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THE HYPERCENTRE AND THE n-CENTRE
OF THE UNIT GROUP OF AN INTEGRAL GROUP RING

YUANLIN LI

ABSTRACT. In this paper, we first show that the central height of the unit group
of the integral group ring of a periodic group is at most 2. We then give a complete
characterization of the n-centre of that unit group. The n-centre of the unit group is
either the centre or the second centre (for n > 2).

1. Introduction. Let n be an integer. Two elements x, y in a group G n-commute
(seeR. Baer [3, 4]) if
Oy)"=xY" and  (yx)" =y

A group is n-abelian if any two elements n-commute. In [3], R. Baer introduced the
n-centre Z(G, n) of agroup G as the set of those elements which n-commute with every
element in the group. Later L. C. Kappeand M. L. Newell [14] proved that (ax)" = a"x"
for al x € G implies (xa)" = x"a" for al x € G, and vice versa. Thus only one of the
n-commutativity conditions sufficesto define the n-centre Z(G, n).

The n-centre, which can readily be seen to be a characteristic subgroup, shares many
properties with the centre, some of which already have been explored in R. Bager [3, 4].
For example, it follows from Corollary 1 in R. Baer [4] that a group is n-abelian if the
guotient modulo its n-centre is (locally) cyclic. In [14], L. C. Kappeand M. L. Newell
shed further light on these similarities by investigating various characterizations and
embedding properties of the n-centre. They characterized the n-centre as the margin of
the n-commutator word (xy)"y "x "(seealso L. C. Kappe[12, 13] and G. T. Hogan and
W. P. Kappe[11]), and their result yields some interesting connectionswith a conjecture
of P. Hall on margins (see P. Hall, [9, 10]).

Let ZG denotethe integral group ring of agroup G and U = U(ZG) the unit group of
suchagroup ring. Inthis paper, weinvestigatethe n-centre of the unit group of anintegral
group ring ZG for aperiodic group G. Wefirst consider, in Section 2, the hypercentre of
the unit group U of theintegral group ring of a periodic group. We prove that the central
height of U isalways at most 2. When G isfinite, this result was proved by S. R. Arora,
A. W. Halesand |. B. S. Passi in [1] (Theorem 2.6). We then, in Section 3, apply this
to the n-centre of U. It is obvious that the 2-centre of a group is equal to its centre. It
turns out that the 3-centre of the unit group of an integral group ring of a periodic group
also coincides with the centre of that unit group (Theorem 3). Our main result isto give
a complete characterization of the n-centre of the unit group U for any integer n. We
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prove that this n-centre (for n > 2) coincides with either the centre Z;(U) of the unit
group or the second centre Z,(U) of the unit group (Theorem 5). Combined with ([2],
Theorem 3.1), this yields that the n-centre (for n > 2) is either the centre Z;(U) or the
product of the centre with torsion hypercentral units, Z;(U)T, when G isfinite.

The work described here is part of the author’s doctoral dissertation.

2. Thehypercentreof the unit group. Let G be an arbitrary group and let
W=z <zU)< - <zU) < -

be the upper central series of the unit group U. Let Z(U) = J2, Z,(U). Then Z(U) is
anormal subgroup of U and is called the hypercentreof U. Let G be a periodic group
and let T = T(Z(U)) denotethe set of all torsion units in Z(U) having augmentation 1.
Since T = Uy T(Zo(U)), and T) = {+u | u € T(Z4(U))} is acharacteristic subgroup
of Z,(U) for each n, it follows that T is a periodic normal subgroup of U.

Now theresults of A. A. Bovdi [5,6] apply to give the following:

THEOREM 1. Let G bea periodic group. Then exactly one of the following occurs:

(1) GisaHamiltonian2-groupand T = G;

(2 T=27(C);

(3) G has an Abelian normal subgroup H of index 2 containing an element a of
order 4 such that for eachg € G\ H, g> = a®>and ghg™* = h~* for all h € H, and
T =(a) ® E = Zy(U) N Zy(G) where E is an elementary Abelian 2-group.

The proof of Theorem 1 is similar to that given by S. R. Arora, A. W. Hales and
I.B. S. Passi in[1].
Recalling Theorem 12.5.4in M. Hall [8], we have the following:

ReEMARK 1. Incase(1) of Theorem 1, G = Q & E where Q is the quaternion group of
order 8 and E is an elementary Abelian 2-group. Furthermore, U = +G.

COROLLARY 1. Let G bea periodic group. Then T < Z5(G).
Wefirst prove the following lemmawhich is needed for proving the main Theorem 2.
LEMMA 1. Let G be any periodic group. Then Zo(U) C Ny(G).

ProoF. Letv e Z,(U),andg € G. Then[v.g] = vgv gt = ¢ € Z;(U). It follows
that o(cg) = o(vgv1) < oo, and therefore c is of finite order. In view of S. K. Sehgal
([17], p. 46), we conclude that c isatrivial unit. Consequently, vgv—! = cg € G and this
leads to the desired resullt. ]

If H and K are subsets of a group G, then we denote by [H. K] the subgroup of G
generated by the commutors [h, k] = hkh=tk—%, h € H, k € K. Now we prove the main
result of this section—the central height of the unit group of an integral group ring of a
periodic group is at most 2.

THEOREM 2. Let G be a periodic group. Then Z3(U) = Z(U).

https://doi.org/10.4153/CJM-1998-021-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-021-2

UNIT GROUP OF AN INTEGRAL GROUP RING 403
PROOF. First we prove that
(2.1) [Z(U), U] C z(G).

For any up € Zp(U), we have u3 = ag for somea € Z;(U) andg € G, by Lemma 1
and S. K. Sehgal ([18], Proposition 9.5). Hence there exists a positive integer n(u,) such
that (up)"“2) € z;(U). Now for any u € U, we have that [up, u] = upuu;*ut = ¢ so
uuy tu=t = u;1c, where cis acentral unit. By taking the n(u,)-th power of both sides of
the above identity, we obtain that uu, "2 u~t = u,"*)ct), This forces c*) = 1 since
up™?) is a central unit and therefore, ¢ € Z4(G) by S. K. Sehgal ([17], p. 46). Finally, we
concludethat [Z,(U). U] C Z1(G).

Next we prove that

(2.2) Z2,,(U)cz,(U) foraln>1.

We first prove that Z3(U) C z;(U) by contradiction. Assume that Z3(U) £ z;(U).
Since ZZ(U) C Nj(G) C Gzy(U) as seen earlier, there exists a group element g €
Z,(U) \ zy(V). Let u € U. Then [u,g] = go € Z1(G). Hence there exists a positive
integer n = n(u) such that u"gu—" = g. It follows from Theorem 1.2 of M. M. Parmenter
[15] that the exponent of Z;(G) is 2. Therefore, for all u, € Zo(U) and all g’ € G, we
have [, g'] = [Uz, 9']? = (gp)? = 1. This meansthat u3 is a central unit, forcing Z3(U)
C Z3(U). This contradiction finishes the proof.

The proof continues by induction on n. We just proved that the result is true for
n = 1. Assume that the result is also true for n = k — 1 > 1. Now consider the case
n=k Letu e U and Uy € Zis1(U). Then [uga. u] = ue € Z(U). It in turn yields
that [UZ,;, U] = [Uk1, W]UZ € Z_1(U) by the inductive assumption, and therefore we
conclude Uz, € Z(U). We are done.

Moreover, in view of the fact that for any uz € Zz(U), u € U, [us.u]? =
[u. [z, U]]~1[U3, U] € Z1(G) by (2.1) and (2.2), we conclude that

(233 [Zz(U). Ul CT.

Now we are ready to prove our main result: Zs(U) = Z,(U).

According to Theorem 1, we need to deal with the following three cases.

(a) Supposethat G isaHamiltonian 2-group. Then U = £G = £T = Z,(U) and we
are done.

(o) Supposethat T is a central subgroup of U. Then the result follows immediately
from (2.3).

(c) Supposethat T isabelian but not a central subgroup. Then G = (H, g) isa group
of the type (3) in Theorem 1 and therefore, T = (a) & E = Z,(U) N Zx(G). In this case,
wefirst observethat Z;(G) = {x € G | x> = 1} and the exponent of T is 4.

Let B; denotethe subgroup of U(ZG) generated by all bicyclic units. Next we prove
the following resullt:

(24) [Z5(U).B.] = 1.
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We first show that [Zo(U).B1] = 1. Let u, € Zo(U) and upz = 1+ (1 — b)ab be a
bicyclic unit. Then [uz, Upa] = Co € Z1(G) by (2.1). Therefore, there exists a positive
integer n such that [uy, Uya]" = ¢y = 1. It in turns yields that [up. up,] = 1 since
[z, Ul ] = [Up, UpalUpa [Uo, USZMIURE = [Uz, Upa][Uz, URSM] (since [z, upl] € Zi(G)
by (2.1)) = [Uz, Upa] [U2. Una]™t (by inductive assumption) = [Up, Uy a]". Observing
that up, = 1+n(l— b)aB, we obtain that [uy, Upa] = 1 and this leads to the desired
result. Next let us € Z3(U) and b be a bicyclic unit. Then [uz.b] € T by (2.3), and
hence [us,b]” = 1 for some positive integer n. Note that [us.b"] = [us, b™1]b™?
[us. b]b~Y = [uz, b™][b"2, [us. b] |[us, b] and, [b™2.[us.b]] = 1 since [us.b] €
Z,(U). We conclude, by induction, that [uz. b"] = [us, b"*][us. b] = [us, b]"*[us. b] =
[us, b]" = 1. Therefore, [us, b] = 1 as seen earlier and we are done.

Now we claim that

(2.5) [Z3(U).G] C (a2).

The proof of (2.5) is omitted since it is similar to that of Theorem 2.6 in [1] except
that (2.4) is used instead of Proposition 2.3(iii) in [1]. Therefore, we have[Z3(U). G] = 1
and

(2.6) Z3U) c z(V).

Suppose that there exists x € Zz(U) \ Zo(U). Then, for someu € U, [x.u] =t T
is an element of order 4. Clearly, t € G/, the derived group of G (mapping t into
Z(G/G'), we obtain that t = [x,U] = 1 since Z(G /G') is a commutative group ring.
Thust — 1 € A(G)ZG. Thisimpliest € G'). It is not hard to check that, in this
case, G’ = {h? | h € H}. Note that [x.h] € (a?) C z;(U) for al h € H by (2.5), so
[x. h] = 1. It followsthat [, ] = [x. h?](for someh & H) = [x, h]h[x. h]h~ = [x, h]? = 1.
Hence [x2. u] = x[x, u]x"[x. u] = [x.t]t? = t> # 1. However, in view of (2.6), we have
[x2.u] = 1, acontradiction. Thuswe must have Z,(U) = Z3(U) aways. "

COROLLARY 2. Let G be a periodic group. If all central units are trivial, then all
hypercentral units aretrivial too.

PrOOF. Let u e Z(U). Then u € Ny(G) by Theorem 2 and Lemma 1. It follows
from S. K. Sehgal ([18], Proposition 9.4) that uu* = g € Z;(G) and hence uu* = 1.
Consequently, u istrivial and we are done. ]

By recalling theresult in J. Ritter and S. K. Sehgal [ 16] giving necessary and sufficient
conditions for al central units to be trivial when G is finite, we obtain the following
necessary and sufficient conditionsfor all hypercentral units to be trivial.

COROLLARY 3. Let G beafinite group. All hypercentral units of ZG aretrivial if and
onlyif for every x € G and every natural number  relatively primeto |G|, ¥ is conjugate
toxor xL.
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3. The n-centre of the unit group of an integral group ring. In this section, we
apply theresult onthe hypercentreof U (Theorem 2) to the n-centreof U. Subsection 3.1
introduces some basic results and notation on the n-centre. It turns out that the 3-centre
of the unit group of the integral group ring of a periodic group also coincides with the
centre of that unit group. In subsection 3.2, we give a complete characterization of the
n-centre of the unit group of the integral group ring of a periodic group.

3.1. Basicresultsand notation. We first introduce some basic definitions and notation.
Then we recall some fundamental results which will be needed later in this paper. Other
notation follow L. C. Kappeand M. L. Newell [14].

Let

Si(G,n)={aceG|(ax)"=a%"¥x e G}

and
S(G.n)={ac G| (xa)"=x"a"Vx € G}.

R. Baer first defined the n-centrein [3] as
Z(G,n) = S(G, n) N S(G, n).

However, L. C. Kappe and M. L. Newell proved that S(G.n) = S(G.n) ([14],
Theorem 2.1). Thus only one of the n-commutativity conditions suffices to define the
n-centre.

The following proposition collects various facts about the elements in the n-centre.
Note that Z(G, 1) = Z(G, 0) = G.

PrROPOSITION 1 ([14], LEMMA 2.2). Leta € Z(G, n). Then

(1) [@ 1, x" =1forall x € G;

(2) a€ Z(G,1—n) (Thereforealways Z(G. n) = Z(G, 1 — n));

3) [@",X] =[a,X]" =[a.x"] for all x € G;

(4) 1=[ax "] =[a@", x] = [a x]"" =[a",x}"] for all x € G;
(5) a" € Z(G,n—1).

It can be easily seen by the definition that the 2-centre of a group coincides with its
centre. Even a better result can be obtained when we investigate the 3-centre of the unit
group U of anintegral group ring of a periodic group G. We will show that the 3-centre
Z(U, 3) of the unit group also coincides with its centre Z,(U). In the next subsection, a
complete characterization of Z(U, n) will be obtained for al n.

THEOREM 3. Let G be a periodic group. Then
Z(U.3) =2z(U.2) = zy(U).

Thefollowing proposition dueto L. C. Kappeand M. L. Newell is needed in the proof
of Theorem 3.
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PROPOSITION 2 ([14] THEOREM 4.3). Let G be a group. Then
Z(G,3)={acR(G) |a® € Z1(G)} and Z(G.3) C Z3(G).

Here Z,(G) isthe mth centre of G and Ry(G) = {a € G | [amX] = 1V¥x € G} denotes
the set of right m- Engel elements, where

[XmY] = [Xm-1Y].y] and [xa1Y] = [x.Y].
Now we are ready to prove Theorem 3

Proor. Recall that Z(U, 3) C Z3(U) by Proposition 2 and also that Zs(U) = Z,(U)
and Z3(U) C z;(U) by Theorem 2 and its proof. It follows that for all u € Z(U. 3),u? €
Z,(U). Also note that u®> € Z3(U) by Proposition 2 (or by Proposition 1(5)). Thus
u e Z1(U) and Z(U. 3) C Z1(U). We are done. "

3.2. Themainresult. In thissection, we investigate the n-centre of the unit group of an
integral group ring for n > 4. Wefirst characterize periodic Q*-groups as precisely those
periodic groups which contain anoncentral element lying in the 4-centre of U. Then we
turn our attention to studying the set of all torsion unitsin Z(U, n). Our main result is
Theorem 5, which gives a complete characterization of the n-centre of the unit group of
anintegral group ring for any periodic group.
A group G is said to be a Q*-group if G has an Abelian normal subgroup A of index
2 which has an element a of order 4 such that forall h € Aandal g € G\ A, ¢ = a2
and g~*hg = h~1. We note that finite Q*-groups have played asignificant rolein work by
S.R. Aroraand |. B. S. Passi [2] (see also[1]), where they are characterized as precisely
those groups G with the property that U is of central height 2. Such groups also appear
in apaper by A. Williamson [19], who showed that Q* groups are exactly those groups
containing a noncentral element a which has finitely many conjugatesin U. Recently,
M. M. Parmenter [15] showed that a weaker conjugation condition also characterizes
these groups. For our purpose, we characterize Q* groups by the 4-centre of the unit
group.
THEOREM 4. Let G be a periodic group. Then the following are equivalent:

(1) GisaQ*-group;

(2) G containsa noncentral element a such that a € Z(U. 4);

(3) G contains a noncentral element a such that a € Z(U. n) for somen > 4.

To prove Theorem 4, we need the following results. The first one is proved by
M. M. Parmenter in [15] (Theorem 1.2).

PROPOSITION 3. Let G be a periodic group. Then the following are equivalent:

(1) G contains a noncentral element a with the property that given any unit uin U,
there exists a positive integer n = n(u) such that u"au™" belongsto G.

(2) GisaQ*-group.

The following proposition establishes a relationship between the 4-centre and the
second centre of the unit group of an integral group ring.

PROPOSITION 4. Let G be a periodic group. Then Z,(U) C Z(U. 4).
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ProoF. Let u € Zp(U) and v € U. Then we have [u,v] € z(U) (*) and u? €
Z5(U) C zy(U) (**) by the proof of Theorem 2. It follows that

[u, V1% = [u. Vu(u v = ufu, V(v tv ) = vdwur vt = 1.

Therefore,

uvuv = uvu~ vty = [u VVAU?  sinceu? € Z3(U).

Consequently,
(uv)* = (uvuv)(uvuv) = ([u, VIV2u?)([u. vIVVU) = [u. v2uhv? = uvh,

Thisleadsto u € Z(U. 4) and we are done. n
Now we are ready to prove Theorem 4.

ProCF. (1) = (2) If GisaQ*-group, then G hasan Abelian subgroup A of index 2
which has an element a of order 4 such that for all h€ Aandall g € G\ A, g = a? and
g~thg = h™1. Weclaim that a is a noncentral element and belongsto Z(U). Therefore,
Proposition 4 implies that (2) istrue.

It is obvious that a is noncentral. To see that a € Z,(U), let f:G — +1 be the
orientation homomorphism such that Ker(f) = A and f(b) = —1, where G = (A, b) and
b? = &. It follows from A. A. Bovdi and S. K. Sehgal [7] that for any unit u = a; + asb,
uf = a; — a,a?b is also a unit. We claim that u=! = ufc’ where ¢’ is a central unit. Let
v=uu'. Then

V' = (uh)* = aa) — azal — ajaxb(1 — b?)

W = (aga))? + (axah)? — 2(ayajazal)b?
= (aa] — apayb®)? = c?

wherec = (aa; — apazb?) =c* = ¢ € Z;(U).
Let vy = vct, thus

vivi =ve e v =wie (et = 1

We conclude that v; = +go for somegg € G and v = t-cgp.
Letgo = agh', @0 € A.i =0or 1. If i = 1, then gy = agb and v = +cagb; therefore,

+c = 85'vb® = 8y (aua) — axap)b® + 8y (awax(1 — b?)) € Zy(U).
Since ¢ € ZA (by the proposition in [7]), we have a;Y(a1a; — apa;)b® = 0. However,
this is a contradiction since the augmentation of (aya; — apa3) is+1. Asaconsequence,

i =0and gy = ag. Now since

ap H(awa; — apas) + & ' (anax(1l — b)b) = ag'v = £c € ZA,
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we conclude that a5 *(ayax(1 — b?)b) = 0, S0 aga2(1 — b?)b = 0. Therefore, v = uu’ =
a1a; — apas € Z3(U). Thisleadsto the desired result.
Now we have

_l:

[a, U] = (aua Y)u™! = (ay + axab)(a] — axa?b)c’ = (awa) — axasa’)c’ € Zy(U).

Hence a € Z,(U) and we are done.
(2) = (3). Immediate.
(3) = (1) Supposeg € Z(U.n) \ Z;(U). For u € U, Proposition 1(4) saysthat

[g. "] = [g. U™ = [ ] = 1.

Hence u"™Vgu"(1 = g € G for al u € U and Proposition 3 gives the desired
result. ]

We can now obtain a different version of Proposition 3.

COROLLARY 4. Let G bea periodic group. Then the following are equivalent:
(1) GisaQ*-group;
(2) G contains a noncentral element a such that for any unitu € U, u*tau= = a.

PrROOF. We need to verify only (1) = (2). By Theorem 4, G contains a noncentral
element a such that a € Z(U. 4). It follows that for u € U, Proposition 1(3) implies that

[a,u*] =[a.u*=[a*.u =1

for a* € Z(U. 3) = z;(U) by Proposition 1(5) and Theorem 3. Hence u*au™* =a € G
foralue U. "

Now we turn to characterizing the n-centre of the unit group. Wefirst study the set of
all torsion elements of the n-centre.

PROPOSITION 5. Let G be a periodic group and Ty, = T(Z(U.n)) = {x € Z(U.n) | x
is of finite order and aug(x) = 1}. Then for all n > 2,
(1) T,isacharacteristic subgroup of Z(U, n). Moreover,

T,=2(U.n)NG.

(2) Ifue z(U,n), then[u.v] € Ty for all ve U,
(3) Z(U.n) C Ny(G) and Z2(U. n) C T,z1(V),
@) Tn C T(Zx(U)). Moreover, T, = T(Z3(U)),
(5) Z(U.n) C Z,(U). Moreover, Z(U. 4) = Z,(U).
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ProOF. (1) Referringto Theorem 3, we need to consider only the situationforn > 4
because central units of finite order are trivia (S. K. Sehgal [17], p. 46). Note that if
a € T, then dwaysa! € T, sinceo(@™?) = o(@) < oo and a™! € Z(U.n). For
a.b € T, we only need to show that ab € T, i.e., o(ab) < oo. We will do it by using
induction.

Letn=4anda, b € T,. Supposethat o(a) = I, o(b) = m. Thus

(ab)¥™M = (@*bHm = a¥Mp*M =1 (sincea’,b* € Z(U.3) = Zy(V)).

Therefore, ab € T4. Consequently, T4 is a subgroup.

Supposethat for n = k > 3, Ty isasubgroup of Z(U. k).

Now consider that n = k+ 1. For a,b € Tyw1 C Z(U,k + 1), observe that (ab)<** =
a1p<*1, Since a*1, b*! € Z(U.K) by Proposition 1(5) and both have finite order, we
conclude a1, b*1 € Ty. It follows from the inductive assumption on Ty that a<*1b*1 €
T« As a consequence, o((ab)<*) = o(@“*b*1) < oo, so o(ab) < oo. This means that
Tw+1 forms asubgroup. We have proved that T, isasubgroup of Z(U. n) for every integer
n>2.

It can be easily seen that the subgroup £Tj, is a characteristic subgroup. Hence, since
Z(U. n) isanormal subgroup of the unit group U sois T,. It follows from A. A. Bovdi
([3], Theorem 1 and [4], Theorem 3), that T, < G. Therefore, T, = Z(U.n) N G.

(2) Letu e Z(U,n)andv € U. SinceZ(U, n) isanormal subgroup of U, we observe
that vu=lv—1 € Z(U. n); therefore, [u. V] = uvu=tv1 € Z(U. n). Moreover

[u V"D = ([u,v]"@")~1 =1 by Proposition 1(4).

Hence, [u, V] € T, asdesired.
(3) Thefirst statement follows directly from (1) and (2). Observing that

Z%(U,n) C N3 (G) € Gzy(U) (S. K. Sehgal [18], Proposition 9.5),

we easily obtain z2(U. n) C T,Z1(U).

(4) Supposethat for somen > 2 there existsa € T, suchthat a ¢ T(Zx(U)), thusa
isanoncentral group element. According to Theorem 4, G is a Q*-group. Next we show
that thisais a special element of order 4 in G, as given in the definition of Q*-groups.
Observing the proof of Proposition 3, we find that if g € G, then either

(i) (a g)isAbelian
or

(i) (a,g) ~ Q, thegroup of quaternions.
Setting A = Cg(a) C Gand g ¢ A, we obtain that (a, g) ~ Q, thus a2 = g2. It follows
that a has order 4. For any h € A, g ¢ A, we have hg ¢ A. Therefore, (a,hg) ~ Q.
It follows that g> = a? = hghg, and so ghg™t = h™! (*). We also note that if k ¢ A,
then gag™' = a~! = kak 2. It follows that ag—'k = g~*ka and g~'k € Cg(a) = A, and
so Ais of index 2 in G. Condition (*) tells that A is Abelian; therefore the element a
is a specia element as we claimed. However we showed in the proof of Theorem 4
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that a € T(Zy(U)). This contradiction leads to the first result. Moreover, recalling
Proposition 4 which gives T(Z,(U)) C T4, we obtain that T(Zx(U)) = Ta.

(5) Letue Z(U.n) andv € U. Then[u.V] € T, by (2); therefore, [u. V] € T(Z2(U))
by (4). It follows that u € Z3(U) and therefore, Z(U,n) C Z3(U). Since Z3 = Z,
(Theorem 2), we conclude that Z(U, n) C Z,(U). In particular, Z(U, 4) C Z,(U). Now
Proposition 4 finishes the proof. ]

Now we give a complete characterization of the n-centre of the unit group.
THEOREM 5. Let G be a periodic group. Then

U forn=0o0r 1
Z(U,n) = {ZQ(U) forn=4kor 4k+1,k>1
Z1(U) forn=4k+2o0r4k+3,k>0

PrROOF. Thefirst equality is obvious.

Now we prove that Z,(U) C Z(U, 4k) and Z,(U) C Z(U. 4k + 1) for all k > 1.
Combined with Proposition 5(5), this leads to the second part.

Let u € Zy(U) and v € U. Then u € Z(U.4) by Proposition 4, and therefore
u* € Z1(U) by Proposition 1(5) and Theorem 3. It follows that

(uv)4k — ((uv)4)k - (U4V4)k - U4k\/4k.

Thisforcesu € Z(U, 4k), thus Z,(U) C Z(U, 4K).
Similarly,
(UV 4k+l — (UV)(UV)4k - UVU4kV4k - U4k+l\/4k+1.

This meansthat Z,(U) C Z(U, 4k + 1).

Next supposethat n = 4k + 2 or 4k + 3, k > 1. First let us consider n = 4k + 2. Note
that Z(U, 4k + 2) C Z, by Proposition 5(5) and therefore, Z(U, 4k + 2) C Z(U, 4k) N
Z(U, 4k + 1) by the above. Recall that if an element is contained in 3 consecutive n-
centres, then it must be a central element (see L. C. Kappe and M. L. Newell [14]). We
are done.

Similar arguments work for the case of n = 4k + 3. ]

Inview of S. R. Aroraand |. B. S. Passi ([2], Theorem 3.1), we obtain the following
corollary:

COROLLARY 5. Let G beafinite group. Then

U forn=0o0r1
Z(U.n) = {T(ZZ(U))Zl(U) forn=4kor 4k+1,k>1
Z,(U) forn=4k+2or 4k+3,k>0
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