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Abstract

Glacier mass loss in Alaska has implications for global sea level rise, fresh water input into the
Gulf of Alaska and terrestrial fresh water resources. We map all glaciers (>4000 km2) on the
Kenai Peninsula, south central Alaska, for the years 1986, 1995, 2005 and 2016, using satellite
images. Changes in surface elevation and volume are determined by differencing a digital eleva-
tion model (DEM) derived from Advanced Spaceborne Thermal Emission and Reflection
Radiometer stereo images in 2005 from the Interferometric Synthetic Aperture Radar DEM of
2014. The glacier area shrunk by 543 ± 123 km2 (12 ± 3%) between 1986 and 2016. The
region-wide mass-balance rate between 2005 and 2014 was −0.94 ± 0.12 m w.e. a−1 (−3.84 ±
0.50 Gt a−1), which is almost twice as negative than found for earlier periods in previous studies
indicating an acceleration in glacier mass loss in this region. Area-averaged mass changes
were most negative for lake-terminating glaciers (−1.37 ± 0.13 m w.e. a−1), followed by land-
terminating glaciers (−1.02 ± 0.13 mw.e. a−1) and tidewater glaciers (−0.45 ± 0.14 m w.e. a−1).
Unambiguous attribution of the observed acceleration in mass loss over the last decades is ham-
pered by the scarcity of observational data, especially at high elevation, and by large interannual
variability.

1. Introduction

Alaskan glaciers account for ∼12% of the total global glacierized area excluding the Greenland
and Antarctica ice sheets (Pfeffer and others, 2014; RGI Consortium, 2017) and are an import-
ant contributor to global sea level rise (Dyurgerov and Meier, 1997; Arendt and others, 2002,
2013; Meier and Dyurgerov, 2002; Berthier and others, 2010; Arendt, 2011; Gardner and
others, 2013; Larsen and others, 2015; Zemp and others, 2019). Gardner and others (2013)
found a mass change of −50 ± 17 Gt a−1 for the period 2003–2009 for all glaciers in Alaska
and adjacent Yukon Territory. Subsequent estimates based on gravimetric methods
(Wouters and others, 2019), glaciological and geodetic measurements (Zemp and others,
2019) and a combination of these methods (Box and others, 2018) vary between −48 ± 9
and −73 ± 17 Gt a−1 for the period 2006–2016. Johnson and others (2013) found highly vari-
able mass change rates for the glaciers in the Glacier Bay region (∼6400 km2) during the per-
iod 1995 and 2011 with no clear trend, while Das and others (2014) found a decrease in mass
balance of all glaciers in the Wrangell Mountains (∼5000 km2) from −0.07 ± 0.19 m water
equivalent (w.e.) a−1 in 1957–2000 to −0.24 ± 0.16 m w.e. a−1 in 2000–2007 although uncer-
tainty ranges overlap. Wastlhuber and others (2017) found accelerated elevation change for
the glaciers (∼700 km2) in the Susitna River basin (−0.14 ± 0.07 m a−1 in 1951–2005 compared
to −1.20 ± 0.75 m a−1 in 2005–2010). Also, all five benchmark glaciers in Alaska (Gulkana,
Wolverine, Lemon Creek, South Cascade and Sperry Glacier) have lost mass with average
mass-balance rates ranging from −0.58 to −0.30 m w.e. a−1 since mid-20th century (O’Neel
and others, 2014; O’Neel and others, 2019).

Several studies report on glacier changes on the Kenai Peninsula in south-central Alaska.
An early study showed that glaciers in this region have experienced widespread recession
since the Little Ice Age Maximum (late 1700s through late 1800s) (Wiles and Calkin, 1992).
Most studies on Kenai glaciers have been carried out on parts of the whole glacierized region.
Aðalgeirsdóttir and others (1998) studied the volume change of Harding Icefield (subregion II
in Fig. 1) through comparing the United Stations Geological Survey (USGS) topography maps
in the 1950s and airborne Lidar elevations along center-lines in 1994/1996, and found the
Harding Icefield had lost ∼34 km3 of its total volume, corresponding to an area averaged ele-
vation change of −21 m over the ∼43 years. Another study using Landsat images shows that
the Harding Icefield and Grewingk-Yalik Glacier Complex (subregions I and II, Fig. 1) lost
∼78 km2 (∼3.6%) of their glacier area between 1986 and 2002 (Hall and others, 2005). A com-
parison between USGS maps (1950) and SRTM DEMs also indicates that glaciers in the same
region (subregions I and II) were thinning at a rate of 0.61 ± 0.12 m a−1 for the period 1950–
1999, and the thinning rate for Harding Icefield had further accelerated by a factor of 1.5 dur-
ing the mid-1990s–1999 relative to 1950 to the mid-1990s (VanLooy and others, 2006).
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This study aims to quantify recent area and mass changes of all
glaciers on the Kenai Peninsula aggregated in four subregions
defined by the major icefields of the peninsula. First, we compile
four new glacier inventories based on multiple satellite images for
the years 1986, 1995, 2005 and 2016, which are more comprehen-
sive and detailed than those used in previous studies (Hall and
others, 2005; VanLooy and others, 2006; Le Bris and others,
2011; Kienholz and others, 2015). Second, from these inventories
we assess the glacier area changes. Finally, we determine the gla-
cier volume and mass changes between 2005 and 2014 using
DEMs derived from satellite imagery.

2. Study area

The Kenai Peninsula is located in south-central Alaska, between
the Cook Inlet and the Gulf of Alaska (Fig. 1). The Kenai
Mountains are an effective barrier for wet airflow (Le Bris and
others, 2011), resulting in frequent cloud cover, and high pre-
cipitation on the windward south-eastern side of the mountains,
while the leeward side lies in the rain shadow. Hence, the gla-
ciers experience a predominantly maritime climate along the
south and east side of the peninsula, while a more continental
climate prevails in the northern and western parts. The annual
total precipitation at a weather station located in the northeast
(station A3, Fig. 1) is ∼1800 mm, while stations A1 and A2
on the west coast of the Peninsula receive annual totals of
∼600 and ∼500 mm, respectively, averaged over the period
1986–2016 (https://gis.ncdc.noaa.gov/maps/ncei/summaries/monthly,
Table S1).

There are ∼1460 glaciers on the Kenai Peninsula, spanning
from sea level to ∼2000 m a.s.l. and covering 4165 km2, which
corresponds to ∼5% of the total glacierized area in Alaska accord-
ing to the Randolph Glacier Inventory (RGI 6.0; RGI
Consortium, 2017). Of all glaciers, only 11 are tidewater and 14
are lake-terminating, but they cover 948 km2 (22.7% of total
area) and 968 km2 (23.2%), respectively. The Sargent and
Harding icefields are the largest ice masses. Especially the
Harding icefield has been the focus of several glaciological studies
(Aðalgeirsdóttir and others, 1998; Hall and others, 2005;
VanLooy and others, 2006).

3. Data and methods

3.1 Glacier outlines extraction and attributes calculation

We used data from Landsat complemented by Sentinel-2 and
ASTER images (Table S2), where Landsat data were not available
or relevant parts of the Landsat scenes were too cloudy or snowy
to extract glacier outlines with sufficient accuracy to compute area
changes. A total of 12 orthorectified satellite scenes acquired at
the end of the ablation season (04 August to 26 September)
were used to delineate glacier outlines for the years 1986, 1995,
2005 and 2016 (Fig. S1). Only images with minimum cloud
cover and seasonal snow were chosen. All images (Table S2)
were retrieved from the USGS (https://glovis.usgs.gov).

The glacier outlines for clean ice were delineated using a semi-
automatic procedure based on the band ratio segmentation
method (Paul, 2000; Albert, 2002; Guo and others, 2015; Li and
others, 2017). A red/short-wave infrared (R/SWIR) band ratio
with a threshold of 2–2.5 (TM3/TM5 of Landsat TM and ETM+,
TM4/TM6 of Landsat OLI imagery) and an additional threshold
on the blue band (band 1 of TM/ETM+ and band 2 of OLI)
digital number were adopted and thresholds were selected inter-
actively (Paul and Kääb, 2005; Raup and others, 2007). We
employed sectionalized glacier outline delineation by using mov-
ing windows with different optimal band ratio thresholds on the
same satellite image to minimize the influence of various snow/ice
ablation levels on the optimal thresholds (Guo and others, 2015).
We also applied a median filter (3 by 3 kernel) to reduce noise in
shadowed regions and remove isolated pixels outside the glaciers,
although it might reduce the size of small glaciers to some extent
(Paul, 2002; Andreassen and others, 2008). Only glaciers with an
area ≥0.01 km2 were mapped. Following previous studies (Hall
and others, 1992; Racoviteanu and others, 2008a; Pan and others,
2012; Burns and Nolin, 2014), debris-covered glacier margins
were delineated manually from visual inspection of the images.
Clean ice outlines were visually inspected using all available
contrast-enhanced false-color composite images as well as
Google EarthTM images to correct errors caused by cast shadow,
light clouds and seasonal snow.

Following the top-down method (Guo and others, 2015),
which identifies the ice divides by aspect differences between

Fig. 1. Map of studied glaciers on the Kenai Peninsula.
Black dots show the ICES at footprint on stable terrain
(i.e. terrain without glacier, water and vegetation),
while red stars refer to weather stations (Table S1).
The dashed polygons refer to four subregions ana-
lyzed separately in this study. The pie charts show
the regional fraction covered by land-terminating,
lake-terminating and tidewater glaciers.
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the two sides of mountain ridges, we derived ice divides by using
the IFSAR DEM, within a 1500 m buffer distance from all glaciers.
Results were scrutinized with the help of the shaded relief data
and the Landsat scenes, while gross errors were corrected manu-
ally where necessary. The ice divides were used to split the glacier
complex into individual glaciers.

We extracted a series of glacier-specific attributes including
Global Land Ice Measurements from Space (GLIMS)-IDs, coordi-
nates, surface area, debris-covered area, mean slope and aspect,
maximum, mean and minimum elevation using the IFSAR
DEM and glacier outlines, and added glacier names (if existing)
and glacier terminate types (land-terminating, lake-terminating
and tidewater) from RGI 6.0. Mean aspect was derived from the
arctangent of the mean values of the sine and cosine of the aspect
of all DEM cells within a glacier.

3.2 DEM generation and mass change derivation

DEMs derived from ASTER L1A stereo images in 2005 (Fig. 1)
and the IFSAR DEM in 2014, were used to compute surface ele-
vation and glacier volume changes over the period 2005–2014.
The ASTER data were acquired between 9 August and 14
August, while the IFSAR data were acquired between 29 August
and 12 September 2014 (http://viewer.nationalmap.gov/basic/
access date: December 2018, Table S3).

3.2.1 IFSAR DEM and validation
As part of the Alaska Statewide Digital Mapping Initiative, which
started in 2010, the IFSAR DEM was acquired from airborne
radar operating in the X- and P- bands, with a native resolution
of 5 m mosaics. In this study, we used the elevation data product,
IFSAR Digital Surface Model (DSM), which is based only on the
X-band, since the X-band signal generally penetrates the glacier
surface less deep than the P-band (Bert and others, 2011).
X-band radar (9.7 GHz) has been shown to penetrate snow and
ice (e.g. Rignot and others, 2001; Gardelle and others, 2012;
Gusmeroli and others, 2013) depending on the grain size and sur-
face wetness (Mätzler and Schanda, 1984), as well as frequency
(Davis and Poznyak, 1993; McNabb and others, 2019). X-band
penetration depths are not well known, but in cold and dry
snow penetration depths of several meters have been found in
Antarctica (Davis and Poznyak, 1993; Surdyk, 2002) and at
high elevations in the European Alps (Millan and others, 2015;
Dehecq and others, 2016). Some geodetic mass-balance studies
have therefore applied multi-meter corrections to account for
radar penetration (e.g. Melkonian and others, 2014; Round and
others, 2017; Lambrecht and others, 2018). However, over wet
glacier surfaces radar penetration is limited to a few centimeters
below the surface (Mätzler and Schanda, 1984).

To estimate surface wetness, we analyze air temperature
records from three weather stations at high elevation (990–1420
m a.s.l.) on or close to the ice cap during and preceding the period
of IFSAR acquisition (Fig. S2). Daily mean and minimum air
temperatures were generally well above 0°C leading us to conclude
that meltwater was present at or immediately below the surface
during this period. Hence, we assume radar penetration to be neg-
ligible in this study.

Elevation data derived from Ice, Cloud and Land Elevation
Satellite Geoscience Laser Altimeter System (ICESat/GlAS) laser
altimeter were used to validate the IFSAR DEM. We used the
data from GLAH14 (release 634), available from the National
Snow and Ice Data Center (NSIDC). The data has a 10.6 ± 4.5
m horizontal and 0.34 m vertical accuracy (Magruder and others,
2007), and is considered to be the most consistent globally avail-
able elevation data (Zwally and others, 2014). To minimize the
influence of land surface changes, we only compared the IFSAR

and GLAH14 data over stable terrain, i.e. we excluded all glacier,
lake, ocean and vegetation pixels as extracted from the land cover
map of Alaska (USGS, 2011, https://gapanalysis.usgs.gov/gapland-
cover/data/download/).

The Ellipsoid of the ICESat data was first transformed from
TOPEX/Poseidon Ellipsoid to WGS84 Ellipsoid and then to
NAD83, while the vertical datum was transferred from WGS84
to NAVD88 (same as IFSAR DEM) through an online tool
(https://vdatum.noaa.gov/vdatumweb/). For each ICESat foot-
print, the corresponding IFSAR elevation was extracted by calcu-
lating the area-weighted average of the elevations of all pixels fully
or partially enclosed by a circle with 35 m radius around the foot-
print’s center (Brun and others, 2017). ICESat/GLAS data with
slope larger than 5° were omitted (VanLooy and others, 2006;
Le Bris and Paul, 2015), and outliers were removed based on
the ‘Interquartile range’(IQR), where only data between Q1 −
1.5 ⋅ IQR and Q3 + 1.5 ⋅ IQR were used (Q1 is the middle value
in the first half of the rank-ordered dataset; Q3 is the middle
value in the second half of the rank-ordered dataset), and the
rest discarded as outliers (McGill and others, 1978). The mean
and Std dev. of the elevation differences between ICESat data
and IFSAR DEM is 0.53 ± 1.38 m, indicating reasonable agree-
ment between the two data sets. For comparison differences
between the IFSAR and ICESat/GLAS data for slopes larger
than 5° are shown in Table S4.

3.2.2 Derivation of ASTER DEMs and bias corrections
The ASTER DEMs were generated from ASTER L1A stereo
images (3N and 3B bands) in early August 2005, using the
DEM Extraction Wizard of ENVI 5.1 with the geographic refer-
ence system NAD83 UTM subregion 5N or 6N (NASA LP
DAAC, 2015; Table S3, data downloaded from https://lpdaac.
usgs.gov). Since ground control points were not available, more
than 200 tie points for each scene, covering different altitudes
and surfaces including ice and snow, were automatically collected
and then manually examined (removing those influenced by
clouds or water) for all stereo-pairs. The maximum Y parallax
errors of the tie points were constrained to less than one pixel
(±15 m). The DEMs were generated with 30 m resolution.
Artifacts, which mainly resulted from clouds and other noises,
were removed using a median filter. All extracted ASTER DEMs
cover the glacierized area and surrounding terrain within
∼10 km from the ice margin.

The resulting DEMs may contain planimetric and altimetric
biases (Moore and others, 2002; Molnia, 2007; Berthier and
others, 2010). The DEM biases caused by misregistration between
DEMs were corrected by the co-registration method suggested by
Nuth and Kääb (2011), which depends on the elevation differ-
ences, slope and aspect over stable terrain. The IFSAR DEM
was used as master DEM after resampling to 30 m spatial reso-
lution using pixel assembly, and all DEMs (ASTER DEMs and
IFSAR DEM) were referenced to the same datum and projection.
Only the DEM differences of pixels that do not contain glaciers,
water bodies and vegetation (determined by the land cover map
of Alaska, USGS (2011)) were used to derive the adjustment coef-
ficients. Then the IQR (see section 3.2.1) was adopted to remove
outliers which were typically caused by clouds, data gaps and
DEM edges. All iterations of the co-registration adjustment were
stopped when the improvement in Std dev. of elevation difference
on stable terrain was <2%. Then the along/cross track biases of all
ASTER DEMs related to satellite acquisition geometry were cor-
rected using higher order polynomial fittings (5th to 8th order;
Nuth and Kääb, 2011).

Figure 2 illustrates the co-registration of the ASTER DEM
(image AST-4, Table S3) to IFSAR DEM. Table 1 and Figure 3
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show the co-registration vectors and correction results of each
DEM pair.

3.2.3 Elevation changes
The co-registered ASTER DEMs were subtracted from the IFSAR
DEM to calculate elevation difference (dh) over the glacierized
areas of the four subregions I–IV (Fig. 1). After scrutinizing the
elevation difference maps and difference histograms, we regard
pixels with dh dt−1 values >5 m a−1, < −15 m a−1 for elevations
below 1000 m a.s.l. (−10 m a−1 for subregion I) and <−5 m a−1

for elevations higher or equal 1000 m a.s.l. as outliers. This pro-
cedure proved to be the most suitable approach in this region
compared to other methods, such as empirical value (Berthier
and others, 2010; Bolch and others, 2011), IQR (O’Neel and
others, 2014; Fischer and others, 2015; Kienholz and others,
2015; Pieczonka and Bolch, 2015).

Data gaps were filled with the mean value of the elevation
change in each 50 m elevation band (Fig. 4), which has been pro-
ven as an effective method to interpolate voids in DEM difference
maps and can tolerate a rather high percentage of data voids, up
to ∼60% (McNabb and others, 2019).

3.2.4 Volume and mass change
Glacier volume changes for each subregion and period were com-
puted by multiplying the mean surface elevation changes by the
glacier area in 2005 (Tables 2 and 3). A volume to mass conver-
sion factor of 850 ± 60 kg m−3 (Huss, 2013) was used.

3.2.5 Correcting for difference in DEM acquisition dates
To account for the temporal difference in DEM acquisition (9
August and 14 August 2005 for ASTER and between 29 August
and 12 September 2014 for IFSAR), we approximated the mass
change that occurred between 11 August and 6 September
2005, and adjusted the area-averaged specific mass change rates
obtained above accordingly for each subregion. Following Van
Beusekom and others (2010), we used a simple degree-day mass
balance model forced by daily temperature and precipitation
data from the Wolverine weather station (990 m a.s.l.) to compute
idealized mass-balance profiles for the elevation range of the
glacier-covered area (0–2000 m a.s.l.). Since the model is not
well-constrained, we applied Monte Carlo methods to randomly
vary model parameters within reasonable limits and generated
50 profiles. Model parameters and applied ranges are given in
Supplementary Table S5. The mass-balance profiles, which
provide a mass-change value for each elevation, were assumed
constant across the corresponding glacier regions, and used to
compute a mass change for each glacierized gridcell.
Area-averaged mass changes were computed for each subregion.
Over the 27 days, the total mass change in the period
11 August to 6 September 2005 ranged from −0.86 ± 0.17 m w.e.
(subregion III) to −0.73 ± 0.17 m w.e. (subregion II) with a
region-wide average of −0.78 ± 0.10 m w.e..

3.3 Uncertainty estimation

3.3.1 Glacier outlines
Glacier area errors normally include technical errors (misregistra-
tion), interpretation errors and methodological constraints (Raup

Fig. 2. Results of the co-registration of the ASTER DEM
(AST-4) to the IFSAR DEM. (a, b) Elevation differences
normalized by the slope tangent vs aspect (a) before
co-registration and (b) after co-registration, including
error bars (blue) and cosine-fit (red line). The fitted
equation and coefficient of determination r2 are
given in the lower right corner. (c) Residual elevation
difference with error bars in the along-track direction.
(d) Normal probability density curve of elevation differ-
ences. The bin size is 0.0175 (5°) for panels (a) and (b),
and 500 and 3m for panels (c) and (d), respectively.

Table 1. Statistics of elevation differences between ASTER DEMs (AST-1, AST-2a, b, AST-4) and IFSAR DEM over stable terrain after co-registration and after
additional along/cross track correction. The grid resolution is 30 m. N is the number of pixels, Dh is the mean elevation difference (m) and σnon is the Std dev.
of elevation difference (m), dx, dy, dz are the three components of the full co-registration adjustment vector (in meters) between the ASTER DEMs and IFSAR DEM.

Image N

Original After co-registration After along/cross track correction

Dh σnon dx dy dz σnon
Type

Dh σnon
m m M m m m m m

AST-1 272 688 −30.5 54.3 22.5 −18.2 −39.5 48.9 Along/cross −0.11 46.7
AST-2a 568 285 −82.5 59.1 −46.3 −37.1 −87.8 46.1 Along 0.42 43.5
AST-2b 505 416 1.96 37.2 26.2 62.0 −0.96 21.6 Along 0.15 21.3
AST-4 761 879 −13.5 49.5 34.1 129 −22.2 19.7 Along −0.06 19.7
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and others, 2007; Paul and Andreassen, 2009). In this study, the
band ratio method was used to derive almost all glacier outlines
from Landsat data and no distinct horizontal shift between images
was found when visually checking over stable landforms (e.g.
mountain ridges, peaks or lateral moraines), so the technical
error was considered negligible and ignored (Bolch and others,
2010; Guo and others, 2013). Interpretation errors are mostly
associated with the definition of a glacier, while methodological
errors largely depend on the resolution of the source imagery,
and the experience of compilers. Following Guo and others
(2015), we incorporated all error sources into one term, assuming
±10 and ±30 m accuracies for clean-ice and debris-covered glacier
outline delineation respectively, and ±5m for ice divides.

The buffer method was selected to calculate the uncertainty of
glacier area generated from Landsat images, which included both
the length of glacier outlines and positional accuracies (e.g. Rivera
and others, 2005; Granshaw and Fountain, 2006; Kienholz and
others, 2015; Tielidze and Wheate, 2018). The area error of
each individual glacier Ea, was defined as,

Ea =
∑n
i=1

LiEpi (1)

where, i is the type of glacier outlines (clean-ice, debris-covered,
ice divides, n = 3) and Li is the length of glacier outline and EPi
is the position error. The errors of the position of the ice divides
were omitted for considering the whole glacier area of each sub-
region, and the errors of boundary between clean and debris-
covered ice were omitted in the single and regional glacier area
error estimation.

The uncertainty of area change EΔA over a period t1–t2, was
calculated by

EDA =
�����������
E2
A1 + E2

A2

√
(2)

where EA1 and EA2 are the errors of the glacier area in t1 and t2,
respectively.

3.3.2 Elevation change
Following Zemp and others (2013) and Huber and others (2020),
the uncertainty of area-averaged elevation change (σ) was esti-
mated from three components: the uncertainty related to spatial
autocorrelation in elevation differences (σautocorr), the uncertainty
related to the residual elevation errors after co-registration (σcoreg)
and the uncertainty due to data voids (σvoid), although this
approach may underestimate the total error (Berthier and others,
2012, 2016).

s =
��������������������������
s2
autocorr + s2

coreg + s2
void

√
(3)

The Std dev. of the elevation differences between the ASTER
DEMs and IFSAR DEM over nonglacierized pixels (stable terrain;
σnon) can be used as a first estimate of the σautocorr, if the spatial
correlation of the elevation differences is accounted for (Rolstad
and others, 2009). Following Gardelle and others (2013), we cal-
culated the standard error (SE) of the mean elevation change:

SE = snon�����
Neff

√ (4)

Fig. 3. Frequency distribution of elevation changes dh over stable terrain and the glacier area during the study period. Bin size is 3 m. Mean and Std dev. is given for
various stages of co-registration (Fig. 2). Panels a, b, c and d refer to the subregions I, II, III and IV (Fig. 1), respectively.
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where Neff is the effective number of the pixels after
de-correlation defined by,

Neff = Ntot · R
2d

(5)

where Ntot is the total number of pixels on the nonglacierized area
(stable terrain); R is the pixel size (30 m), d is the de-correlation
distance assumed to be 600 m as suggested by Bolch and others
(2011) and also used in previous geodetic mass-balance studies
(Brun and others, 2017; Menounos and others, 2019; Pelto and
others, 2019). σautocorr was then calculated using SE and the
mean elevation differences of the nonglacier region (Dh):

sautocorr =
������������
SE2 + Dh

2
√

(6)

σcoreg was calculated using the triangulation method by Nuth and
Kääb (2011). Based on three elevation data sets (ASTER DEM,
IFSAR DEM and ICESat), we did co-registration by the correction

vectors between each of them and then used the residual between
the triangulation of vertical vectors to estimate σcoreg (Table S6).

The DEM difference maps include data voids encompassing 7,
19, 41 and 1% of the four subregions I, II, III and IV, respectively.
Based on findings by McNabb and others (2019), who derived
differences to true elevation changes as a function of void percent-
age, we used the constant values of 0.05 and 0.10 m a−1 to esti-
mate σvoid for subregions II and III, respectively, and assumed
zero σvoid for subregions I and IV due to nearly complete
coverage.

3.3.3 Errors in volume and specific mass changes
Following standard error propagation, we finally obtained the
error of the volume change EVol and specific mass balance EMass

(m w.e. a−1), assuming that error terms are independent of each
other by

EVol =
����������������������
(dh · EA)2 + (A · s)2

√
(7)

where A is the glacier area in 2005, EA is the corresponding error.

EMass =
����������������������
(dh · Er)2 + (s · r)2

√
(8)

where ρ is the assumed volume to mass conversion factor (850 kg
m−3), Er is the corresponding error (±60 kg m−3); dh is area-
averaged surface elevation change, while σ is the corresponding
elevation change error (Eqn (3)). The mean annual uncertainty
is then given by dividing EMass by the number of years.

Fig. 4. Elevation change rates (blue) for all glacierized cells of ASTER DEMs for which data were available (median ± 1 Std dev.) and area-altitude distribution (50 m
bin size) of total glacier area (black), and the area with data gaps (pink). The panels a, b, c and d represent the four subregions I, II, III and IV, respectively (Fig. 1).

Table 2. Glacier area in 1986, 1995, 2005, 2016 for four regions (Fig. 1) and the
area change 1986−2016

Region

Area (km2)
Area change
(1986–2016)

1986 1995 2005 2016 km2 %

I 466 ± 11 457 ± 11 427 ± 11 408 ± 12 −58 ± 16 −12 ± 3
II 1976 ± 32 1931 ± 30 1827 ± 33 1781 ± 35 −195 ± 47 −10 ± 2
III 1315 ± 24 1276 ± 22 1229 ± 23 1151 ± 23 −164 ± 33 −12 ± 3
IV 643 ± 20 615 ± 18 559 ± 17 517 ± 17 −126 ± 26 −20 ± 4
Total 4400 ± 87 4279 ± 81 4087 ± 84 3857 ± 87 −543 ± 123 −12 ± 3
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4. Results and discussion

4.1 Glacier inventory in 2016

In the 2016 Landsat inventory (L2016), the 1357 glaciers larger
than 0.01 km2 cover an area of 3857 ± 87 with 35 ± 12 km2

(∼1%) of the surface debris covered. Half of the glaciers are smal-
ler than 0.1 km2, but they contribute only to <1% to the total area.
Only 76 glaciers (∼6%) are larger than 5 km2, however, they make
up about 85% of the total area (Fig. 5a).

Figure 5b indicates that the glaciers’ minimum elevation
decreases while their maximum elevation increases as the glacier
size increase, indicating that glaciers reaching sea-level require a
large elevation range, similar to the findings on southern Baffin
Island (Paul and Svoboda, 2009). The median elevation of all gla-
ciers fluctuates slightly around ∼1100 m a.s.l., regardless area class

which may indicate that the equilibrium line of the Kenai
Peninsula glaciers is at a similar elevation. There is no correlation
between mean glacier elevation and aspect (Fig. 5c). As expected,
the mean glacier slope decreases with glacier size, but the scatter is
large for smaller glaciers (Fig. 5d) due to local topography
(Haeberli and Hoelzle, 1995; Paul and others, 2011).

Figure 6 illustrates the area distribution per elevation, slope
and aspect class for each subregion as well as the entire region.
Nearly all ice-covered area (>99%) is situated between 150 m
and 1750 m a.s.l. (Fig. 6a). The area-elevation distribution of sub-
region II peaks at a higher elevation than the remaining regions.
As shown in Figure 6b, glacier area with slopes <30° occupies 90%
of the total area. Figure 6c indicates that there is a tendency for
glacierized pixels in all subregions to face towards the northwest
or east.

Table 3. Glacier-wide mean rates of elevation change (dh dt−1), volume change (dV dt−1), specific mass change (dM dt−1) in each subregion (Fig. 1) for 2005–2014.
Area refers to the glacier area in 2005. The region-wide average is the area-weighted average of the four subregions

Region Period
Area dh dt−1

a

dV dt−1
a

dM dt−1
a

dM dt−1
b

km2 m a−1 km3 a−1 m w.e. a−1 m w.e. a−1

I 2005–2014 427 ± 11 −2.03 ± 0.29 −0.87 ± 0.13 −1.73 ± 0.27 −1.63 ± 0.28
II 2005–2014 1827 ± 33 −1.32 ± 0.25 −2.41 ± 0.46 −1.12 ± 0.23 −1.04 ± 0.23
III 2005–2014 1229 ± 23 −0.92 ± 0.23 −1.13 ± 0.29 −0.78 ± 0.21 −0.69 ± 0.21
IV 2005–2014 559 ± 17 −0.96 ± 0.14 −0.54 ± 0.08 −0.82 ± 0.13 −0.73 ± 0.13
I–IV 2005–2014 4087 ± 84 −1.21 ± 0.14 −4.95 ± 0.57 −1.03 ± 0.12 −0.94 ± 0.12

aBased on original acquisition dates of IFSAR (29 August−12 September 2014) and ASTER DEM (09 August–14 August 2005).
bIncludes correction for seasonal difference in acquisition data, so that the ASTER data refers to 6 September (Section 3.2.4).

Fig. 5. Characteristics of glacier distribution of Kenai Peninsula in 2016. (a) Distribution of glaciers in different area classes; (b) scatterplot of glacier size vs max-
imum and minimum elevation (Max. elev., Min. elev.). The solid lines (blue and pink) give mean values for distinct size classes while the dark line shows the median
elevation per area class for the same area classes as shown in (a); (c) Mean elevation vs aspect per glacier; the solid line refers to the mean per cardinal sector; (d)
Mean slope vs glacier size per glacier. The solid line shows the trend (2nd polynomial fit). X-Axis in (b) and (d) is logarithmically transformed.
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4.2 Area change

Total glacier area has shrunk by 543 ± 123 km2 (12 ± 3%) between
1986 and 2016. Glaciers in different regions retreated at different
speeds (Table 2) and the highest area loss rate occurred in sub-
region IV (total area loss of 20 ± 4%).

Larger glaciers tend to have smaller relative area losses than
smaller glaciers, but the scatter especially for the smaller glaciers
is large (Figs 7a, 8b), consistent with previous studies (Maisch
and others, 1999; Serandrei Barbero and others, 1999; Kääb and
others, 2002; Paul, 2002; DeBeer and Sharp, 2009; Bolch and
others, 2010). The average area loss for glaciers <0.5 km2 is nearly
56%, ranging from 0 to 100%, while it is 8% for glaciers larger than
10 km2. Approximately 270 glaciers (all <0.5 km2) disappeared dur-
ing 1986–2016. Larger retreat rates of smaller glaciers can be attrib-
uted to a stronger impact of local topographic characteristics on the
processes controlling the glacier mass balance (Florentine and
others, 2018). For example, a moderate rise in the equilibrium
line may turn the entire glacier to ablation zone (Kaser and
Osmaston, 2002; Racoviteanu and others, 2008b). A given specific
mass change may also result in larger relative area changes for
smaller and thinner glaciers than larger glacier with steeper flanks
(Kääb and others, 2002). Generally, the area loss rate decreases with
increasing elevation (Fig. 7b) except for elevations above 1700m
a.s.l. where the sample size is very small and errors most likely
larger due to steep terrain, cast shadows and seasonal snow.

For glaciers smaller than 0.1 km2 (nearly 50% of the total
number of glaciers) with a more notable reduction in area than
others, the area loss during 2005–2016 is markedly lower than
during the earlier periods of 1986–1995 and 1995–2005
(Fig. 8b). One possible explanation is that small glaciers may
retreat into more sheltered locations that facilitate their preserva-
tion (DeBeer and Sharp, 2009).

We investigated the role of the slope and aspect in spatial
variations in area change. Results show that slope played an
important role in relative glacier area reduction. Glaciers located
on steeper terrains experienced larger relative area loss than less
steep glaciers (Fig. 8c) consistent with previous studies
(Salerno and others, 2008; Racoviteanu and others, 2015;
Tielidze and Wheate, 2018). Southeast-south-southwest facing
glaciers experienced generally more pronounced shrinkage than
northwest-north-northeast facing glaciers. This is similar to the
pattern found in the Himalaya by Ahmad and Rais (1999),
which was attributed to more solar radiation on the south-facing
than north-facing slopes.

4.3 Glacier elevation and mass changes

Figure 9 shows the spatial distribution of surface elevation
changes for the four subregions during 2005–2014. All regions
experienced most pronounced thinning in the lower parts

Fig. 6. Area distribution of topography variables for glacierized area in each subregion (I, II, III and IV) and the entire region in 2016 including (a) hypsography with
bin size 50 m, and (b) slope with bin size of 1°; (c) aspect, in which numbers represent the glacier area with unit km2 in 22.5° aspect bins.

Fig. 7. (a) Relative (blue) and absolute (red) glacier area change between 1986 and 2016 (a) for each glacier (n = 1660) as a function of glacier area, and (b) as a
function of elevation (based on all glacier pixels falling within sequential 50 m bins). Solid lines in (a) show the mean values per area class.
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Fig. 8. (a) Glacier area-elevation distribution for four different years, and (b–d) glacier area-change rates for different periods between 1986 and 2016 vs (b) area
size class, (c) mean slope and (d) aspect. The bin size in panel a is 50 m. Numbers in panel d refer to area change rates in % (10 a)−1.

Fig. 9. Spatially distributed surface elevation changes
rates for the period 2005–2014. Dark gray areas
represent the cloud error mask of the ASTER DEM,
while white area with blue dashes mark the areas
with no data. The red line is the 1000 m contour
line. The panels a, b, c and d represent the four sub-
regions I, II, III and IV, respectively (Fig. 1).
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especially below 1000 m a.s.l., and less pronounced thickening or
thinning in the glaciers’ upper reaches.

In subregion I (Grewing-Yalik glacier complex), most thicken-
ing occurred above 1000m a.s.l., but the lower tongue of Portlock
Glacier and some smaller glaciers in the southeast show some
thickening at lower elevations (Fig. 9a). In subregion II (Harding
Icefield), especially the upper reaches of some glaciers in the south-
west and southeast experienced thickening. It remains unclear
whether this thickening is caused by net snow accumulation,
changes in ice dynamics or by errors due to the noise of ASTER
DEM (Fig. 9b). Large parts of McCarty Glacier (<1000m a.s.l.)

show a positive surface elevation change, similar to results found
by Aðalgeirsdóttir and others (1998) for the period 1950s–1990s.

The two lake-terminating glaciers (Falling and Excelsior gla-
cier), experienced extreme thinning close to their termini (nearly
15 m a−1). The lower tongue of Ellsworth Glacier shows glacier
thickening during the studied period (Fig. 9c). However, based
on recent satellite imagery, no evidence of a surge could be
detected that could explain the local thickening. More studies,
such as the surface velocity and its recent dynamics, or the distri-
bution of its thickness, are needed to reveal its causes. Errors in
the DEMs may also explain this anomaly.

Table 4. Area (% of total), mean elevation and specific mass balance (dM dt−1 in mw.e. a−1) during the period 2005–2014 for three glacier types (land-terminating,
lake-terminating and tidewater glaciers) in each subregion (Fig. 1). Area refer to the inventory from 2005 and elevations to the IFSAR DEM in 2014

Subregion

Area per glacier type, Mean elevation dM dt−1
Mean elevation (range)

%, m a.s.l. m w.e. a−1

Land-term. Lake-term. Tidewater Land-term. Lake-term. Tidewater m a.s.l.

I 57, 986 43, 875 0, – −1.49 ± 0.27 −1.90 ± 0.24 – 939 (15–1655)
II 57,1094 22,1060 21,1147 −1.16 ± 0.23 −1.44 ± 0.24 −0.42 ± 0.22 1098 (0–1967)
III 39, 931 22, 937 39, 948 −0.73 ± 0.20 −0.97 ± 0.21 −0.50 ± 0.20 939 (0–1888)
IV 68, 966 21, 915 11, 948 −0.72 ± 0.13 −1.22 ± 0.15 −0.26 ± 0.12 954 (0–1980)
I–IV 53,1023 24, 975 23,1033 −1.02 ± 0.13 −1.37 ± 0.13 −0.45 ± 0.14 1014 (0–1980)

Fig. 10. Time series of (a) summer (May to September)
temperature, (b) winter (October to April) temperature
and (c) winter (October to April) precipitation for eight
weather stations in the Kenai Peninsula (Fig. 1) in the
period 1986–2016. Dotted lines are the mean values
before and after 2005 when an abrupt change was
detected with statistical significance α = 0.05 (Fig. 11).
Numbers in parentheses indicate the elevation of
each weather station (m a.s.l.). Precipitation data are
not available for B3. Data from NOAA, except A4
(Wolverine weather station), from the USGS.
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The regional elevation and mass changes during 2005–2014
for the four subregions are given in Table 3. Results emphasize
the need to correct for differences in acquisition dates of any
two DEMs to be differenced in regions with considerable mass
change over short periods. Without accounting for the 27-days
elevation difference between the ASTER DEMs and IFSAR
DEM acquisition date, the area-average region-wide mass-balance
rate would have been underestimated by 0.09 m w.e. a−1 (∼10%).

On average the glaciers on the Kenai Peninsula experienced
specific mass changes of −0.94 ± 0.12 m w.e. a−1. Mass-balance
rates were most negative for lake-terminating glaciers (−1.37 ±
0.13 m w.e. a−1, ∼980 km2), followed by land-terminating glaciers
(−1.02 ± 0.13 m w.e. a−1, ∼2166 km2) and tidewater glaciers
(−0.45 ± 0.14 m w.e. a−1, ∼941 km2). This pattern cannot be
explained with differences in mean elevation (Table 4). Many
lake- or marine-terminating glaciers experienced pronounced
thinning especially on their tongues (Wosneseski, Petrof, Skilak,
Bear, Pedersen, Falling, Excelsior, Spencer and Trail glaciers;
Fig. 9), but not all (for example McCarty glacier). This trend is
consistent with airborne laser altimetry derived results across
Alaska (Larsen and others, 2015), which indicated more rapid
thinning of many lake-terminating glaciers near their termini
compared to land-terminating glaciers.

Mean specific mass change rates varied considerably among
the four subregions (Table 3). Subregion I (Grewing-Yalik glacier
complex) experienced the most negative mean mass change
(−1.63 ± 0.28mw.e. a−1), and subregion III (Sargent Icefield) the
least negative rate (−0.69 ± 0.21mw.e. a−1). These differences are
consistent with the relative distribution of glacier types. Subregion
I has roughly twice as much lake-terminating glacier area (in %)
than the other subregions while tidewater glaciers are lacking. In
contrast subregion III has a considerably higher percentage of tide-
water glacier area compared to the other regions (Fig. 1, Table 4).

Wolverine glacier (∼17 km2, Fig. S3), located in subregion IV
and part of the USGS benchmark glacier monitoring project, had

an average glacier-wide mass-balance rate of −0.55 m w.e. a−1

during the period 2005–2014 (O’Neel and others, 2019), is similar
to the averaged mass-balance rate of subregion IV (−0.73 ± 0.13
m w.e. a−1). However, we find a less negative mass-balance rate
for Wolverine glacier for the same period (−0.20 ± 0.13 m w.e.
a−1) and attribute this discrepancy to artifacts in the DEMs
which are introduced by the steep local topography (Koblet and
others, 2010; Le Bris and Paul, 2015).

4.4 Comparison with other studies

Our new Landsat derived glacier inventory of the Kenai Peninsula
for 2005 includes 1421 glaciers covering an area of 4087 ± 84 km2,
which agrees well with RGI 6.0 (1457 glaciers, ∼4175 km2,
Kienholz and others, 2015) compiled in 2005–2007. Hall and
others (2005) found an area reduction of 3.6% (∼78 km2) for
the Harding Icefield and Grewingk-Yalik Glacier Complex
(excluding the glaciers in the surroundings that are not connected
to these ice fields) over the time interval 1986–2002. Their results
are similar to our results for 1986–2005 for the same ice masses
(area loss of 91 ± 22 km2, 4.2%). O’Neel and others (2019)
found that the Wolverine glacier experienced a 1.5 km2 area
reduction between 1969 and 2018, which is similar to the area
loss of 1.4 km2 found in this study for the period 1986–2016.

Aðalgeirsdóttir and others (1998) calculated a surface thinning
rate for the Harding Icefield (subregion II) of −0.49 ± 0.12 m a−1

for the period 1950s–1996, which is close to the rate of −0.47 ±
0.01 m a−1 found by VanLooy and others (2006) for roughly the
same period (1950 to mid-1990s). The latter study found an accel-
erated rate of surface elevation change (−0.72 ± 0.13 m a−1) in the
period mid-1990s to 1999. For the glaciers in subregions I and II
combined, they report a surface elevation change rate of −0.61 ±
0.12 m a−1 for the entire period 1950–1999. Correspondingly,
we find accelerated elevation change rates of −1.97 ± 0.29 and
−1.26 ± 0.25 m a−1 for subregions I and II (the area-average

Fig. 11. The moving t-test curve of the air temperatures of four weather stations (A1, A2, A3 and A4) on the Kenai Peninsula. Dashed horizontal lines indicate the
95% confidence level (α = 0.05). Results indicate an abrupt change in 2005 (or 2002 in panel a, 1997 in b). Panels a–d refer to summer temperatures, while panels e–
h refer to winter temperatures.
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value is −1.39 ± 0.21 m a−1), respectively, for the period 2005–
2014.

For the entire Kenai Range (subregions I-IV, Fig. 1), our
results (−0.94 ± 0.12 m w.e. a−1) are considerably more negative
than the mass-balance rates of −0.06 ± 0.40 m w.e. a−1 from
1994/1996 to 1999/2001 reported by Arendt and others, 2009,
and −0.45 ± 0.11 m w.e. a−1 between 1962 and 2006 found by
Berthier and others, 2010, suggesting that glaciers mass loss
in the Kenai Peninsula has strongly accelerated since at least
the mid-2000s. These findings are in agreement with observed
acceleration of glacier mass loss in Western Canada between
the periods 2009–2018 and 2000–2009 (Menounos and others,
2019).

Our results are also more negative than regional-scale esti-
mates in other regions in Alaska during similar periods, for
example, on the Juneau Icefield and the Stikine Icefield (−0.68
± 0.15 and −0.83 ± 0.12 m w.e. a−1, respectively) over the period
2000–2016 (Berthier and others, 2018) and also averaged over
all glaciers in Alaska and adjacent Yukon (−0.69 ± 0.18 m w.e.
a−1) for the period 2006–2015 (Hock and others, 2019).

4.5 Regional climate variability and trends

To investigate the causes of the accelerated glacier mass losses
we analyzed air temperature and precipitation records on the
Kenai Peninsula (Fig. 10, Table S7). Only four weather stations
(A1, A2, A3, A4; Fig. 1) have longer than 30 years of largely
uninterrupted observations through at least 2016, while data
from the other five stations close to the ice masses (B1–B5,
Fig. 1) are only available since 2005. All records show large
interannual variation for both air temperature and precipitation
(Fig. 10). We applied a moving t-test (Afifi and Azen, 1972; Fu
and others, 1999) to the summer and winter temperature data
to explore possible abrupt changes in temperature. Results indi-
cate a significant change (at significance level α = 0.05) in 2005
for all stations, except for summer temperature at A1 and A4,
where the change occurred in 2002 and 1997, respectively
(Fig. 11).

We calculate temperature trends for the period 2005–2016 for
the five stations (B1–B5) that lack prior data and over the period
1986–2016 for the four stations (A1–A4) with longer records.
Except for station A1 (1986–2016) and station B1 (2005–2016)
linear warming trends in summer are not significant (Table S7).
Three stations (B3, B4 and B5) show pronounced positive linear
trends in winter temperature over the period 2005–2016, however,
trends for the stations (A1–A4) going back to 1986 are not signifi-
cant. In fact, mean summer and winter temperatures of the peri-
ods 1986–2005 and 2005–2016 are similar (Fig. 10). Precipitation
variations are complex with both positive and negative trends, but
only two stations (A1 and A4) have trends (negative) over the per-
iod 1986–2016 that are significant ( p < 0.05, Table S7). Although
decreasing precipitation is consistent with accelerated mass loss,
the precipitation records are too short and scarce, especially at
high elevation, to elucidate the role of precipitation in the
observed glacier changes.

Overall, the large interannual variability and mostly short air
temperature and precipitation records with largely insignificant
changes of most of the investigated records hamper unambiguous
attribution of the observed accelerated specific mass losses of the
glaciers on the Kenai Peninsula during 2005–2014 compared to
earlier periods covered in previous studies. In addition, changes
in frontal ablation (calving and submarine melt) of tidewater gla-
cier due to changes in ocean properties close to the calving fronts
may also have contributed to accelerated mass loss, but their role
remains unknown.

5. Conclusion

Four new glacier inventories of the Kenai peninsula glaciers in
1986, 1995, 2005 and 2016 were compiled from Landsat images
indicating substantial area loss between 1986 and 2016 (543 ±
123 km2, ∼12%). Despite substantial scatter, relative area losses
were generally considerably higher for smaller than larger glaciers,
consistent with previous studies elsewhere. Geodetic mass-balance
estimates derived from the IFSAR DEM in 2014 and DEMs gen-
erated from ASTER images in 2005 reveal substantial thinning
and mass loss between 2005 and 2014 (−0.94 ± 0.12 m w.e. a−1).
Mass-balance rates vary strongly among the four subregions
ranging from −0.69 ± 0.21 m w.e. a−1 (Sargent Icefield) to
−1.63 ± 0.28 m w.e. a−1 (Grewing-Yalik glacier complex). These
rates are considerably more negative than those found in previous
studies for various periods between the early 1960s and late 1999s
indicating strong acceleration of mass loss in this region.
Thinning is generally most pronounced at lower elevations and
both thinning and thickening is observed at higher elevations.
The area-averaged specific mass-balance rate of the peninsula’s
lake-terminating glaciers is almost three times as negative than
the rate of the tidewater glaciers and about twice as negative
than the rate of the land-terminating glaciers.

Although the acquisition day of the year of the ASTER and
IFSAR DEMs differed only by ∼27 days, the calculated average
region-wide mass-balance rate would have been underestimated
by 0.09 m w.e. a−1 (∼10%) if it was not corrected for, highlighting
the importance of correcting for seasonal differences in acquisi-
tion dates in this case. Trends in available temperature and pre-
cipitation data on the Kenai Peninsula are mostly insignificant.
Records are scarce and often short hampering unambiguous attri-
bution of the acceleration in mass loss over the last decades.
Further analysis is needed to determine the exact drivers of this
acceleration. Process-based glacier modeling informed by the
available data may help to attribute the observed acceleration in
glacier mass loss in this region to their causes.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2020.32.
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