)F(r)
= φ1(s1)

and

sup
s∈(0,1)

(−log s)
∫ s

0

dr

(1 − r)E(r)
= φ1(s2).

Then we get
φ1(s1) ≤ D2 ≤ φ2(s2)

and consequently obtain (2.12), which completes the proof of Corollary 2.4. �
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