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In an earlier work, we defined and described a new group algebra 21(G), 
which is a von Neumann algebra containing the group G (3). In this paper we 
continue this study be relating the lattice of normal subgroups of the group G 
to the lattice of central projections of the group algebra 31(G). More precisely, 
we shall exhibit a one-to-one mapping <j> of the lattice of closed normal sub­
groups of G into the lattice of central projections of 31(G), having the property 
that if Ni C ^2 , then 0(^2) < <K̂ V"i)« Further, the correspondence is such 
that if N is a closed normal subgroup of G and E is its corresponding central 
projection in 31(G), then the group algebra 3I(G/iV) of the quotient group 
G/N is just the induced von Neumann algebra 3t(G)#. 

In order to obtain this result, we require a different axiomatic description 
of the group algebra 31(G) than was given in (3). In Section 1 we give this new 
set of axioms and show that it is equivalent to that given in (3). In Section 2 
we use this axiomatic description to obtain the main result, Theorem 2.1, 
described in the previous paragraph. In Section 3 we prove that the group 
algebra 31(G) is a Type I von Neumann algebra if and only if the group G 
is of Type I. We use this fact to illustrate the sense in which the elementary 
operation of taking quotient groups of locally compact groups parallels the 
elementary operation of induction for von Neumann algebras. 

1. A new set of axioms for the group algebra 31(G). Let G denote a 
separable locally compact group. The group algebra 31(G) was defined in (3) 
as follows. Let § denote an infinite-dimensional separable complex Hilbert 
space. Let Gc denote the collection of strongly continuous unitary represen­
tations of G, with representation space § . 

DEFINITION 1.1. Let 31(G) denote the set of all maps J on Gc, whose values are 
operators on the space § , satisfying the following two properties: 

(1) S u p { | | / ( L ) | | : £ € G e } < + » ; 
(2) if M and N are elements of Gc and if U is an isometric linear mapping of 

the representation space of M ® N onto £>, then 

J(U(M © N)^1) = U(J(M) © J(N))U-\ 

The *-algebra operations in the set 31(G) are then defined pointwise. 
The author has found that, in practice, Condition (2) is often inconvenient 
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and unpleasant to verify. This is partially owing to the fact that Gc is not the 
most natural "concrete dual." For one thing, it does not contain the finite-
dimensional representations. I t is perhaps interesting to note that the group 
algebra 21(G) may be defined and studied without ever considering finite-
dimensional representations. However, in many contexts, and in particular 
in the computations of this paper, finite-dimensional representations do arise. 
Furthermore, Gc is not closed under the operations which give structure to the 
dual. For these reasons we shall consider in this paper a new concrete dual. 

Let Gs denote the set of all strongly continuous unitary representations of 
G, wTith representation space some closed subspace of § . Clearly Gc C Gs. 
But Gs contains the finite-dimensional representations of G. Further, Gs is 
closed under some crucial representation theoretic operations. More speci­
fically, if L is contained in Gs, then every subrepresentation of L is contained 
in Gs. Here the term ''subrepresentation" is used in the concrete sense of being 
the restriction of L to an invariant subspace. We use the notation M < L 
to denote the fact that M is a subrepresentation of L, in this concrete sense. 
The superscript 5 in the notation Gs is to emphasize the fact that Gs is closed 
under the operation of taking subrepresentations. If L is an element of Gs, 
&(L) will denote the representation space of L. Finally, addition of representa­
tions may be defined within Gs. Specifically, if L 6 Gs, M £ Gs, and 
$(L) ± $(M), then L ® M £ Gs. 

PROPOSITION 1.2. Each J in the group algebra 21(G) has a unique extension 
to all of Gs such that: 

(1) J(L) is an operator on the representation space §(L) of L, for all L in Gs; 
(2) if L and M are elements of Gs and M < L, then J(M) is the restriction 

of J(L) to the representation space &(M) of M. 

Proof. If M is an element of Gs, let L denote an element of Gc for which 
M < L. I t is clear that there is at least one such L. Indeed let / denote the 
identity representation of G, on the space § — § ( M ) , and let L = M 0 7. 
We define J(M) to be the restriction of J(L) to &(M). We must show that 
J(M) is well defined. 

Suppose L and Lr are two elements of Gc for which M < L and M < L'. 
Let E denote the projection on § , with range space § ( M ) . Then %{L) E = 
9I(Zy)i? = 21 (M). (For any representation Z,, 21 (L) denotes the von Neumann 
algebra generated by the range of L.) We then consider two homomorphisms 
<t> and 4>f of 21(G) into 21 (If), defined as the composite of the following 
homomorphisms : 

4>: 21(G) -> 2I(L) -» 2l(L)* = 2Ï(M), 

4>': 21(G) -> 21(17) -> 2t(Z/)s = H(M). 
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Here we have used the fact (3, Theorem 8.3) that every representation L of G 
may be extended uniquely to all of 31(G). 

Notice that <£ and <j>f are identical on the group elements. Indeed 
<j)(x) = Mx = <l>'(x) for all x in G. Since G generates 21(G) (3, Theorem 7.2), 
we have that <t> and <j>' are identical on 31 (G). 

Hence for all J in 31(G), <j>(J) = <j>(J') implies that the restriction of J(L) 
to the range of E is equal to the restriction of J(L') to the range of E. Thus 
J(M) is well defined. The reader may now easily verify that (1) and (2) are 
satisfied. Clearly, Condition (2) determines the extension of J to Gs completely 
and hence the extension is unique with respect to this property. 

COROLLARY 1.3. Each element J in 31(G), considered as a mapping on Gs, 
satisfies the following properties: 

(1) J(L) 6 %(L)forallLinGs, 
(2) if Land M areinGsand$(L) J_ &(M),thenJ(L ® M) = J(L) © J{M)\ 
(3) if L and M are in Gs and U is a linear isometry of § (L) onto !Q(M) such 

that L = U^MU, then J(L) = U'lJ{M)U. 

Proof. (1) Suppose L is in Gs, and L < L', where L' 6 Gc. Let E denote the 
projection of § onto §(Z/). If T is an operator on § which commutes with E, 
let TE denote the restriction of T to the range of E. Then by (3), Theorem 4.1, 
J(L') G 31 (Z/) and hence 

J(L) =J(L')S e 310/)* = 2l(L). 

(2) Let E [F] denote the projection of § (L) 0 § ( M ) onto § (L) [#(M)] . 
Then using part 2 of Proposition 1.2 we have 

J(L 0 M) = J(L © M)* 0 J ( L 0 M)F = J(L) 0 J(M). 

(3) Suppose first that L and ikf are both finite-dimensional representations 
in Gs and that U is a linear isometry of § (L) onto § (M) such that L = U~lMU. 
Let E and F denote the projections of § onto §(L) and § ( M ) respectively. 
Suppose Z/ is an element of Gc such that L < L7. Let C/; denote an extension 
of the isometry U to an isometry of § onto § . Let M ; = UfL'Uf~l. Then 
i¥"<M" / and 1/ = U'^M'U'. Further, J(Lf) = Uf-lJ{M')U' by (3), 
Theorem 4.1. Hence 

J(L) = / ( L O * = (Uf-lJ(Mf)Uf)E = U-V(M')F U = U-U(M)U. 

If L and ilf are infinite-dimensional, this reasoning does not apply since the 
orthogonal complements of §(L) and § ( M ) may have different dimension 
and hence the isometry U may not be extendable to all of § . According to 
(3), Theorem 8.3, every separable infinite-dimensional unitary representation 
of G may be extended uniquely to a normal ^-representation of 91(G). Since 
U~XLX U = Mx for all x in G, we have that U~lLj U = Mj for all J in 31(G). 
However, if L < Lr, for some Z/in Gc, then Lj is the restriction of L' j = J{U) 
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to § ( £ ) , i.e., Lj = J(L). Similarly, Mj = J(M). Thus the equation 
U-iLj U = Mj becomes U~lJ(L)U = J(M). 

DEFINITION 1.4. Let 33(G) denote the set of all maps J on Gs, satisfying the 
following properties: 

(1) for each L in Gs, J{L) is a bounded operator on !Q(L) ; 
(2) sup{ | | / (L) | | :LG G*} < + ~ ; 

(3) ifL,Me Gs and L < M, then J(L) is the restriction ofJ(M) to §(L), 
(4) if L and M are elements of Gs and U is a linear isometry of §(Z,) onto 

§(M) such that L = U~XMU, then J(L) = UJ(M)U~l. 

33(60 may be given a *-algebra structure by defining the *-algebra operations 
pointwise. 

PROPOSITION 1.5. In the above definition, Axiom (3) may be replaced by: 
(30 ifL G G\M € Gcand §(L) ± ^>(M)1thenJ(L © M) = J(L) ® J(M). 

Proof. This is left to the reader. 

We have just proved (Proposition 1.2) that every element / in 21(G) may 
be extended uniquely to all of Gs to give an element of 33(G). We next show that 
every element / in 33(G), when restricted to Gc, gives an element of 21(G). 

PROPOSITION 1.6. / / / is an element of 33(G), then the restriction of J to Gc is 
an element of 21(G). 

Proof. We suppose that / is an element of 33(G). We must show that the 
restriction of J to Gc satisfies Axioms (1) and (2) of Definition 1.1. Axiom (1) 
follows immediately from Property (2) of Definition 1.4. 

We next verify Axiom (2). We assume that M and N are elements of Gc 

and that U is a linear isometry of &(M © N) onto § . Let U\ and £/2 denote 
linear isometries of § onto two subspaces § i and §2 of § , such that 
§1 0 £2 = § . Let M1 = Ux MUr1 and N2 = U2NU2-1. Then Mx and N2 

are elements of Gs. Let Us = (Ui ® U2)U~Y. Then Us is an isometry of § 
onto § . We next use Axioms (3') and (4) of Definition 1.4 to verify that: 

UzJ(U(M © N)U~l)U,~l = J (Us U(M © N)U-lUz~l) 
= JiU.MUr1 0 U2NU2-1) 
= J(U! MUr1) © J(U2 NU2-1) 
= UiJ(M)Urx © U2J(N)U2-

1 

= Us U(J(M) © J{N))U-lUrl. 

Hence 

J(U{M © N)U~l) = U(I(M) © J(N))U~\ 

Propositions 1.2 and 1.6 together set up a one-to-one correspondence between 
21(G) and 33(G) which is clearly a *-algebra isomorphism. Thus the considera­
tions of this section may be summarized in the following theorem. 
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THEOREM 1.7. 21(G) and 93(G) are isomorphic *-algebras. Thus Definitions 
1.1 and 1.4 m ^ 6e looked upon as alternative, but equivalent, axiomatic descriptions 
of the group algebra 21 (G). 

2. The group algebra of quotient groups. The purpose of this section is 
to prove the following theorem. 

THEOREM 2.1. Let G denote a separable locally compact group. There is a one-
to-one mapping </> of the lattice of closed normal subgroups of G into the lattice of 
central projections in 2t(G) such that, if N\ and N2 are closed normal subgroups 
of G and Nx C N2, then 0(iV2) < «(iVi). The group algebra %{G/N) of the 
quotient group G/N is isomorphic to the induced von Neumann algebra 21 (G)^ ) 

We shall prove this result by proving a series of propositions, which con­
verges to Theorem 2.1. 

PROPOSITION 2.2. Let G be a separable locally compact group. With each closed 
normal subgroup N of G, we associate the projection E = <j>(N), defined by: 

E = sup{F: F is a projection in 21(G) and xF = F for all x in N). 

Then E is a central projection. Further, if N\ and N2 are closed normal subgroups 
of G such that Nx C N2, then </>(N2) < 0(Ni). 

Proof. The last statement is obvious from the definition of <f>. Thus it is 
sufficient to verify that £ is a central projection. Consider the von Neumann 
algebra 21(G) as acting on some Hilbert space, say H cf. (3, Section 6). For 
each closed normal subgroup N of G, let 

g(7V) = {$:$ G Hzndx^ = $ for all x in N}. 

One may easily verify that (S(iV) is a closed subspace of H. Note further that 
(S(iV) is invariant under the action of G. Indeed, suppose that y G G and 
yp G @(iV). Then for each x in N, 

x(y\j/) — y(y~lxy\[/) = y\//. 

Thus y\p G 6(AT). Hence the projection, say E0, with range ®(iV), is contained 
in 21(G)', the commutator of 21(G). Further, @(iV) is invariant under 31(G)'. 
Indeed if T G 21(G)' and ^ G @(iV), then x ( 7 » = Txf = T$ for all x in N. 
Hence Txfy G <£(#). Thus E0 G 21(G). Note that if F is any projection on H, 
for which xF = F for all x in N, then i7 < E0. Thus E = E0 and £ is a central 
projection with range (S(iV). 

PROPOSITION 2.3. L ^ G be a separable locally compact group and let E = 4>(G) 
denote the central projection of 21(G) given by Proposition 2.2. Then E is a 
minimal projection in 21(G). 

Proof. We first note that E has the property that, for every T in 21(G), 
TE = a(T)E for some complex number a(T). According to (3, Theorem 7.2), 

https://doi.org/10.4153/CJM-1965-060-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-060-0


LOCALLY COMPACT GROUPS II 609 

the elements of G generate 21(G). Let X ^ x * denote any linear combination 
of elements of G. Then 

(E,atXi)E = J^aiXfE = £ aj)£. 

Thus the stated property holds for a *-algebra dense in 21(G). Suppose that 
T\ is a net of elements of 21(G), converging weakly to T in 21(G), and suppose 
that each T\ has the stated property. Then T\E = a\E converges weakly to 
TE. Thus TE = aE for some complex number a. 

We next use this property to show that E is minimal. Suppose that F is a 
projection in 21(G) and F < E. By the previous paragraph we have F = FE = 
a(F)E for some complex number a = a(F). Since F is a projection, it follows 
that either a = 0 or a = 1. Thus either F = 0 or F = E. 

LEMMA 2.4. Let Ni and N2 denote two closed normal subgroups of a separable 
locally compact group G. Suppose that E = #(iVi) = <£(iV2), where c/> is defined 
in Proposition 2.2. Then there is a closed normal subgroup N of G such that 
Ni C N, N2 C N, and </>(N) = E. 

Proof. Let N = {x: x G G and xE = E}. The reader may verify that N is a 
closed subgroup of G. Further, if x G iV and y G G, then 

(3/x^""1)^ = 3/xIvy-1 = yEy~l = E. 

Thus iV is a normal subgroup. Since N leaves every element in the range of E 
fixed, we have E < <t>(N). On the other hand, 

cj)(N) = Sup}/7: F is a projection in 21(G) and xF = F for all x Ç N} 

< Sup{F: F is a projection in 21(G) and xF = F for all x 6 iVi} = E. 

Thus 0(iV) = E. 

PROPOSITION 2.5. r&6 mapping </> 0/ /Z&e lattice of closed normal subgroups of G 
into the lattice of central projections in 21(G), defined in Proposition 2.2, is 
one-to-one. 

Proof. We first recall the representation of 21(G) as a von Neumann algebra, 
given in (3, Section 6). The Hilbert space on which 21(G) acts is H = J2 ©• &L, 
where $£>L = & is the representation space of L, for each L in Gc. Thus a 
vector yp in H is a vector-valued function {\//L} on Gc such that 

21(G) acts on H by the rule / { ^ } = {J(L)^L} for all / in 81(G). 
Let Ni and N2 denote two normal subgroups of G. The condition that 

4>(Ni) = (t>(N2) is equivalent to the condition that, for every L in Gc and every 
4/in &, Lxif/ = }p for all x in iVi, if and only if Lx x// = \p for all x in N2. 

Let iVi and iV2 denote two distinct closed normal subgroups of G. According 
to Lemma 2.4, there is no loss of generality if we assume that Nx C ^2 . We 
must show that <t>(Ni) and <j>(N2) are distinct. According to the previous 
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paragraph, to do this we need only exhibit a strongly continuous unitary 
representation L of G, on a separable Hilbert space ^ , and a vector in \p such 
that Lxyp = \p for all x in N± and Ly \p ^ \p for some y in iV2. We next exhibit 
such a representation. 

Form the quotient group G/N\ and let L denote its regular representation. 
Define the representation L of G by Lx = Z^, for all x in G, where £ denotes 
the iVi-coset containing x. I t may easily be verified that L is a strongly con­
tinuous unitary representation of G. Let y denote any element of iV2 such that 
y g Ni. Then y is distinct from the identity element of G/Ni. Since the regular 
representation L of G/N\ is faithful, it follows that Lv = L% 9^ I. Thus there 
exists a vector \p in §(L) such that Lyxf/ ^ \f/. However, for all x in Nlf 

Lx = Lx = I and hence Lx\p = \p for all x in Ni. 

Remark 2.6. (G/N)c may be embedded as a subset of Gc as follows. Suppose 
that L is an element of (G/N)c. Define L in Gc by L^ = Z^ for all x in G, 
where x denotes the iV-coset containing x. A trivial verification shows that 
L is a strongly continuous unitary representation of G, with representation 
space § . Identifying under this embedding, we may henceforth assume that 
{G/N)c is a subset of Gc. (G/N)c is then exactly the set of those elements 
L in Gc for which Lx = I for all x in iV. Similarly (G/N)s may be embedded as 
a subset of Gs. 

J. M. G. Fell has defined a topology in Gc; cf. (5). Gc is given the smallest 
(i.e., weakest) topology such that the maps L —-> (Lz ^, <£) are continuous, for 
all x in G and ^, <£ in § . In this topology, (G/N)c is a closed subset of Gc. 
Indeed suppose that {Lx} is a net of elements converging to an element L 
in Gc and suppose that each Lx is an element in (G/N)c. Then for each x in 
N, Lx

x = I converges weakly to Lx. Thus Lx = I for every x in N. Hence 
L G (G/N)c. 

Following the terminology of Mackey(8), we say that two representations 
L and M are disjoint if no subrepresentation of L is equivalent to any sub-
representation of M. 

PROPOSITION 2.7. Each element L of Gs may be decomposed uniquely in the 
form 

L = z,<» e z/2>, 
where L(1) and L(2) are elements of Gs such that L(1) is contained in (G/N)s and 
L(2) and M are disjoint for every M in (G/N)s. 

Proof. Let (§(1) denote the closed linear subspace of §(X) defined by 

g(1) = {*p:ip £ &(L) and Lxxfs = ^ for all x in iV}. 

For each yp in (§(1), y in G, and x in N, we have 

£*(A/ id = i » A,-!^ ^ = LyXp. 

Thus S(1) is an invariant subspace of L. Let S(2) denote the orthogonal 
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complement of S(1) in § (L) . Let L(1) and L(2) denote the restrictions of L 
to the invariant subspaces ®(1) and @(2) respectively. Clearly L(1)

x = I for all 
x in N and hence L(1) G (G/N)s. 

Next suppose there exists a non-trivial representation I f in {G/N)s such 
that L(2) is not disjoint from M. Then L(2) contains a subrepresentation Af(2) 

which is equivalent to some subrepresentation of M. Since M £ (G/N)s, 
considered as a subset of Gs, we have Mx = 7 for all x in iV. Hence A f ^ = I 
for all x in N. Let ^ denote a non-zero vector in §(ikf(2)) C §(L ( 2 )) . Then 
Z,<2)s^ = M^\^ = \f/ for all x in iV. Hence ^ G (g(1), which contradicts the 
fact that \p is a non-zero vector in $(L (2 )) = S(2), the orthogonal complement 
of @(1) in £(L). 

In the statement and proof of our next proposition, we shall use Definition 
1.4 as our axiomatic description of the group algebra 21(G); cf. Theorem 1.7. 
Each J in 21(G) is thus a map on Gs. For each J in 21(G), let J denote the re­
striction of / to the subset (G/N)s of Gs; cf. Remark 2.6. Clearly J is an 
element of %(G/N). 

PROPOSITION 2.8. The mapping J —» J is a norm-decreasing strong (a-strong, 
weak and a-weak) continuous homomorphism of 21(G) onto 21 (G/N). 

Proof. The map J —* J is easily verified to be a norm-decreasing homo­
morphism. To see that it is continuous, suppose that Jx is a net in 21(G) 
converging to J in one of the topologies of 21(G), say the strong topology. 
Then for all L in (G/N)c, JX(L) = JX(L) converges strongly to J(L) = J{L). 
Thus, J x converges to J in the strong topology of %{G/N). 

We next verify that the mapping is onto. For this verification, we shall 
find it convenient to use Definition 1.4 as our definition of the group algebra 
21(G); cf. Theorem 1.7. Suppose K is an element of 2I(G/iV). According to 
Proposition 2.7, each L in Gs may be expressed uniquely in the form 
L = L(1) 0 £ (2), where Z,<*> Ç (G/N)s and L^ and M are disjoint for every 
M in (G/N)s. Define the mapping / on Gs by J(L) = K(L™) © O, where 
O denotes the zero operator on §(L ( 2 )) . Clearly the restriction of J to (G/N)c 

is K. Thus it remains to show that J is an element of 21(G). We leave the veri­
fication of the first two axioms to Definition 1.4 to the reader. 

We next verify that J satisfies Axiom (3) of Definition 1.4. Suppose L and 
M are elements of Gs and L < M. Then according to Proposition 2.7, 
L = i ( 1 ) © Z(2) and M = M™ © M(2\ where L ( l ) and M™ are elements of 
(G/N)s, and L(2) and M(2) are disjoint from every element of (G/N)s. Clearly 
L < M implies that L™ < M™ and L^ < M^\ Then J(L) = K(L™) © 0, 
where 0 is the zero operator on £>U<(2)). Since L(1) < M™, K(L(1)) is the 
restriction of K(M^) to §(Z ( 1 )) . Thus J(L) = K(L™) © 0 is the restriction 
of the operator J"(M) = K(M(1)) © 0 acting on the space 

§ (M) = §(ilf(D) © £(M(2>) 

to the subspace §(L) = £(L (1 )) © £(L ( 2 )) . 
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We next verify that / satisfies Axiom (4) of Definition 1.4. Suppose L and 
M are elements of Gs and that U is a linear isometry of § ( £ ) onto § ( M ) such 
that L = U~lMU. According to Proposition 2.7, M = M{1) © M(2\ where 
M^ e (G/N)s and Af<2> is disjoint from (G/N)s. Let U = Ui® U2 such that 

L = C/-1MJ7 = ( [ / i 8 U2)-
1(M^ © M"(2))(t/i © C/2) 

= {U^M^Ux) © (U2-
1M^U2). 

Let L<» = UrKM^Ui and L<2) = U2-
lM^U2. Then I / 1 ' G (G/iV)s and L<2> 

is disjoint from every element of (G/N)s. Thus L(1) and L(2) are the subrepre-
sentations of L given by Proposition 2.7. Hence we have 

J{L) = K(L™) © 0 
= KiUi^M^Ui) © 0 
= Ui^KiM^Ui © U2~

1OU2 

= (Ux © C / a ) - 1 ^ ^ " ) © 0)(C7i © tf2) 
= U~l(K(M^) ®0)U 
= U~1J(M)U. 

In this verification we have used the fact that X satisfies Axiom (4) of 
Definition 1.4. We have also used the same symbol 0 to denote both the zero 
operator on §(L (2 )) and the zero operator on §(7kf(2)). 

PROPOSITION 2.9. Let G denote a separable locally compact group. If N is a 
closed normal subgroup of G, let E denote the corresponding central projection 
<f>(N)y given by Proposition 2.2. Then the group algebra 9l(G/iV) is isomorphic 
to the induced von Neumann algebra 91 (G) E-

Proof. Let <£i denote the homomorphism of 91(G) onto %{G/N) given by 
Proposition 2.8. Let <j>2 denote the natural homomorphism of 31(G) onto 
21 (G)E\ for the definition and properties of such homomorphisms, called 
inductions, see (1, Chapter 1, Section 2.1). We shall prove the proposition by 
proving that <£i and <t>2 have the same kernel. 

To obtain this result we must once again consider the representation of 
91(G) as a von Neumann algebra; cf. (3, Section 6). A vector \p in the space H 
on which 91(G) acts is a vector-valued function on Gc, L —>\f/Ll where \pL £ § 
for all L in Gc, and £ H^zJi2 < + °°. The action of 91(G) on H is defined by 
J{^L} = {J(L)\pL}. In particular, for x in G, 

x\l/ = x{ypL) = {Lx\pL). 

Thus the range of E is 

g = {\f/: \p £ H and x\p = \p for all # in iV} 
= {{fL}: {LxypL} = {fL} for all x in iV}. 

Let Ki [K2] denote the kernal of <£i [</>2]. Then 

Kx = {J:J e 91(G) and J(L) = 0 for all L in (G/iV)cj, 
i£2 = {J:J e 91(G) and Jty = 0 for all ^ in g } . 
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We first show that K2 C Kx. Suppose / G K2 and M G (G/N)c C Gc. 
Then ikfx ^ = \f/ for all x in iV and ^ in § . Let ^ by any vector in § . Define 
the vector ^{M) in if as follows. \p(M)L = xf/ if L = M and ^(Af)L = 0 if 
L ^ M. Note that a^(Jkf) = ^(M) for all x in N. Thus ^(M) G g. Since 
/ Ç i£2, we have J\[/(M) = 0. Looking at the Jkfth component of this vector 
in H, we conclude that J(M)\f/ = 0. Since \p is an arbitrary vector in § , we 
have that J(M) = 0. Thus J is contained in K\. 

We next show that Ki is contained in i£2. Suppose L is an element of Gc. 
According to Proposition 2.7, L = L(1) 0 L(2), where Z/» G (G/N)s

yL^ G G% 
and Z/2) is disjoint from every M in (G/N)s. Suppose \p is a vector in ^ such 
that Lx yp = ^ for all x in iV. It follows from the proof of Proposition 2.7 
that ^ is a vector in §(Z ( 1 )) . Suppose J is an element of K\. By Proposition 1.2 
and Corollary 1.3, /vanishes on (G/N)s. By Corollary 1.3 we have 

J(L) = J(L^) 0 J(L^). 

Thus if \f/ G § and Lx\p = \f/ for all x in iV we have that \p G §(L (1 )) and hence 
J C W = J(L™)^ = 0. Thus for each {^} in g, we have 

J{*L} = {J(L)*L} = 0. 

Thus / is contained in K2. 

Remark. The isomorphism described in Proposition 2.9 and Theorem 2.1 
is an isometry since both 3l(G/iV) and %{G)E are C*-algebras; cf. (9, p. 311, 
Theorem 3). The fact that this isomorphism is a o--weak and a c-strong homeo-
morphism follows from (3, Theorem 6.1) and (1, p. 57, Corollary 1). 

3. The group algebra of Type J groups. In this section we note that the 
group algebra 31(G) of a separable locally compact group G is a Type I von 
Neumann algebra if and only if G is a Type I group. Recall that a group is 
said to be Type I if the range of every strongly continuous unitary representa­
tion of G generates a Type I von Neumann algebra. 

LEMMA 3.1. Let G be a separable locally compact group. Then every normal 
cyclic representation of the group algebra 21 (G) is separable. 

Proof. Let T denote a normal cyclic ^representation of 31(G) and let S 
denote a countable subset of G which is dense in G. By (3, Theorem 7.2), G, 
and hence S, generates 31(G). Let ® denote the set of all finite linear combina­
tions, with coefficients whose real and imaginary parts are rational, of elements 
of S. Then © is countable and weakly dense in 31(G). Thus T© = {Tx: x G ©} 
is weakly dense in 31 (T), the von Neumann algebra generated by the range of 
T. Let § (T ) denote the representation space of T and let \j/ denote an element 
of &(T) which is a cyclic vector for T. Then T&xp = {Tx\f/:x G ©} is a 
countable subset of § (T) which is dense in 3l(T)^ and hence in &(T). Thus 
§ (T) is separable. 
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COROLLARY 3.2. Let G be a separable locally compact group. If every separable 
normal representation of 31(G) is Type / , then every normal representation of 
31(G) is Type I. 

Proof. Every normal representation may be expressed as a direct sum of 
cyclic representations; cf., for example, (9, p. 241). Every direct summand, 
being cyclic and hence separable, is Type I. But the direct sum of Type I 
representations is Type I; cf. (1, p. 121, Proposition 1). 

Remark. A completely similar line of reasoning gives the analogous result 
for separable locally compact groups. Thus if we call a separable locally com­
pact group G Type I if all its strongly continuous unitary representations are 
Type I, we obtain the proposition that G is Type I if and only if all its separable 
strongly continuous unitary representations are Type I. 

THEOREM 3.3. Let G denote a separable locally compact group. Then G is a 
Type I group if and only if 31 (G) is a type I von Neumann algebra. 

Proof. Suppose G is Type I. Then every separable strongly continuous unitary 
representation of G is Type I. By (3, Theorem 8.3), every separable normal 
representation of 31(G) is Type I. By (3, Theorem 6.1), 31(G) is Type I. 

Conversely, suppose 31(G) is Type I. According to well-known facts about 
von Neumann algebras (1) every normal representation is the composition 
of an amplification, and induction, and a spatial isomorphism. Further, every 
amplification and induction of a Type I von Neumann algebra is Type I. 
Thus every normal representation of 3Ï(G) is Type I. By (3, Theorem 8.3) 
it follows that every separable strongly continuous unitary representation of 
G is Type I. Thus G is Type I. 

Remark. Another von Neumann algebra which is naturally associated with 
a locally compact group is the von Neumann algebra generated by the range 
of the regular representation. It is natural to conjecture, as did Irving Kap-
lansky in (6), that the analogue of the previous theorem holds for this von 
Neumann algebra. This has been shown to be false, in general, by George 
Mackey in (7). Professor Mackey shows that there exist non-type-I groups 
having Type I regular representations. Thus the previous theorem shows 
that the group algebra 3Ï(G) dominates "the situation" in a much stronger 
sense than does the regular representation. "Type I-ness" of the group algebra 
31(G) does imply that the group is Type I. 

Remark. Theorem 2.1 attempts to show that the elementary operation of 
forming quotient groups, in the context of locally compact groups, parallels 
the elementary operation of induction, in the context of von Neumann algebras. 
Consider, for example, the well-known fact (1, p. 124, Proposition 4) that if 
a von Neumann algebra 31 is Type I, then every induction 31 # is Type I. This 
fact, in the presence of Theorems 2.1 and 3.3, implies a parallel proposition 
for quotient groups. 
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PROPOSITION 3.4. Let G denote a Type I separable locally compact group. Then 
for each closed normal subgroup N of G, the quotient group G/N is Type I. 
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