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The plane Poiseuille flow of a rarefied gas in a finite length channel, driven by an
axial pressure gradient, is analysed numerically to probe (i) the role of ‘dilatation’
(Δ = ∇ · u /= 0) on its thermohydrodynamics as well as to clarify (ii) the possible
equivalence with its well-studied ‘dilatation-free’ or ‘isochoric’ (Dρ/Dt = 0) counterpart
driven by a constant acceleration. Focussing on the mass flow rate M(Kn), which is an
invariant quantity for both pressure-driven and acceleration-driven Poiseuille flows, it is
shown that while M ∼ log Kn at Kn � 1 in the acceleration-driven case, the mass flow
saturates to a constant value M ∼ Kn0 at Kn � 1 in the pressure-driven case due to
the finite length (Lx < ∞) of the channel. The latter result agrees with prior theory and
recent experiments, and holds irrespective of the magnitude of the axial pressure gradient
(Gp). The pressure-dilatation cooling (Φp = −pΔ < 0) is shown to be responsible for the
absence of the bimodal shape of the temperature profile in the pressure-driven Poiseuille
flow. The dilatation-driven reduction of the shear viscosity and the odd signs of two normal
stress differences (N1 and N2) in the pressure-driven flow in comparison with those
in its acceleration-driven counterpart are explained from the Burnett-order constitutive
relations for the stress tensor. While both N1 and N2 appear at the Burnett order O(Kn2)
in the acceleration-driven flow, the leading term in N1 scales as (μ/p)Δ due to the
non-zero dilatation in the pressure-driven Poiseuille flow which confirms that the two
flows are not equivalent even at the Navier–Stokes–Fourier order O(Kn). The heat-flow
rate (Qqx = ∫

qx(x, y) dy) of the tangential heat flux is found to be negative (i.e. directed
against the axial pressure gradient), in contrast to its positive asymptotic value (at Kn � 1)
in the acceleration-driven flow. Similar to the scale-dependence of the mass flow rate,
Qqx(Kn, Lx) is found to saturate to a constant value at Kn � 1 in finite length channels.
The double-well shape of the qx( y)-profile in the near-continuum limit agrees well with
predictions from a generalized Fourier law. On the whole, the dilatation-driven signatures
(such as the pressure-dilatation work and the ‘normal’ shear-rate differences) are shown to
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be the progenitor for the observed differences between the two flows with regard to (i) the
hydrodynamic fields, (ii) the rheology and (iii) the flow-induced heat transfer.

Key words: non-continuum effects, rheology

1. Introduction

The well-known Poiseuille flow through a channel or a pipe, driven by an axial pressure
gradient, has served as a prototype (Knudsen 1909) for experimental and theoretical studies
over more than a century (Knudsen 1909; Cercignani & Daneri 1963; Raghuraman &
Willis 1977; Cercignani 1979; Alaoui & Santos 1992; Tison 1993; Sharipov & Seleznev
1994; Arkilic, Schmidt & Breuer 1997; Sharipov 1999; Zheng, Garcia & Alder 2002;
Ewart et al. 2007; Graur et al. 2009; Marino 2009; Yang & Garimella 2009; Perrier
et al. 2011; Takata & Funagane 2011; Brancher et al. 2021). For an incompressible,
isothermal fluid flowing through a channel, the axial pressure gradient remains constant
and the streamwise velocity follows the parabolic profile (ux( y) = u0(1 − y2), where x
and y denote the streamwise and wall-normal directions, respectively) which is an exact
solution of the Navier–Stokes (NS) equations under the assumptions of steady, fully
developed flow; the mass flow rate can be calculated in terms of the pressure gradient
and the mean velocity. For a compressible fluid (such as molecular gases) undergoing
Poiseuille flow, however, there are variations in the density, temperature and velocity
along both streamwise and wall-normal directions; the axial variations of the streamwise
velocity leads to a non-zero transverse velocity (i.e. uy( y) /= 0); moreover, the pressure
can vary nonlinearly across the channel except in the limit of small pressure gradient.
The pressure-driven Poiseuille flow of molecular gases is often analysed in the linear
regime of small pressure gradient for which the pressure-gradient is replaced by a constant
‘acceleration’ or ‘body-force’ (Cercignani & Daneri 1963; Ohwada, Sone & Aoki 1989;
Alaoui & Santos 1992; Tij & Santos 1994; Mansour, Baras & Garcia 1997; Uribe & Garcia
1999; Sone 2000; Aoki, Takata & Nakanishi 2002; Tij & Santos 2004; Gupta & Alam 2017;
Rongali & Alam 2018a). Such acceleration-driven gaseous Poiseuille flow admits an exact
solution of the compressible Navier–Stokes–Fourier (NSF) equations (Tij & Santos 1994;
Alam, Gupta & Ravichandir 2021),

ux( y) = ux0 − ρ0a
μ0

y2, uy( y) = 0, (1.1)

T( y) = T0 − ρ2
0a2

12μ0κ0
y4, p( y) = constant = p0, (1.2)

ρ( y) = p0

(
T0 − ρ2

0a2

12μ0κ0
y4

)−1

, (1.3)

under the assumption of small acceleration (a � 1), with the subscript ‘0’ on any quantity
denoting its value at the channel centreline (y = 0) (see the Appendix in Alam et al.
(2021)). It is clear from (1.1)–(1.3) that while the streamwise velocity follows a parabolic
profile, the temperature and density of the gas vary across the wall-normal direction,
with the pressure being constant across y. Note that the NSF equations are well suited
to describe the behaviour of a gas in the continuum limit, and the departure from the
continuum hypothesis can be quantified in terms of the Knudsen number (Kn = lf /L),
defined as the ratio between the mean free path (lf ) and the characteristic length (L) of
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Kn
10−2 10−1 100 10110−3

NS equation NS and slip boundary

Transition regime Free molecular regime

Boltzmann equation
Boltzmann equation or

higher order hydrodynamics

Continuum Slip regime

Figure 1. Different flow regimes of a gas characterized by the Knudsen number, Kn = lf /L, where lf is the
mean free path and L is the characteristic length scale.

the flow. The NSF theory is strictly valid in the limit of Kn → 0, and the gas is considered
to be in the ‘rarefied’ regime if Kn > 0.001, see the classification of different flow regimes
in figure 1; we refer to Akhlaghi, Roohi & Stefanov (2023) for a recent review on related
issues in rarefied gas flows.

When the rarefied/non-continuum effects of gases are taken into account, the behaviour
of the gas can change qualitatively: for example, in acceleration-driven Poiseuille flow,
(i) the temperature profile T( y) contains a local minimum (Tij & Santos 1994; Mansour
et al. 1997; Rongali & Alam 2018a) at the channel centreline, instead of a local maximum
at y = 0 (see (1.2)) as dictated by the NSF theory; (ii) the transverse pressure profile p( y)
is non-uniform; (iii) the mass-flow rate M(Kn) decreases with increasing Kn, reaches
a minimum at Kn ∼ 1 and then increases logarithmically M ∼ log Kn at Kn � 1 (i.e.
the well-known Knudsen paradox (Knudsen 1909; Cercignani & Daneri 1963)), whereas
the NSF theory can predict only the decaying behaviour of M ∼ Kn−1 at Kn ∼ 0
expectedly; (iv) a finite tangential heat flux (qx /= 0 in the absence of any temperature
gradient along the x-direction) that cannot be explained by the standard Fourier law of
heat flux (q ∝ ∇T). While the hydrodynamics and rheology of the acceleration-driven
Poiseuille flow of rarefied gases have been extensively studied using (i) Boltzmann
kinetic theory (Cercignani & Daneri 1963; Tij & Santos 1994; Ohwada et al. 1989; Aoki
et al. 2002; Tij & Santos 2004; Rongali & Alam 2018a,b), (ii) Burnett-like extended
hydrodynamic equations (Uribe & Garcia 1999; Taheri, Torrilhon & Struchtrup 2009;
Lv et al. 2013; Torrilhon 2016; Rath, Singh & Agrawal 2018; Rath, Yadav & Agrawal
2021) and (iii) the direct simulation Monte Carlo (DSMC) method (Bird 1994; Mansour
et al. 1997; Alam, Mahajan & Shivanna 2015; Gupta & Alam 2017, 2018), much less
attention has been paid to analyse its pressure-driven counterpart (Raghuraman & Willis
1977; Cercignani 1979; Sharipov & Seleznev 1994; Arkilic et al. 1997; Sharipov 1999;
Beskok & Karniadakis 1999; Zheng et al. 2002; Ewart et al. 2007; Yang & Garimella
2009; Titarev & Shakhov 2010; Takata & Funagane 2011; Titarev & Shakhov 2012). An
(often unspecified) assumption is that the two flows are equivalent (Alaoui & Santos 1992;
Takata & Funagane 2011) at least at the NSF order O(Kn).

For the pressure-driven flow of a rarefied gas, the first theoretical work is that
of Cercignani & Daneri (1963) who correctly predicted the variation of the mass
flow rate with Kn, thereby offering a theoretical explanation on the Knudsen paradox
(Knudsen 1909) based on the Boltzmann–Bhatnagar–Gross–Krook (Boltzmann–BGK)
kinetic equation. While the channel length was assumed to be infinite (Lx → ∞) in the
work of Cercignani & Daneri (1963), the effect of the finite length (Lx < ∞) of the
channel was analysed later by Raghuraman & Willis (1977) and Cercignani (1979). In
both works, the assumptions of (i) no variations in the density and temperature across the
channel (i.e. ρ(x, y) ≡ ρ(x) = ρ0(1 + Gρx/Ly) and T(x, y) = T0, where Ly is the width
of the channel) and (ii) small pressure/density gradient (|d( p/p0)/d(x/Ly)| = Gp � 1)
were made such that the linearized version of the Boltzmann–BGK equation can be used
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for analysing this flow. The works of Raghuraman & Willis (1977) and Cercignani (1979)
bring out a crucial result: the mass flow rate M(Kn, Lx) saturates to a constant value at
Kn � 1 if Lx is finite, and the logarithmic branch of M(Kn, Lx) ∝ log Kn is recovered for
a channel of infinite length Lx → ∞. This scale-dependence of M(Lx) is a key difference
between the two flows since the mass-flow rate is an invariant quantity irrespective of the
forcing protocol (acceleration- or pressure-driven) that generates the underlying Poiseuille
flow.

In addition to the mass flow rate and its dependence on the channel length, there
are other quantities like (i) the temperature, density and pressure profiles, (ii) heat-flux
and (iii) normal-stress differences, and how they behave in the two flows remains
unexplored. Although the leading-order, O(Gp), analysis of Cercignani (Cercignani &
Daneri 1963; Raghuraman & Willis 1977; Cercignani 1979), assumes that the gas lives
in an isothermal state with its density being uniform across the channel width, the
higher-order terms (HOT) in O(Gn

p, n ≥ 2) are likely to yield transverse variations of
the density and temperature fields. The latter issue is also evident from (1.2)–(1.3) that the
transverse variations in T( y) and ρ( y) appear at quadratic order in acceleration, O(a2).
The kinetic theory work of Tij & Santos (1994) discovered the bimodal shape of the
temperature profile in the acceleration-driven Poiseuille flow of a rarefied gas which was
confirmed later in DSMC simulations (Mansour et al. 1997) – this is a super-Burnett
order effect that appears at O(a4). In contrast, the bimodal shape of the temperature
profile was not found in the DSMC simulations of the pressure-driven Poiseuille flow
(Zheng et al. 2002). While the latter simulations were carried out for order-one Gp = O(1)
values of the pressure-gradient, the present simulations (Ravichandir & Alam 2024) over
a large range of Gp confirmed the absence of temperature bimodality as we shall show in
this work. Therefore, the recent literature indicates that there are qualitative differences
between the acceleration-driven Poiseuille flow and its pressure-driven counterpart for
some hydrodynamic fields, although a detailed comparative analysis of the two forcings
and the reasons for underlying differences are still lacking.

Since all experiments belong to pressure-driven Poiseuille flow, starting with the
seminal work of Knudsen (1909) as well as the recent experiments (Tison 1993; Ewart
et al. 2007; Marino 2009; Keerthi et al. 2018; Brancher et al. 2021; Kunze et al. 2022), it
is of interest to understand its differences with its much-simplified acceleration-driven
counterpart. While the nonlinear regime of large pressure gradient is accessible in
experiments, the underlying two-dimensional flow is quite complicated to be explored
analytically via perturbation analysis of the nonlinear Boltzmann equation; all related
works (Titarev & Shakhov 2010; Takata & Funagane 2011) are based on the linearized
version of the Boltzmann equation and/or infinite channel length – the latter assumption
simplifies to solving an equivalent one-dimensional problem (Takata & Funagane 2011),
which holds as long as the pressure gradient is small enough, but its validity for large
pressure gradient remains unknown. In this work we use DSMC simulations to address the
following question: is the pressure-driven plane Poiseuille flow of a rarefied gas equivalent
to its acceleration-driven counterpart? If not, what makes these two flows different from
the viewpoint of mechanics? In addition, we also address: what are the effects of (i) the
pressure gradient and (ii) the finite length of the channel on the measurable flow quantities
in Poiseuille flow? Does the equivalence (if any) between the two forcings hold for
all hydrodynamic and rheological fields in a finite-length channel even in the limit of
arbitrarily small forcing-level for which the linearized Boltzmann equation is assumed to
hold (Cercignani & Daneri 1963; Cercignani 1979; Ohwada et al. 1989; Tij & Santos 1994;
Aoki et al. 2002; Titarev & Shakhov 2010; Takata & Funagane 2011)? If there are indeed
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p+ = p0 + 0.5δp

T+ = T0

ρ+ =
mp+

kBT+

p− = p0 − 0.5δp
∂ρ−
∂x = 0

T− =
mp

−kBρ−

Ly

Lx

∂v+
∂x = 0

∂v−
∂x = 0

T0 = Tw
ρ0 =

m
√2πd2KnLy

p0 = ρ0kBT0/m

x

y

z

Figure 2. Schematic of the pressure-driven Poiseuille flow in a channel of length Lx and width Ly bounded by
two isothermal (diffuse) walls at T = Tw, with the z-direction being periodic. The flow is driven by the pressure
difference δp = ( p+ − p−) along the streamwise (x) direction. The hatched grey cells at the entrance and exit
represent ghost cells to implement inlet and outlet boundary conditions, see § 2.1 for details.

qualitative differences between the two flows with reference to various hydrodynamic and
rheological fields, one would like to understand the physical origin of observed differences.

The rest of this paper is organized as follows. We begin § 2 by describing the
implementation of boundary conditions (§ 2.1), averaging procedure (§ 2.2) and introduce
the control parameters (§ 2.3); the details on the Boltzmann equation and the DSMC
method are given in Appendix A. The results on the hydrodynamic fields and the
mass-flow rate are discussed in detail in § 3. The results on the shear stress, shear
viscosity and normal stress differences are discussed in § 4; the heat flux vector and the
tangential heat flow rate are characterized in § 5. The reasons for observed differences in
hydrodynamic fields, rheology and heat flux between the two flows are explained (§§ 3.2.2,
3.3, 4.3 and 5.3) by comparing the DSMC results with theory (Burnett 1935; Chapman &
Cowling 1970; Sela & Goldhirsch 1998; Reddy & Alam 2020), thereby uncovering the
crucial role of the dilatation (∇ · u /= 0) on the thermohydrodynamics of Poiseuille-type
flows. We conclude this paper in § 6 by summarizing the present results and suggesting
possible future extensions.

2. Pressure-driven plane Poiseuille flow via DSMC method

The schematic of the pressure-driven Poiseuille flow is shown in figure 2. The domain is
filled with hard spheres of diameter d and mass m. The boundary conditions for the system
are periodic along the z-direction, fully diffuse thermal walls at y = ±Ly/2 and constant
pressure at x = ±Lx/2. A brief account of the DSMC method (Bird 1994), a stochastic
algorithm to solve the Boltzmann equation, is provided in Appendix A.

2.1. Implementation of inlet and outlet conditions
The main challenge of extending the acceleration-driven Poiseuille flow to the
pressure-driven Poiseuille flow is to impose the constant pressure inlet and outlet boundary
conditions at the particle level which is non-trivial. Following Zheng et al. (2002), we add
a layer of ghost cells on either side of the simulation domain along the x-direction to act
as infinite reservoirs as shown schematically in figure 2. After the streaming stage in every
time step the particles in these ghost cells are deleted and the required number of particles
Nreq, calculated from ρ± (see figure 2), are generated uniformly in the ghost cells and
their velocities are sampled from a Gaussian with mean equal to the average velocities
in their adjacent cells in the x-directions and a standard distribution of

√
kBT±/m. This

ensures that the inlet and outlet of the system are maintained at the specified states.
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–0.5 0 0.5
0.1

0.2

0.3

0.4

0.95

0.96

0.97

0.98

0.99

1.00

–0.015

–0.010

–0.005

0

ux qxT

y
–0.5 0 0.5

y
–0.5 0 0.5

y

Present DSMC

Zheng et al. (2003)

(a) (b) (c)

Figure 3. Transverse profiles of the dimensionless (a) streamwise velocity ux(x = 0, y), (b) temperature
T(x = 0, y) and (c) tangential heat flux qx(x = 0, y) at the midchannel (x = 0), with parameter values
of Kn = 0.1, δp/p0 = 1 and AR = Lx/Ly = 3; see the last paragraph in § 2.3 for the reference scales for
dimensionless fields. The red-circled lines denote the data of Zheng et al. (2002) for the same pressure-driven
Poiseuille flow.

The calculation of the mean pressure p0 = pav , the mean density ρ0 = ρav and other
inlet and outlet quantities are done using the relations listed in figure 2. For example,
the derivative conditions on the velocity ∂v±/∂x correspond to the DSMC conditions of
v+ → v+1 ≡ vin and v− → v−1 ≡ vout at the inlet and outlet, respectively.

The implementation of inlet and outlet conditions also produces noisier data compared
with its acceleration-driven counterpart. To resolve this issue, we follow a two-step
algorithm. First, we run the code with N = O(105) number of computational particles
for a shorter period of time with the average velocities in the adjacent cells taken to be a
running average of the past 50 time steps. This is done to obtain the steady state inlet and
outlet velocities since the velocity is a first-order moment and converges faster even with a
fewer number of particles N = O(105). The code is then run again with larger N = O(106)
with the inlet and outlet velocities, which are used as the mean for the Gaussian from
which the generated particles are sampled, being taken from the previous run (step 1). The
results of this two-step procedure are shown in figure 3, which confirms smoother profiles
of hydrodynamic fields (especially the higher-order quantities, such as the tangential heat
flux qx and temperature T) than those presented by Zheng et al. (2002). It may be noted
that the particle–wall collisions are modelled as those of fully ‘diffuse’ thermal-wall (Bird
1994; Mansour et al. 1997; Pöschel & Schwager 2005; Gupta & Alam 2017) boundary
conditions for both pressure-driven and acceleration-driven flows, see Appendix A for
details.

Since the hydrodynamic fields in the pressure-driven case vary in both the longitudinal
(streamwise) and transverse (cross-stream) directions, we need to have collision cells and
averaging cells in two directions, leading to increased computing time. To tackle this issue
the code is parallelized by dividing the domain into a number of subdomains, which is
equal to the number of processing cores the code is intended to run on. The streaming
(including the implementation of the boundary conditions) and collision of particles in
different subdomains is carried out simultaneously, and the information of the particles
that leave or enter the subdomain is communicated amongst the cores using a message
passing interface. The parallelized version of this code is used to run the simulations
on the ParamYukti supercomputing cluster at the Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR).
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Non-isochoric effects in pressure-driven Poiseuille flow

2.2. Hydrodynamic and flux fields, and the averaging procedure
Referring to figure 2, the flow domain (Lx × Ly × Lz) is divided into a number of cells,
each of size δx × δy × δz, where δx, δy and δz are the dimensions of the cell along the x-,
y- and z-directions, respectively; note that the ‘collision’ cells and the ‘averaging’ cells are
taken to be identical. The macroscopic average of a particle level quantity ψ(v) in a given
cell is defined as

〈ψ(v)〉x,y,z = 1
Nt

Nt∑
t

1
Vc

∑
i∈cell

ψ(vi(t)), (2.1)

where Vc = δxδyδz is the volume of the cell and Nt is the number of snapshots over which
the quantity is averaged. Since the pressure-driven Poiseuille flow is invariant along the
periodic z-direction, we obtain two-dimensional fields of the macroscopic quantities by
considering a single cell (δz = Lz) in the z-direction. The density, velocity and temperature
are defined via (Mansour et al. 1997; Uribe & Garcia 1999)

ρ(x, y) = 〈m〉x,y , (2.2)

u(x, y) = 1
ρ(x, y)

〈mv〉x,y , (2.3)

T(x, y) = m
3kBρ(x, y)

〈
(v − u)2

〉
x,y
, (2.4)

which are obtained by setting ψ(v) = (m,mv,m(v − u)2/3kB) in (2.1). The stress tensor
and heat flux vector are accordingly obtained from

P(x, y) = 〈m(v − u)(v − u)〉x,y , (2.5)

q(x, y) = 1
2

〈
m(v − u)2(v − u)

〉
x,y
. (2.6)

Note that the trace of the stress tensor divided by the number of dimensions, p = (Pxx +
Pyy + Pzz)/3, yields the expression for pressure.

The averaging of the hydrodynamic and flux fields, as defined in (2.1), is carried out over
multiple snapshots of the system once the system has reached a steady state. The steady
state is determined by checking the constancy of the average kinetic energy per particle
(E/N = ∑

i mv2
i /2N) in the system, see figure 4(a). Another issue is the maintenance

of the inlet (p+) and outlet (p−) values of the pressure which can be verified from
figure 4(b) that displays the streamwise variation of the pressure, p(x, 0), at the middle
of the channel (y = 0) – it is clear that p+/p0 ≈ 1.5 and p−/p0 ≈ 0.5 as imposed in
simulations (viz. figure 2). In addition to validating the present code to correctly reproduce
the previous simulation results (Zheng et al. 2002) on the pressure-driven Poiseuille flow
in figure 3, the same DSMC code was further validated to simulate acceleration-driven
Poiseuille flow and the planar Couette flow of rarefied gases.

2.3. Control parameters and reference scales
The main control parameter is the ‘global’ Knudsen number,

Kn = lf
Ly

= 1√
2πd2n0Ly

, (2.7)

which is varied in the range of 0.01 ≤ Kn ≤ 100 by changing the mean free path
lf = 1/(

√
2πn0d2) via changing the reference density ρ0 = mn0 = ρav while keeping the
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0 2

t

Averaging duration

4

(×106)

1.20

1.25

1.30

E
/
N

p/
p 0

1.35

–1.5 0 1.50.5

1.0

1.5

x/Ly

(b)(a)

Figure 4. (a) Average kinetic energy per particle, E/N = ∑
i mv2

i /N, versus time and (b) the axial variation
of the pressure p(x, 0) at midchannel y = 0. Parameter values are as in figure 3.

channel width Ly constant. The inlet and outlet pressures p+ and p− are set as

p+ = p0 + δp
2

and p− = p0 − δp
2
, (2.8a,b)

such that
p+ − p− = δp and 1

2 ( p+ + p−) = p0 (2.9a,b)

refer to the pressure difference and the mean pressure, respectively, see figure 2.
For most of the presented results, the pressure difference is set to δp = p0, which

has been chosen such that the forcing terms in (i) the acceleration-driven case ρ0a and
(ii) the pressure-driven case dp/dx ≈ δp/Lx are of the same magnitude for a meaningful
comparison between the results of the two sets of studies. We have verified that 1.3 ×
10−6 ≥ ρ0a ≥ 1.3 × 10−10 and 1.08 × 10−6 ≥ dp/dx ≥ 1.08 × 10−10 for the range of
Knudsen numbers 0.01 ≤ Kn ≤ 100, and the forcing terms for four values of Kn are shown
in table 1. The dimensionless acceleration (Tij & Santos 1994; Mansour et al. 1997; Aoki
et al. 2002; Gupta & Alam 2017; Alam et al. 2021) is defined as

â = aLy

2kBTw/m
, (2.10)

which is a measure of the strength of the flow and represents the body force acting
on a gas molecule travelling a distance Ly; the numerical value of â = 0.1 has been
chosen for a comparison with the pressure-driven case with δp/p0 = 1. Note that the
acceleration-driven flow belongs to the linearized and nonlinear regimes for â � 1 and
O(1), respectively. We refer to Appendix B for related details on the local values of the
Knudsen number (Kn(x, y)), Mach number (Ma(x, y)) and Reynolds number (Re(x, y)) for
both forcings.

The mass and the diameter of the atoms/particles are taken to be unity (m = d = 1),
the Boltzmann constant is taken as kB = 0.5 and the wall temperature is Tw = T0 = 1.
The width of the channel is fixed as Ly = 1860d in most simulations; to study the effect
of the channel aspect ratio (AR = Lx/Ly), the length of the channel (Lx) is increased
keeping its width constant such that 3 ≤ AR ≤ 27. The effect of pressure gradient is
studied by changing the pressure difference (0.1 ≤ δp/p0 ≤ 1) by a factor of 10. All
results are presented in dimensionless form: the density is normalized by ρ0 = ρav , the
temperature by T0 = Tw, the velocity by u0 = √

2kBT0/m, the pressure and stresses by
p0 = ( p+ + p−)/2 = pav and the heat fluxes by ρ0u3

0/2. The lengths are rescaled by
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Non-isochoric effects in pressure-driven Poiseuille flow

Kn ρ0a dp/dx p0 ρ0

0.05 2.6 × 10−7 2.1 × 10−7 1.21 × 10−3 2.42 × 10−3

0.5 2.6 × 10−8 2.1 × 10−8 1.21 × 10−4 2.42 × 10−4

5 2.6 × 10−9 2.1 × 10−9 1.21 × 10−5 2.42 × 10−5

50 2.6 × 10−10 2.1 × 10−10 1.21 × 10−6 2.42 × 10−6

Table 1. Comparison of the forcing terms (ρ0a and dp/dx) for various Knudsen number (Kn) corresponding
to (i) a pressure-difference of δp = p0 (and the pressure-gradient is dp/dx = δp/Lx) in the pressure-driven
Poiseuille flow and (ii) a dimensionless acceleration (2.10) of â = 0.1 in the acceleration-driven Poiseuille
flow. The width and length of the channel are Ly/d = 1860 and Lx/d = 5580, respectively, with aspect ratio
AR = Lx/Ly = 3.

the channel width Ly such that the streamwise and wall-normal ranges are given by
−AR/2 ≤ x/Ly ≤ AR/2 and −0.5 ≤ y/Ly ≤ 0.5, respectively.

3. Hydrodynamics, mass-flow rate and the role of dilatation

We start with presenting results on the velocity field and the mass flow rate in § 3.1,
followed by the analyses of (i) the velocity gradient tensor in § 3.3.1 and (ii) the pressure,
density and temperature fields in § 3.2. The equivalence between the two forcing (pressure
gradient and acceleration) to realize NSF-order hydrodynamic fields is discussed in
§ 3.3.2.

3.1. Velocity field and the mass flow rate
The contour plots of the streamwise velocity ux(x, y) and the local mass flux ρ(x, y)ux(x, y)
are displayed in figures 5(a) and 5(b), respectively, at a Knudsen number of Kn = 0.05.
It is seen that while the streamwise velocity ux (figure 5a) increases along the length
of the channel (and hence the flow is developing and steady), the local mass-flux ρux
(figure 5b,d) also varies slightly along the length of the channel. The effect of rarefaction
(Kn) on the transverse and axial profiles of the local mass flux ρ(x, y)ux(x, y) at x = 0 and
y = 0, respectively, can be understood from figures 5(c) and 5(d). It is seen that the local
mass flux decreases with increasing Kn but seems to saturate beyond a critical value of
Kn; the latter can be appreciated from the curves representing Kn = 5 (blue dot–dashed
line) and 50 (magenta dotted line) that are almost indistinguishable from each other.

That the pressure-driven Poiseuille flow of a gas is not fully developed (viz. figure 5a;
see also the discussion in § 3.3.1) and the local mass flux ρ(x, y)ux(x, y) (viz. figure 5d)
varies axially suggest that the wall-normal velocity uy(x, y) must be finite as dictated by
the continuity equation

∂ρux

∂x
+ ∂ρuy

∂y
= 0. (3.1)

This is confirmed in figures 6(a) and 6(b), which display the contour plots of uy(x, y)
and ρ(x, y)uy(x, y), respectively. Ignoring entrance and exit effects, we observe that both
the streamwise and wall-normal velocities vary monotonically along the length of the
channel. The effect of Kn on the transverse profiles of the wall-normal velocity uy(0, y) at
the midchannel (x = 0) is shown in figure 6(c). The wall-normal velocity profiles closely
resemble sine waves, irrespective of the value of Kn; its amplitude (δuy = umax

y − uy(0)),
which is an order smaller compared with the magnitudes of ux, decreases with increase in
Kn, see figure 6(d), and appears to saturate to a constant value at large enough Kn � 1.
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(a) (b)

(c) (d )

Figure 5. (a,b) Contour plots of (a) streamwise velocity ux(x, y) and (b) local mass flux ρ(x, y)ux(x, y) at
Kn = 0.05. (c,d) Variations of (c) ρ(0, y)ux(0, y) at x = 0 and (d) ρ(x, 0)ux(x, 0) at y = 0 for different values
of Kn. Parameter values are as in figure 3.

From the contour plots of ρux such as in figure 5(b), the mass flow rate of the gas is
calculated using

M(Kn) = 1
ρ0u0

∫ 0.5

−0.5
ρ(x, y)ux(x, y) dy, (3.2)

where ρ0 is the average density and u0 = √
2kBT0/m is the most probable velocity. Since

M is invariant of the streamwise location, (3.2) can be evaluated at any cross-section
such as integrating the transverse profiles in figure 5(c). The variation of M with Kn is
shown in figure 7(a) for the pressure-driven case with a dimensionless pressure-difference
of δp/p0 = 1. It is seen that while the mass flow rate decreases sharply with increasing
Kn, there is indeed a minimum in M at Kn ≈ O(1) as evident in the inset of figure 7(a).
Comparing figure 7(a) with its acceleration-driven counterpart in figure 7(b), we find that
the mass flow rate saturates to a constant value at Kn � 1 in the pressure-driven case in
contrast to its slow logarithmic increase M ∼ log Kn in the latter.

For a finite-length (Lx < ∞) channel with width Ly, there is an upper bound on the
Knudsen number Knmax = Lx/Ly beyond which the particles would rarely collide with two
lateral walls before reaching the exit of the channel, and hence the gas would flow freely
without wall collisions, resulting in a saturation of M(Kn, Lx) → constant at Kn � AR.
This trend is indeed captured in the main panel and the inset of figure 8(a) that show the
variations of M(Kn, Lx) with Kn for three different channel lengths (Lx/d = 5580, 16 740
and 50 220), with parameter values as in table 2. It is clear from the inset that the range
of Kn over which the logarithmic scaling M ∝ log Kn holds increases with increasing
Lx and M(Kn, Lx) saturates to some constant value for a specified Lx; the asymptotic

996 A30-10

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
.1

44
.9

0.
50

, o
n 

20
 N

ov
 2

02
4 

at
 0

3:
15

:3
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

4.
68

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2024.681


Non-isochoric effects in pressure-driven Poiseuille flow

–1.0–1.5 –1.5–0.5 0 0.5 1.0 1.5
–0.5

0

0.5

–0.05

0

0.05

–1.0 –0.5 0
x x

uy

y

ρuy

0.5 1.0 1.5
–0.5

0

0.5

–0.05

0

0.05

–0.5 0 0.5
–2

–1

0

1

2
(×10–3) (×10–4)

10–1

y

uy δuy

δuy

Kn
101

4

6

8

10

12

14Kn = 0.05
Kn = 0.5
Kn = 5

(a) (b)

(c) (d )

Figure 6. (a,b) Contour plots of (a) the wall-normal velocity uy(x, y) and (b) ρ(x, y)uy(x, y) for Kn = 0.05.
(c,d) Cross-stream variations of the wall-normal velocity uy(0, y) and (d) δuy = max |uy(0, y)| with Kn. Other
parameter values as in figure 5.

logarithmic branch of M(Kn, Lx) is expected to be recovered only in an infinite-length
(Lx → ∞) channel. The recent experimental data of Kunze et al. (2023) support these
overall findings, see figure 8(b). This dependence of M on the length scales of the channel
is also in agreement with the theoretical predictions of Raghuraman & Willis (1977)
and Cercignani (1979) based on the linearized Boltzmann–BGK equation. Therefore,
we conclude that the scale-dependence and the saturation of M(Kn → ∞, Lx) in the
pressure-driven Poiseuille flow is due to the finite length of the channel.

3.2. Pressure, density and temperature: dilatation-driven effects?
In this section we seek answers to the following questions in the context of the
pressure-driven Poiseuille flow of a rarefied gas. (i) Are the axial variations of pressure
and density linear as assumed in theoretical analyses (Cercignani & Daneri 1963;
Raghuraman & Willis 1977; Cercignani 1979; Takata & Funagane 2011)? (ii) Can the
gas be approximated as isothermal (at least in terms of the axial variation) of temperature?
(iii) Is the temperature profile T( y) of bimodal shape (as in the case of acceleration-driven
Poiseuille flow) at Kn ∼ 0 for small enough values of the pressure gradient?

The contour plots of pressure p(x, y), density ρ(x, y) and temperature T(x, y) are
displayed in figure 9, with figure 9(a,c,e) and figure 9(b,d, f ) referring to Kn = 0.05
and 0.5, respectively; the channel width is Ly/d = 1860, with an aspect ratio of
AR = Lx/Ly = 3 and a normalized pressure difference of δp/p0 = 1. There are
noticeable variations in pressure, density and temperature along both streamwise (x)
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Figure 7. Variation of the mass flow rate M with Knudsen number Kn for (a) pressure-driven Poiseuille flow
with δp/p0 = 1 (and p0 = 6.05 × 10−4) and AR = Lx/Ly = 3 and (b) acceleration-driven Poiseuille flow with
â = 0.1. For both cases, the channel width is Ly/d = 1860.
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Figure 8. (a) Effect of channel-length on the mass flow rate M: Lx/d = 5580 (AR = 3, 	p/p0 = 0.2;
black circles line), Lx/d = 16740 (AR = 9, δp/p0 = 0.6; blue squares line) and Lx/d = 50 220 (AR =
27, δp/p0 = 1.8; red triangles line). For all cases, the dimensionless pressure-gradient is kept fixed at
Gp = (δp/p0)/(Lx/Ly) = 1/15, with p0 = 6.05 × 10−4 and the channel width Ly/d = 1860, see table 2.
(b) Saturation of M (in arbitrary unit) at Kn � 1 in a finite-length channel, adapted from Kunze et al. (2023);
the symbols and the solid line represent the experimental data (blue circles and red squares denote data for He
in short and long channels, respectively) and their model prediction, respectively.

Aspect ratio Ly/d Lx/d p0 δp/p0 Gp = (δp/p0)/(Lx/Ly) pin/pout

3 1860 5580 6.05 × 10−4 0.2 1/15 1.222
9 1860 16 740 6.05 × 10−4 0.6 1/15 1.857
27 1860 50 220 6.05 × 10−4 1.8 1/15 19.00

Table 2. Parameter values for changing the aspect ratio (AR = Lx/Ly) by increasing the length (Lx) of the
channel.
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Figure 9. Contour plots of (a,b) pressure p(x, y), (c,d) density ρ(x, y) and (e, f ) temperature T(x, y) for
(a,c,e) Kn = 0.05 and (b,d, f ) Kn = 0.5; other parameter values as in figure 5.

and cross-stream (y) directions. The streamwise variations of ( p(x, 0), ρ(x, 0), T(x, 0))
and their gradients d/dx( p(x, 0), ρ(x, 0), T(x, 0)) are shown in figure 10(a–c) and
figure 10(d–f ), respectively. Figure 10(a) confirms that the inlet and outlet pressures are
indeed p+ = 1.5p0 and p− = 0.5p0, respectively, irrespective of the value of Kn. Looking
at figure 10(a,b) we find that the axial decay of both p(x, 0) and ρ(x, 0) are approximately
linear in the bulk of the channel (except near the entrance and exit of the channel, see their
axial gradients in figure 10d,e) at Kn ≥ 0.5, but become nonlinear at smaller values of the
Knudsen number Kn = 0.05. Figure 10(c, f ) illustrates that the temperature of the gas also
decreases axially irrespective of the value of Kn, but its decay rate is milder (compared
with pressure and density) in the bulk of the channel with a relatively sharper decay near
the exit of the channel. These overall findings on the effect of Kn remain robust irrespective
of the choice of the length of the channel (not shown).

3.2.1. Effect of imposed pressure gradient
By fixing the channel aspect ratio at AR = Lx/Ly = 3, but decreasing the magnitude of
the pressure gradient makes the pressure and density variations with x increasingly linear
even at smaller values of Kn = 0.1, see figure 11(a,b). Comparing the data for cases C
(blue dot–dashed line) and D (dotted magenta line) in figure 11(c, f ), we find that the
axial variation of temperature T(x, 0) can be made very small by decreasing the value of
the imposed pressure gradient; the corresponding axial gradients in pressure (dp/dx) and
density (dρ/dx) become nearly independent of x as marked by the blue and magenta lines
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Figure 10. Effects of Knudsen number on streamwise variations of (a) p(x, 0), (b) ρ(x, 0) and (c) T(x, 0) along
y = 0 line and (d–f ) their gradients (d) dp(x, 0)/dx, (e) dρ(x, 0)/dx and ( f ) dT(x, 0)/dx; parameter values as
in figure 9.

in figures 11(d) and 11(e), respectively. Therefore, the axial variation of the gas temperature
can be made arbitrarily small at small enough values of the imposed (dimensionless)
pressure gradient,

Gp = d( p/p0)

d(x/Ly)
≈

(
δp
p0

)/(
Lx

Ly

)
∼ Gρ � 1, (3.3)

yielding a nearly linear decay of both pressure p(x, 0) and density ρ(x, 0),

p(x) = p0(1 − Gpx)+ O(G2
p) and ρ(x) = ρ0(1 − Gρx)+ O(G2

ρ) (3.4a,b)

along the channel length. It may be recalled that the kinetic theory analysis of Cercignani
(1979) is built around the ansatz (3.4a,b), along with additional assumptions that the
transverse variations of both pressure and density are negligible, i.e.

p(x, y) ≡ p(x) and ρ(x, y) ≡ ρ(x), (3.5a,b)

at the leading order O(Gp) that correctly predicted the dependence of the mass flow rate
on the channel length such as in figure 8(a). Therefore, the mapping ‘Gp ↔ â’ between
the two flows (replacing the pressure gradient by the acceleration in the limit of Gp � 1)
would hold that recovers the logarithmic branch of M(Kn, Lx) ∼ log Kn in an infinite
channel of infinite length (Lx → ∞).

Figure 12(a–c) show the transverse profiles of pressure p(0, y), density ρ(0, y) and
temperature T(0, y) for three values of the Knudsen number Kn = 0.05 (black line), 0.5
(dashed magenta line) and 5 (dot–dashed blue line), with δp/p0 = 1 and other parameters
as in figure 10. It is seen that while both the pressure and temperature profiles are of
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Figure 11. Effect of imposed pressure gradient on the streamwise variations of (a) p(x, 0), (b) ρ(x, 0) and
(c) T(x, 0) and (d–f ) their gradients (d) dp(x, 0)/dx, (e) dρ(x, 0)/dx and ( f ) dT(x, 0)/dx; parameters are listed
in table 3 with Kn = 0.1 and AR = 3.

Case δp/p0 Gp = (δp/p0)/(Lx/Ly) (δp/p0)/(Lx/d) Ma(0, 0) Re(0, 0)

A 1 1/3 1.79 × 10−4 0.43 8.20
B 0.5 1/6 8.95 × 10−5 0.27 4.70
C 0.2 1/15 3.58 × 10−5 0.12 1.99
D 0.1 1/30 1.79 × 10−5 0.06 1.02

Table 3. Protocols for changing the pressure difference for Kn = 0.1, AR = Lx/Ly = 3 and Ly/d = 1860.

convex-up shape around the channel centreline, the density profiles are convex down at
any Kn. All profiles become flatter with increasing Kn. For a comparison, we display the
corresponding profiles of ( p( y), ρ( y), T( y)) in figure 12(d–f ) in the acceleration-driven
Poiseuille flow for a dimensionless acceleration of â = 0.1.

The first difference we encounter in figure 12 is about the shape of the temperature
profile at small values of Kn: T( y) at Kn = 0.05 is of bimodal structure in the
acceleration-driven flow (figure 12f ), with a local minimum of temperature at y = 0 and
two local maxima symmetrically located away from the channel centre, in contrast to the
convex-up temperature profiles that persist at all Kn in its pressure-driven counterpart
(figure 12c). The close-up version in the inset of figure 12( f ) clearly identifies the locations
of temperature minima and maxima for the case of Kn = 0.05. The pressure profiles in
figure 12(a,d) possess similar characteristic features as those of the temperature profiles
in figure 12(c, f ). It is known from theory (Tij & Santos 1994; Uribe & Garcia 1999;
Tij & Santos 2004; Rongali & Alam 2018a,b) and simulations (Mansour et al. 1997; Alam
et al. 2015; Gupta & Alam 2017, 2018) that the two local maxima in the T( y)-profile move
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Figure 12. Effects of Knudsen number on the cross-stream variations of (a) p(x = 0, y), (b) ρ(0, y) and
(c) T(0, y) in pressure-driven Poiseuille flow with (a–c) δp/p0 = 1.0. Panels (d–f ) represent corresponding
profiles in acceleration-driven Poiseuille flow with dimensionless acceleration â = 0.1; the inset in
( f ) shows the close-up version of T( y) for Kn = 0.05, clarifying its ‘bimodal’ shape.

towards the walls with increasing Kn, thereby making a transition from the bimodal-shape
to unimodal convex-up shape for both T( y) and p( y) profiles in the acceleration-driven
flow at large Kn.

The second difference between the two flows is that while the density profile ρ( y) in
the acceleration-driven flow has a minimum at the channel centre (see figure 12e), its
pressure-driven counterpart admits a density maximum at y = 0 in figure 12(b). The above
differences regarding the role of forcing on the transverse profiles of (p( y), ρ( y), T( y))
persist when the imposed pressure gradient is reduced further, see figure 13. For example,
the inset in figure 13(b) confirms the presence of the convex-down ρ( y)-profile even
at δp/p0 = 0.1 for Kn = 0.1. Collectively, figures 12 and 13 underscore the qualitative
differences in the shape of the temperature (and density) profiles, depending on whether
the flow is generated by an axial pressure gradient or a constant acceleration.

3.2.2. Energy balance, pressure work and the absence of temperature bimodality
To check how the underlying assumptions in the two flows may impact the profiles of
(ρ( y), T( y), p( y)), we consider the steady energy balance equation (in dimensionless
form) at the NSF order,

−ρcv

(
ux
∂T
∂x

+ uy
∂T
∂y

)
− ∇ · q − p(∇ · u)+Φsh = 0, (3.6)
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Figure 13. Effects of imposed pressure gradient on cross-stream variations of (a) p(x = 0, y), (b) ρ(0, y) and
(c) T(0, y) at Kn = 0.1; Case A δp/p0 = 1, Case B δp/p0 = 0.5, Case C δp/p0 = 0.2 and Case D δp/p0 = 0.1,
see table 3 for other parameters. Insets in (a–c) display the close-up version of the Case D.

in which the underlined terms ((i) convective heat transport and (ii) pressure work) are
absent in the acceleration-driven Poiseuille flow, and the shear-work term

Φsh = 2μ

((
∂ux

∂y

)2

+ . . .

)
> 0 (3.7)

is positive, representing the shear-induced heating of the gas. Next, we estimate the
underlined terms in (3.6) at finite values of Kn around the channel centreline (y ∼ 0) to
ascertain their relative importance compared with the shear work term. At the midchannel
y = 0, we have uy(x, 0) = 0 and ∂T/∂x < 0 and hence the convective term simplifies to

Qc = −ρcv

(
ux
∂T
∂x

+ uy
∂T
∂y

)∣∣∣∣
y=0

≡ −3
2
ρux(x, 0)

(
∂T
∂x

)∣∣∣∣
y=0

> 0, (3.8)

representing a heating effect; the pressure work is given by

Φp = −p(∇ · u)|y=0 < 0, (3.9)

representing a cooling effect. Figure 14(a,b) verifies that Qc > 0 (figure 14a) and Φp < 0
(panel b) in the bulk of the channel (except at the inlet and outlet of the channel).
Furthermore, figure 14(c) confirms that the cooling due to pressure work (3.9) dominates
over convective heating (3.8) at all Kn, resulting in a net cooling (i.e. Φp + Qc < 0) in the
pressure-driven flow. These overall observations hold for transverse variations of Qc(0, y),
Φp(0, y) and (Φp + Qc)(0, y) too, see figures 14(d), 14(e) and 14( f ), respectively. It is clear
that the dominance of the pressure work over the convective heating is responsible for the
cooling of the gas in the bulk of the channel – this leads to a lower bulk temperature in the
pressure-driven case (viz. figure 12c) compared with its acceleration-driven counterpart
(viz. figure 12f ) at Kn → 0. Consequently, the changes in the temperature profile affect
the density and pressure profiles (via the equation of state p = ρT) as demonstrated in
figure 12(a,b,d,e). We conclude that the non-zero values of the terms in (3.8)–(3.9) in the
pressure-driven flow are responsible for the different shapes of (T( y), ρ( y)) in the two
flows even in the continuum limit of Kn → 0 at finite values of Gp and â.

The foregoing analysis confirms that the absence of the bimodal shape of the
temperature in the pressure-driven Poiseuille flow profile at small Kn ∼ 0 is tied to
the cooling afforded by the ‘pressure-dilatation’ work (3.9) which, however, vanishes
in its acceleration-driven counterpart. It must be noted that the temperature bimodality
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Figure 14. (a–c) Axial variations of (a) convective heat Qc (3.8), (b) pressure workΦp (3.9) and (c) (Φp + Qc)

at the midchannel (y = 0) for different Kn, with δp/p0 = 1 and AR = 3. (d–f ) Same as (a–c) but for transverse
variations at x = 0.

has been predicted (Tij & Santos 1994) to appear at the quartic order O(a4) in the
acceleration-driven Poiseuille flow, however, the dilatation, Δ = ∇ · u ∼ O(G2

p) (see
§ 3.3.1), also increases with increasing Gp ∝ â in an equivalent pressure-driven flow. The
increased dilatation would lead to a much lower bulk temperature due to the increased
pressure-dilatation cooling, thereby further diminishing the possibility of temperature
bimodality even in the nonlinear regime of forcing O(â4) ∼ O(G4

p). Note that we did not
observe bimodal temperature profile T( y) when the pressure-gradient was changed by a
factor of 10 in present simulations. We conclude that the dilatation-driven pressure cooling
(Φp = −pΔ < 0) is likely to be responsible for the absence of the bimodal-shape of T( y)
in the pressure-driven Poiseuille flow.

3.3. Are the pressure-driven and acceleration-driven Poiseuille flows equivalent?
It must be kept in mind that the Poiseuille flow of a molecular gas driven by a body force
(acceleration) is an idealised, toy problem that cannot be realized in experiments. This
forcing protocol was originally used by Cercignani & Daneri (1963) in the context of
solving the Boltzmann–BGK equation with a constant body force that yielded a steady and
fully developed solution for a Poiseuille-type flow of a monatomic gas; this seminal work
provided the first theoretical explanation of the Knudsen minimum phenomenon. Based on
the present results in §§ 3.1–3.2, we note that while the Kn-dependence of the mass-flow
rate in both acceleration-driven and pressure-driven flows looks similar (barring its scale
dependence as in figure 8a), there exist key differences at the level of the hydrodynamic
fields that can be appreciated by analysing the velocity gradient tensor of the two flows as
discussed below.

996 A30-18

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 3
.1

44
.9

0.
50

, o
n 

20
 N

ov
 2

02
4 

at
 0

3:
15

:3
9,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

4.
68

1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2024.681


Non-isochoric effects in pressure-driven Poiseuille flow

3.3.1. Velocity gradient tensor, dilatation and the developing gaseous Poiseuille flow
The velocity gradient tensor is defined as

L def= (∇u)T =
[(
∂uj

∂xi

)T
]

=
[
∂ui

∂xj

]
= [

Lij
] =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ux

∂x
∂ux

∂y
∂ux

∂z
∂uy

∂x
∂uy

∂y
∂uy

∂z
∂uz

∂x
∂uz

∂y
∂uz

∂z

⎞
⎟⎟⎟⎟⎟⎟⎠ , (3.10)

whose trace

trace(L) = Lkk = ∂uk

∂xk
= ∂kuk

def= Δ (3.11)

is called the dilatation. The symmetric part of Lij is

Dij
def= 1

2

(
Lij + Lji

) = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
(3.12)

and its deviatoric (traceless, symmetric) part is

Sij = ∂jui
def= 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 1

3
δij
∂uk

∂xk
≡ Dij − Δ

3
δij = Sji, (3.13)

denoted by an ‘over-bar’ on the respective tensorial quantity. The deformation field is
classified in terms of the invariants of the objective deformation rate D, defined via
Dk = trace(Dk)/k, k = 1, 2, 3 (Goddard 2014), with the dilatation Δ = trace(D) ≡ D1
being its first invariant. The dilatation-free, Δ = 0, deformation for a compressible gas is
equivalent to the condition that the material derivative of the mass density is zero,

Dρ
Dt

≡
(
∂

∂t
+ u · ∇

)
ρ = −ρ(∇ · u) = 0, (3.14)

i.e. the specific-volume (v = 1/ρ) is preserved, and such deformation field (Dρ/Dt = 0)
is known as ‘isochoric’ (volume preserving) deformation.

For the present case of steady, pressure-driven Poiseuille flow, there are no gradients
along the z-direction, i.e. u(x, y) = (ux, uy, 0)(x, y) with ∂/∂z(·) = 0, and hence the
velocity gradient tensor and its symmetric part are

L =

⎛
⎜⎜⎜⎜⎝
∂ux

∂x
∂ux

∂y
0

∂uy

∂x
∂uy

∂y
0

0 0 0

⎞
⎟⎟⎟⎟⎠ and D =

⎛
⎜⎜⎜⎜⎜⎝

∂ux

∂x
1
2

(
∂ux

∂y
+ ∂uy

∂x

)
0

1
2

(
∂ux

∂y
+ ∂uy

∂x

)
∂uy

∂y
0

0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

(3.15a,b)

with its deviatoric part being

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ux

∂x
− Δ

3
1
2

(
∂ux

∂y
+ ∂uy

∂x

)
0

1
2

(
∂ux

∂y
+ ∂uy

∂x

)
∂uy

∂y
− Δ

3
0

0 0 −Δ
3

⎞
⎟⎟⎟⎟⎟⎟⎠ . (3.16)
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An expression for the dilatation and its scaling can be obtained by noting the fact that
the steady pressure-driven Poiseuille flow of a gas can never be in a fully developed state,
irrespective of the channel length (Lx < ∞), and hence the flow field is two-dimensional
(viz. figures 5a,b, 6a,b and 9; assuming homogeneity along the z-direction). The latter can
be understood from the steady mass balance equation (3.1):

	(x, y) = ∇ · u = −ux
∂ ln ρ
∂x

− uy
∂ ln ρ
∂y

, (3.17)

⇒ 	(x, 0) = −ux(x, 0)
∂ ln ρ
∂x

∣∣∣∣
y=0

/= 0. (3.18)

Equation (3.18) implies that the local dilatation is always finite and positive since
(i) ux(x, 0) > 0 and (ii) the density of the gas decreases along the axial direction
(viz. figures 10b and 11b), irrespective of (i) the magnitude of the axial pressure gradient
Gp and (ii) the length of the channel (Lx). For the pressure-driven flow,

ux ∝ dp
dx

= δp
Lx

∼ Gp and ρ = ρ0(1 − Gρx − G2
ρx2), (3.19a,b)

and assuming that Gρ = O(Gp) under small pressure gradient, it immediately follows that

	(x, 0) ∼ GpGρ ∼ G2
p, (3.20)

i.e. the dilatation scales quadratically with the imposed pressure-gradient Gp.
That the dilatation is non-zero within the bulk of the channel can be ascertained from

figure 15(a,b) that display the contours of	(x, y)/G2
p for Kn = 0.05 and 0.5, respectively;

the imposed pressure gradient is Gp = 1/15 (i.e. δp/p0 = 0.2) and the channel aspect
ratio is AR = 3. Similar qualitative variations of 	(x, y) hold also in longer channels
with AR = 9 and 27 (not shown). Figure 15(c,d) confirms that 	(x, 0) > 0 and increases
axially within the bulk region of the channel, except near the entrance and exit, irrespective
of the values of the channel length (Lx) and the pressure gradient (Gp). It is also
clear from figure 15(c,d) that the quadratic scaling (3.20) holds approximately within
the bulk of the channel, and the data collapse is relatively better at higher rarefaction
(Kn = 0.5, figure 15d) than that at Kn = 0.05 (figure 15c). The case denoted by the black
line in figure 15(c) corresponds to a nonlinear axial density profile (see the profile of
∂xρ(x, 0) in figure 15e) and the neglected HOT (i.e. ∂xρ(x, 0) = −Gρ − G2

ρx + · · · ) are
likely responsible for its disagreement with the remaining two cases in figure 15(c) for
Kn = 0.05. On the other hand, the density profiles ρ(x, 0) at higher rarefaction (Kn = 0.5)
can be approximated having a linear decay with x, with nearly constant axial gradients
(see figure 15f ), and hence the axial profiles of	(x, 0)/G2

p for the three cases at Kn = 0.5
closely follow each other in figure 15(d).

For the idealized problem of the acceleration-driven Poiseuille flow (Cercignani &
Daneri 1963; Ohwada et al. 1989; Alaoui & Santos 1992; Tij & Santos 1994; Mansour et al.
1997; Uribe & Garcia 1999; Aoki et al. 2002; Gupta & Alam 2017; Rongali & Alam 2018a;
Alam et al. 2021) of a gas, the flow is one-dimensional with no gradients along x and
z-directions, i.e. u( y) = (ux( y), 0, 0) with ∂/∂x(·) = 0 = ∂/∂z(·). The velocity gradient
tensor and its symmetric and deviatoric parts are given by

L =

⎛
⎜⎜⎝

0
∂ux

∂y
0

0 0 0
0 0 0

⎞
⎟⎟⎠ and D =

⎛
⎜⎜⎜⎝

0
1
2
∂ux

∂y
0

1
2
∂ux

∂y
0 0

0 0 0

⎞
⎟⎟⎟⎠ ≡ S. (3.21a,b)
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Figure 15. (a,b) Contours of the normalized dilatation ‘	(x, y)/G2
p’ in the (x/Ly, y/Ly)-plane for Gp = 1/15

(δp/p0 = 0.2) and AR = 3. (c,d) Axial variations of ‘	(x, 0)/G2
p’ for three data sets: (i) black solid line

(Gp = 1/3 (i.e. δp/p0 = 1.0) and AR = 3); (ii) blue dashed line (Gp = 1/15 (δp/p0 = 0.2) and AR = 3);
(iii) red dot–dashed line (Gp = 1/15 (δp/p0 = 0.6) and AR = 9). (e, f ) Axial variations of the density gradient
‘∂ρ(x, 0)/∂x’, with other parameters as in panels (c,d). The panels denote data for (a,c,e) Kn = 0.05 and
(b,d, f ) Kn = 0.5, respectively. The wiggles seen in two data sets in (c,d) are due to (i) the discrete derivative
calculations and (ii) the increased noise in the DSMC data at small values of Gp.

The dilatation is given by

	(x, y, z) = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0, (3.22)
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i.e. the steady, fully developed acceleration-driven Poiseuille flow is divergence-free
and consequently the deformation is isochoric (Dρ/Dt = 0) which remains the major
difference with its non-isochoric (Dρ/Dt /= 0) pressure-driven counterpart (3.20) at the
level of the velocity gradient tensor.

3.3.2. Inequivalence at the NSF order O(Kn)
The analysis in § 3.3.1 suggests that, irrespective of the magnitude of the axial pressure
gradient (Gp) and the channel length (Lx), the ‘equivalence’ between the pressure-driven
and acceleration-driven Poiseuille flows of rarefied gases is not expected to hold for
all hydrodynamic fields even at the NSF order. The origin of the said inequivalence
is tied to the fact that the steady, gaseous pressure-driven flow is spatially developing,
with finite dilatation ((3.17)–(3.18)), and consequently the deformation is non-isochoric
(Dρ/Dt /= 0). As explained in § 3.2.2, one important consequence of the dilatation is an
effective cooling of the gas via the pressure-dilatation work, and thereby ruling out the
appearance of the bimodal shape of the temperature profile T( y) at Kn ∼ 0 even in the
nonlinear regime of large Gp. Further confirmation of the inequivalence between the two
forcings in generating the hydrodynamic fields at the NSF order will be provided in § 4.3.1
while discussing the origin of normal stress differences.

At the level of hydrodynamic fields, the perceived equivalence between the two flows
holds only for the mass flow rate that can be quantitatively predicted in a pressure-driven
gaseous flow (Cercignani & Daneri 1963; Cercignani 1979) by assuming a ‘constant’
pressure gradient (and hence the linearly varying pressure and density fields, (3.4a,b),
along the axial direction) in a finite-length (Lx < ∞) channel, and the logarithmic branch,
M(Kn, Lx) ∝ log Kn at Kn � 1, is recovered in the limit of Lx → ∞. More specifically,
the underlying assumptions ((3.4a,b)–(3.4a,b)) help to transform the ‘two-dimensional’
problem of the pressure-driven flow to an equivalent ‘one-dimensional’ problem of
acceleration-driven flow. The mass flow rate, being invariant of the streamwise distance in
both flows, can be predicted from the linearized Boltzmann theory (Cercignani & Daneri
1963; Cercignani 1979; Takata & Funagane 2011) by using the ansatz â ↔ Gp, and the
dilatation (Δ /= 0) does not affect M since this is a conserved quantity.

4. Stress tensor and transport coefficients

The rheology of the gas is characterized by the stress tensor P and the related transport
coefficients. The stress tensor can be decomposed into isotropic and deviatoric parts

P = pI + σ , (4.1)

where p = Pii/3 is the pressure, σ is the stress deviator and I is the identity tensor.
For the planar flows, the only non-zero off-diagonal term Pxy(x, y) represents the shear
stress that depends on both (x, y) in pressure-driven Poiseuille flow; we have verified
that Pxz and Pyz fluctuate around zero in present simulations. It should be noted that
the ‘rarefaction-induced’ signatures on the rheology of a gas can be explained if certain
beyond-NSF-order terms (Burnett 1935; Chapman & Cowling 1970; Tij & Santos 1994;
Uribe & Garcia 1999; Tij & Santos 2004; Taheri et al. 2009; Takata & Funagane 2011;
Alam et al. 2015; Saha & Alam 2017; Rongali & Alam 2018a,b) are included. In the rest of
this paper, we shall show that the dilatation must be considered in the constitutive models
to explain several seemingly anomalous findings on the rheology of non-isochoric flows
such as in the present case.
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Non-isochoric effects in pressure-driven Poiseuille flow

4.1. Shear stress and viscosity
Using the DSMC data on the shear stress Pxy, the local shear viscosity is calculated from

μ(x, y) = −Pxy(x, y)
2Sxy

, (4.2)

where 2Sxy = γ̇ (x, y) = (∂yux + ∂xuy) ≈ ∂yux is the local shear rate. The cross-stream
variations of the shear stress Pxy(0, y), the local shear rate γ̇ (0, y) and the shear viscosity
μ(0, y) for different Kn are shown in figures 16(a), 16(b) and 16(c), respectively, for
δp/p0 = 1 and AR = 3; the analogous plots for the acceleration-driven flow are displayed
in figure 16(d–f ) for â = 0.1. It is seen in figure 16(a,d) that the shear stress Pxy( y)
profiles are nearly linear with y and independent of Kn at large values of Kn for both
forcing, but become nonlinear with y at small values of Kn (Kn = 0.05, figure 16a)
for the pressure-driven case. From the viscosity variations in figure 16(c, f ), we find
that the viscosity decreases away from the channel centreline (y = 0), confirming
the shear-thinning behaviour of rarefied gases since the local shear rate γ̇ (0, y) (see
figure 16b,e) increases in the same limit. Note further in figure 16(c, f ) that the viscosity
profiles become increasingly non-uniform with increasing Kn, and the magnitude of local
μ( y) increases with increasing Kn due to the decrease in the overall/effective shear rate
(across the half-channel width),

γ̇eff = ux(0)− ux(±1/2)
Ly/2

≡ 1
2

(
dux

dy
( y = −0.5)+ dux

dy
( y = 0.5)

)
(4.3)

as in figure 16(b,e).
We define the ‘width-averaged’ shear viscosity

μav =
∫ 1/2

−1/2
μ(0, y) dy, (4.4)

as a measure for the effective flow resistance in the bulk. Figure 17(a) illustrates the
effect of imposed pressure gradient on μav(x = 0) for δp/p0 = 1 and 0.2; both curves
closely follow each other, before settling towards a plateau value at Kn � 1, similar
to the saturation of the mass flow rate seen in figure 8(a). Figure 17(b) indicates that
the saturation of μav at large Kn is a consequence of the finite length of the channel.
Comparing figure 17(a) with figure 17(c), we find that the average viscosity in the
pressure-driven case is smaller than that in its acceleration-driven counterpart. This
observation holds also for the local viscosity μ( y) as it is evident from figure 16(c, f ).

To explain the above finding of the reduction of viscosity, we consider the leading
expression for the shear-viscosity of a gas undergoing pressure-driven Poiseuille flow,

μ = μNSFF0(Δ, T), with F0(Δ, T) ≈ 1 − cμ Kn
(
Δ√

T

)
, (4.5)

valid up-to the Burnett-order O(Kn2), where

μNSF = μ0
√

T, with μ0 =
√

2ω0ρlf ≈ 0.7957ρlf , (4.6)

denotes the viscosity at the NSF order and F0(Δ, T) is its Burnett-order correction
factor, with cμ ≈ 4; (4.5) holds strictly around the channel centreline, see Appendix C.2
for details. The dimensionless expression F0(Δ, T) in (4.6) incorporates the leading
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Figure 16. (a–c) Cross-stream variations of (a) shear stress Pxy(0, y), (b) shear rate dux/dy(0, y) and
(c) shear viscosity μ(0, y) at x = 0 in pressure-driven Poiseuille flow with δp/p0 = 1 and AR = 3. (d–f ) Same
as in (a–c), but for the acceleration-driven case with dimensionless acceleration â = 0.1. The insets in (c, f )
denote the close-up version of the case with Kn = 0.05. For all panels the channel width is Ly/d = 1860.
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μ
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Figure 17. Variations of the width-averaged viscosity μav(x = 0) (4.4) with Knudsen number: (a) effect of
pressure gradient (δp/p0 = 1, open black circles; δp/p0 = 0.2, filled blue circles) on μav for AR = 3 (table 3);
(b) effect of channel length/aspect-ratio on μav for δp/p0 = 0.2 (table 2). (c) Acceleration-driven flow with
â = 0.1. For all panels the channel width is Ly/d = 1860.

correction due to finite dilatation (Δ /= 0), a characteristic of the pressure-driven gaseous
Poiseuille flow. It should be noted that for the isochoric deformation (Δ = 0) of a
monatomic gas the expressions for the shear viscosity (Chapman & Cowling 1970; Saha
& Alam 2020) at the NSF and Burnett orders are identical (i.e. μNSF = μBurnett).
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Figure 18. Contour plots of (a) N1(x, y) and (b) N2(x, y) for Kn = 0.05, δp/p0 = 1 and AR = 3
(Ly/d = 1860).

For a quantitative understanding, with parameter values of Kn = 0.05, δp = p0, and
AR = 3, it has been verified that, at the middle (x, y) = (0, 0) of the channel,

∂ux

∂x
≈ 20

(
∂uy

∂y

)
, ⇒ 	(0, 0) ≈ ∂ux

∂x

∣∣∣∣
(0,0)

≈ 0.096. (4.7)

With (4.7), the estimated shear viscosity (4.5) is

μ(0, 0) ≈ 0.9817μ0
√

T, (4.8)

a reduction of less than 2 %, compared with its value (μ(0) = μ0
√

T = μBurnett ≡ μNS)
in the acceleration-driven Poiseuille flow. Note that the positivity of the dilatation holds
in the bulk region of the channel (i.e. 	(x, y) > 0), except near its entrance and exit, see
figure 15(a–d). Therefore, we conclude that the effect of the dilatation/non-isochoricity is
to reduce the shear viscosity (4.5) of the gas in the pressure-driven Poiseuille flow.

4.2. Normal stress differences
In general, the diagonal components of the stress tensor (4.1) are unequal
(i.e. Pxx /= Pyy /= Pzz), and hence, in addition to pressure p = Pii/3 and shear stress
Pxy, two independent quantities are needed to completely describe the stress tensor in
Poiseuille-type flows. These two functions are defined as (Sela & Goldhirsch 1998; Alam
& Luding 2003, 2005)

N1(x, y) = Pxx − Pyy

p
and N2(x, y) = Pyy − Pzz

p
≡ Pxx + 2Pyy

p
− 3, (4.9a,b)

known as the first (primary) and second (secondary) normal stress differences,
respectively. The contour plots of N1(x, y) and N2(x, y) are shown in figure 18(a,b) for
Kn = 0.05, indicating strong variations of both quantities along the axial and transverse
directions in the pressure-driven Poiseuille flow.

The cross-stream variations of N1(0, y) and N2(0, y), both evaluated at x = 0, are
shown in figures 19(a) and 19(b), respectively. It is seen that N1 is an order of magnitude
larger compared with N2, and in general the two normal stress differences are found to be
of opposite signs, for example,

N1 < 0 and N2 > 0, (4.10a,b)

at any Kn in the pressure-driven case. Comparing the variations of N1(0, 0) and N2(0, 0)
with the Knudsen number in figure 20(a,b), we find that the magnitudes of both quantities
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Figure 19. Cross-stream variations of (a) N1(0, y) and (b) N2(0, y), respectively, at the midchannel x = 0 in
the pressure-driven flow, with parameter values as in figure 18. (c,d) Analogues of (a,b) for acceleration-driven
flow with â = 0.1. For all panels the channel width is Ly/d = 1860.

increase with increasing Kn. The observation of the anticorrelation between N1 and N2
is similar to the theoretical (Rongali & Alam 2018a,b) and previous numerical (Gupta &
Alam 2017) findings in the acceleration-driven Poiseuille flow as well as in simple shear
flow (Sela & Goldhirsch 1998; Alam & Luding 2005; Saha & Alam 2016). For the sake
of comparison, the corresponding plots for the acceleration-driven case are displayed in
figures 19(c,d) and 20(c,d) for a dimensionless acceleration of â = 0.1; it is seen that while
N1( y) remains positive and increases with increasing Kn, the variation of N2( y) with Kn
is found to be non-monotonic; in particular, N2(0) (figure 20d) is negative over a range of
Kn < 10 but attains a positive value at large Kn > 10. Comparing figures 20(a) and 20(c),
we find that

N1(0, 0)|pressure-driven < 0 and N1(0)|acceleration-driven > 0, ∀ Kn > 0. (4.11a,b)

This sign-reversal also holds for the second normal stress difference (figure 20b,d),

N2(0, 0)|pressure-driven > 0 and N2(0)|acceleration-driven < 0 at Kn < O(10),

(4.12a,b)

but both N2(0, 0) and N2(0) attain positive values at large enough Kn > 10.
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Figure 20. Variations of (a) N1(0, 0) and (b) N2(0, 0) with Knudsen number in the pressure-driven flow with
parameter values as in figure 18. (c,d) Analogues of (a,b) for the acceleration-driven flow with â = 0.1. For all
panels the channel width is Ly/d = 1860.

The above findings on the Kn-dependence of two normal stress differences are robust,
irrespective of the value of the imposed pressure gradient and the channel length as
confirmed in figure 21(a,b). It is seen that the magnitude of N1(0, 0) decreases with
decreasing Gp, and tends to saturate to constant values at large Kn � 1, irrespective of
the imposed pressure gradient; similar behaviour persists for N2(0, 0) too (not shown).

4.3. Origin of normal stress differences and comparison with theory
The sign-change of two normal stress differences ((4.11a,b)–(4.12a,b)), depending on
whether the flow is generated by an axial pressure gradient or a constant body force,
is one major difference between the two Poiseuille-type flows. To provide a theoretical
justification for the observed differences in (4.11a,b)–(4.12a,b), we carry out an analysis at
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Figure 21. Effects of (a) imposed pressure gradient and (b) channel length or aspect-ratio on the variations of
N1(0, 0) with Knudsen number. For both panels, the channel width is Ly/d = 1860, with other parameters as
in tables 2 and 3.

the channel centre (x, y) = (0, 0) for which

∂

∂y
(ρ, T, p, ux)

∣∣∣∣
y=0

= 0 (4.13)

that holds for both the forcings.

4.3.1. Origin of Ni and the inequivalence between the two flows
From the Burnett-order O(Kn2) stress tensor (Chapman & Cowling 1970; Sela &
Goldhirsch 1998), the expressions for two normal stress differences have been derived –
the details are given in Appendix C.3, leading to (C21) and (C23). For the pressure-driven
Poiseuille flow, the expressions for the first and second normal stress differences, evaluated
at (x, y) = (0, 0), are given by

N1(0, 0) ≈ Kn2
(

c1p−1∂yyp − (c1 − c2)T−1∂yyT
)

− 2μ(T,Δ)
p

S1

−c3Kn2p−1∂xT∂xρ + c4Kn2T−2(∂xT)2 − c5Kn2T−1S1Δ , (4.14)

N2(0, 0) = −Kn2
(

c1p−1∂yyp − (c1 − c2)T−1∂yyT
)

− 2μ(T,Δ)
p

S2

−Kn2T−1 (c6Δ− c7S2)S2 , (4.15)

where the numerical constants, ci, are

c1 ≈ 3.8532, c2 ≈ 2.322, c3 ≈ 2.1374, c4 ≈ 0.57, c5 ≈ 0.1452, (4.16a–e)

and

S1
def= (

Sxx − Syy
) = ∂ux

∂x
− ∂uy

∂y
≡ Dxx − Dyy, (4.17)

S2
def= (

Syy − Szz
) = ∂uy

∂y
− ∂uz

∂z
= ∂uy

∂y
≡ Dyy − Dzz, (4.18)
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Non-isochoric effects in pressure-driven Poiseuille flow

are called the first and second normal shear-rate difference (NSRD), respectively. The
latter two parameters ((4.17)–(4.18)) represent the diagonal-anisotropy of the deformation
rate D and its deviator S that are defined in § 3.3.1. Note that while the expression for
N2(0, 0) in (4.15) is exact at this level, O(Kn2), of analysis, (4.14) has been approximated
via an additional assumption that ∂xx(ρ, T) � ∂yy(ρ, T) (see Appendix C.3).

The second term (∝ Si) in each of (4.14)–(4.15) needs clarification: they can be
identified with the second and third terms in (C1), or, equivalently, with the second term
in (C5) of the stress tensor, and are also present in the NSF-order O(Kn) constitutive
relation for the stress tensor. For finite values of Gp and Si, the quadratic-order terms in
Kn in (4.14)–(4.15) can be neglected for Kn → 0 and hence the expressions for Ni(0, 0)
simplify to

Ni(0, 0) Kn→0= −2μ
p
Si = O (KnSi) , with i = 1, 2, (4.19)

since μ/p = O(Kn), and the sign of Ni(0, 0) is dictated by ‘sgn(−Si)’ at Kn → 0.
Therefore, we conclude that the normal stress differences appear at O(Kn) in the
pressure-driven gaseous Poiseuille flow, both being driven by the coupling between the
dynamic friction (μ/p) and the NSRDs (Si /= 0). This should be contrasted with the
Burnett-order O(Kn2) origin (Sela & Goldhirsch 1998; Alam & Luding 2005; Saha &
Alam 2016) of the normal stress differences in the idealized acceleration-driven Poiseuille
flow (Gupta & Alam 2017; Rongali & Alam 2018a) for which both the NSRDs vanish
(S1 = 0 = S2). Equation (4.19) provides a confirmation of our assertion in § 3.3.2 that the
pressure-driven and acceleration-driven Poiseuille flows are not equivalent even at NSF
order O(Kn).

4.3.2. Qualitative comparison between theory and simulation
It follows from (3.19a,b)–(3.20) and (4.17)–(4.18) that

S1 = O
(

G2
p

)
(4.20)

is second order in the normalized pressure-gradient (Gp), and S2 = O(G2
p/AR) � S1. The

underlined terms in each of (4.14)–(4.15) are smaller compared with the terms in the
respective first line if the streamwise gradients of the hydrodynamic fields are assumed
to be smaller than their transverse gradients. This has been verified from the present
simulation data at Kn = 0.05 and 0.5 with Gp = 1/3; more specifically, the sum of the
underlined terms in (4.14)–(4.15) remains negative and is an order-of-magnitude smaller
than the third (∝ Si, negative) term in the corresponding equation, and hence they can be
neglected. Therefore, the leading expressions for Ni(0, 0) simplify to

N1(0, 0) ≈ −2μ(T,Δ)
p

S1 −(c1 − c2)Kn2T−1∂yyT + c1Kn2p−1∂yyp︸ ︷︷ ︸, (4.21)

N2(0, 0) ≈ (c1 − c2)Kn2T−1∂yyT −c1Kn2p−1∂yyp − 2μ(T,Δ)
p

S2︸ ︷︷ ︸ . (4.22)

At this level of analysis, there is a competition between the Burnett-order (∝ Kn2) and the
NSF-order (∝ Si) terms that would decide the sign of the two normal stress differences,
depending on the values of imposed pressure gradient (Gp) and the Knudsen number (Kn).
While the rarefaction-induced terms in (4.21)–(4.22) dominate in the limit of Gp → 0,
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the dilatation-driven terms dominate in the continuum limit Kn → 0. In principle, one
can determine a threshold value of Knc(Gp) for finite Gp that would help to identify two
regions in the (Gp,Kn)-plane where the dilatation and rarefaction effects are dominant.
A complete analysis would require numerically evaluating the gradients of (p, T) for given
(Gp,Kn), and is beyond the scope of the present paper. Below we focus on a few specific
parameter values of (Gp,Kn) to estimate the order of magnitudes of different terms in
(4.21)–(4.22) and comment on the leading behaviour of Ni(0, 0) over the studied range
of Gp.

From the simulation data in figure 12(a,c) for Kn = 0.05, we have evaluated the
curvature terms to be ordered as

∂yyT(0) ∼ 10∂yyp(0) � ∂yyp(0) > 0, (4.23)

and the NSRDs are approximated as

S1(0, 0)|Kn=0.05 ≈ 10−1 and S2(0, 0)|Kn=0.05 ≈ 5 × 10−3. (4.24a,b)

The sum of the two under-braced terms in (4.21) is found to be negative (but its magnitude
is smaller by a factor of 10 compared with the first term), and hence the leading
expression is

N1(0, 0) ∼ −2μ(T,Δ)
p

S1 < 0, (4.25)

in agreement with simulation results in figure 20(a). It has been verified from present
simulations that the above estimates hold also at Kn = 0.5, and therefore the behaviour of
N1(0, 0) is dictated by (4.25). Note that (4.25) represents the correlation between the first
NSRD S1 and the dynamic friction μ(T,Δ)/p which is the leading expression of N1(0, 0)
and hence responsible for its negative sign in the pressure-driven flow.

On the other hand, using the simulation data at Kn = 0.05 and 0.5, we found that the
sum of the under-braced terms in (4.22) remains negative, but is of smaller magnitude
compared with the first term which is positive, leading to

N2(0, 0) ∼ (c1 − c2)
Kn2

T
∂yyT > 0. (4.26)

Therefore, the positive sign of N2(0, 0) is primarily dictated by the curvature in the
temperature field at the channel centre. Recalling from § 3.2.2 that the curvature in T( y) is
strongly influenced by the dilatation-coupled pressure cooling, the behaviour of the second
normal stress difference is also tied indirectly to dilatation-driven effects. On the whole,
our Burnett-order analysis correctly predicts the signs of both N1(0, 0) and N2(0, 0) for
small Kn in the pressure-driven Poiseuille flow.

For the acceleration-driven Poiseuille flow, we have

Δ = 0 = Si = ∂/∂x(·), (4.27)

and hence it follows from (4.14)–(4.15) that

N1(0) = c1Kn2p−1∂yyp − (c1 − c2)Kn2T−1∂yyT, (4.28)

N2(0) = −N1(0), (4.29)

with ci given in (4.16a–e). From the simulation data in figure 12(d, f ), it has been verified
that

∂yyp(0) > ∂yyT(0) > 0 and ∂yyp(0) = O
(
∂yyT(0)

)
, (4.30a,b)

for small values of Kn – this balance of curvature terms in (4.30a,b) should be contrasted
with (4.23) that hold for its pressure-driven counterpart which is strongly influenced by
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the dilatation. It follows immediately from (4.28)–(4.29) that N1(0) > 0 and N2(0) < 0
at the middle of the channel – these predictions are in qualitative agreement with the
DSMC results in figure 20(c,d) for the acceleration-driven flow. Note, however, that there
is another sign-change of N2(0) (from negative to positive values, see figure 20d) at large
values of Kn = O(10) – this remains unexplained since the Burnett-order theory O(Kn2)
is likely to hold only at small values of Kn < 1.

To conclude this section, the Kn-dependence of N1(0, 0) and N2(0, 0) (figures 20a,b
and 20c,d) and their signs at small Kn are dictated by (i) the dilatation-driven effects
(i.e. the NSRD-dynamic-friction coupling (4.25) and the pressure-dilatation cooling)
in the pressure-driven Poiseuille flow and (ii) the curvatures in temperature and
pressure/density profiles in its acceleration-driven counterpart.

5. Flow-induced heat transfer

In the present Poiseuille-type flows, although the two walls are kept at isothermal
conditions (Tw = T0), there is a heat-flux (qy) along the wall-normal direction which is
primarily driven by the flow-induced temperature gradient,

qy = −κyy
∂T( y)
∂y

+ HOT /= 0, (5.1)

with the normal thermal conductivity of the gas being given by κyy ∝ ρlf
√

T . This
flow-induced temperature gradient also drives a heat-current along the streamwise
direction (x), leading to

qx = −κxy
∂T( y)
∂y

+ HOT /= 0. (5.2)

The latter is a second-order effect since the cross-thermal conductivity is κxy ∝ γ̇ = O(Kn)
and hence qx = O(Kn2) is called rarefaction-induced ‘tangential’ heat flux. As noted in
§ 3.2.2, the temperature profiles can differ significantly depending on whether the flow is
dilatation-free or not, and the consequent changes in both qy( y) and qx( y) profiles and the
related measures (such as the tangential heat flow rate) are briefly discussed below.

5.1. Normal and tangential heat fluxes
Figure 22(a) displays the cross-stream variations of the normal heat flux qy(0, y) at
the midchannel (x = 0) for a range of Knudsen number. Comparing them with their
acceleration-driven flow counterparts in figure 22(c), we find that the direction of qy(0, y)
is reversed which is now directed from the walls towards the channel centre. This can be
understood from the temperature profiles in figure 12(c, f ) along with Fourier’s law of
heat conduction (5.1). The corresponding profiles of the tangential heat-flux qx(x = 0, y)
are displayed in figure 22(b,d). For the pressure-driven case, a double-well-shaped qx(0, y)
profile is found at small values of Kn (= 0.01 and 0.05, see figure 22b) that transitions into
a single-well structure with increasing Knudsen number; in contrast, qx( y) profiles are of
single-well shape for all Kn > 0 in the acceleration-driven flow, see figure 22(d).

To quantitatively characterize the transition of qx( y)-profile from a double-well to a
single-well, we introduce two parameters: (i) δqx, a measure of the relative depth of the
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Figure 22. Cross-stream variations of (a,c) normal heat flux qy(0, y) and (c,d) tangential heat flux qx(0, y) in
(a,b) pressure-driven flow with δp/p0 = 1.0 and AR = 3 and (c,d) acceleration-driven flow with â = 0.1. The
heat flux is normalized by ρ0u3

0/2 (see § 2.3); for all panels the channel width is Ly/d = 1860.

two wells with respect to qx(0), i.e.

δqx = min
y

[
qx

(
y = λqx

)] − qx( y = 0), (5.3)

and (ii) λqx , the distance of this minima, min(qx( y)), from the channel centre as marked
in figure 22(b). The variations of δqx and λqx with Kn are displayed in figure 23(a–d). It
is seen that δqx increases until Kn ∼ 0.05 and then falls sharply at higher Kn, while λqx
goes to 0 monotonically as Kn → ∞ – these observations are robust and hold irrespective
of the value of (i) the imposed pressure gradient (figure 23a,b) and (ii) the length of the
channel (figure 23c,d). Since the double-well-shaped profile of qx( y) appears only at small
values of the Knudsen number, this represents a near-continuum effect in the context of the
pressure-driven Poiseuille flow of a rarefied gas. The present finding should be contrasted
with a similar double-well shaped qx( y) profile that was reported in acceleration-driven
‘granular’ Poiseuille flow (Alam et al. 2021) – the latter phenomenon is driven by the
inelasticity of particle collisions but disappears in the limit of a molecular gas.
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Figure 23. Effects of (a,b) pressure gradient and (c,d) channel length on the variations of (a,c) δqx, (5.3), and
(b,d) λqx with Knudsen number, respectively; refer to figure 22(c) for definitions of δqx and λqx . For all panels,
the channel width is Ly/d = 1860, with other parameters as in tables 2 and 3.

5.2. Tangential heat flow rate
Note from figure 22(b,d) that while qx(x = 0, y) < 0 in the pressure-driven flow at any Kn
(i.e. the tangential heat flux is directed against the imposed pressure gradient at the centre
of the channel x = 0), it is positive and negative in the acceleration-driven case at small
and large values of Kn, respectively. To measure the total heat flow rate of the tangential
heat flux at any streamwise location (x), we define the following quantity:

Qqx(x) =
∫ 0.5

−0.5
qx(x, y) dy, (5.4)

averaged over the channel width, and is called the tangential heat-flow rate (Aoki et al.
2002; Alam et al. 2021); note that (5.4) is expressed in dimensionless form. The variations
of Qqx(x) are shown in figure 24(a) as a function of Kn at three different cross-sections
for δp/p0 = 1 and AR = 3. The analogous plots of Qqx(x = 0) for two values of δp/p0
are compared in figure 24(b), demonstrating the effect of pressure gradient. Collectively,
figure 24(a,b) confirm that Qqx(x) remains negative at any x (and hence is directed
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Figure 24. Variations of the tangential heat flow rate Qqx , (5.4), with Kn: (a,b) the pressure-driven Poiseuille
flow (a) at three axial locations (x = −3/4, 0, 3/4) with δp/p0 = 1 and (b) the effect of pressure gradient Gp on
Qqx (x = 0); (c,d) acceleration-driven Poiseuille flow with (c) â = 0.05 and (d) â = 0.5. In (c,d) the numerical
results from Aoki et al. (2002), marked by blue circles, are also included for comparison; the inset of (d) is its
close-up version over Kn ∈ (10−2, 1).

opposite to the flow direction), irrespective of the imposed pressure gradient, and its
magnitude increases with increasing Kn.

In the acceleration-driven flow (figure 24b,c), however, Qqx can be negative/positive
and varies non-monotonically with Kn. More specifically, figure 24(b,c) indicate that Qqx
is directed along the flow direction at high Kn but can be directed against (figure 24c,
â = 0.05) or along (figure 24d, â = 0.5) the flow direction at small Kn depending on
the magnitude of forcing. In contrast, the negativity of Qqx(x) persists (i.e. the heat flow
rate is directed against the flow direction) even if (i) the pressure-gradient is changed,
see figure 24(b), and (ii) the channel length is increased, see figure 25. The latter
figure shows an interesting result: Qqx(Kn, Lx) saturates to a constant value at Kn > 10
in a shorter-length channel (AR = 3), but it decreases continuously when the channel
length is increased further (AR = 9, 27) and the saturation of Qqx(Kn, Lx) seems to be
delayed to larger values of Kn with increased channel length. These overall observations
are reminiscent of the saturation of the mass flow rate, see figures 7 and 8, in the
pressure-driven flow through a finite-length channel.
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–0.02

–0.01
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AR = 3
AR = 9
AR = 27

Kn

Qqx

Figure 25. Effect of channel-length (Lx) on Qqx at x = 0, with δp/p0 = 0.2: AR = Lx/Ly = 3 (Lx/d = 5580,
black circles), 9 (Lx/d = 16740, blue squares) and 27 (Lx/d = 50220, red triangles); the channel width is
Ly/d = 1860.

It should be noted that while the large-Kn branch of ‘M(Kn � 1) ∼ log Kn’
in the acceleration-driven flow can be exactly recovered (Cercignani 1979) from
its pressure-driven counterpart M(Kn, Lx → ∞) in the limit of infinite length
(Lx → ∞) of the channel, the large Kn-branches of the heat flow rate Qqx(Kn � 1) in
the pressure-driven and acceleration-driven flows are qualitatively different (i.e. Qqx(Kn)
is negative and positive, respectively). Therefore, Qqx(Kn � 1) under two forcing (Gp, â)
cannot be mapped from each other (Gp ↔ â) in an infinite length channel (Lx → ∞),
irrespective of the magnitude of the forcing – this implies that the equivalence between
two forcing does not hold at the level of Qqx(Kn, Lx → ∞).

There is an interesting analogy between the dimensionless heat flow rate in the
(acceleration-driven) Poiseuille flow and the dimensionless mass flow rate in the thermal
transpiration flow (see equation (6.4) and figure 8 in Takata & Funagane (2011)) for a
rarefied gas:

Qqx

∣∣
Poiseuille = M|ThermalTranspiration , Kn � 1 (dimensionless). (5.5)

In light of the present result that Qqx(Kn � 1) has different asymptotic limits, depending
on the forcing (pressure-gradient or acceleration), the validity of (5.5) is questionable for
the pressure-driven Poiseuille flow of a molecular gas through a finite-length (Lx < ∞)
channel. To demonstrate that (5.5) holds in the pressure-driven flow, one has to first
show that Qqx(Kn � 1) makes a transition from negative to positive at critical values
of (Lc

x,Gc
p). Although the latter seems unlikely to hold (based on results in figures 24b

and 25 for Lx/Ly ≤ 27), it should be further verified by considering the pressure-driven
Poiseuille flow in a very long channel (Lx → ∞) at arbitrarily small values of Gp → 0.
Given that the DSMC simulations at small Gp (and also at â → 0) yield noisy data, this
issue may be investigated from a theoretical analysis based on the Boltzmann equation or
by its direct solution using the fast spectral method.

5.3. Qualitative comparison with theory: generalized Fourier law
The primary goal of this section to explain the emergence of the double-well shape of the
tangential heat flux (viz. figure 22b) in the near-continuum limit (0 < Kn < 0.2, figure 23)
which is completely absent (viz. figure 22d) in the acceleration-driven Poiseuille flow.
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Towards this goal, we consider the regularized 10-moment theory of Reddy & Alam (2020)
who derived an expression for the heat flux of a granular gas using Grad’s (Grad 1949)
moment method. Their expression for the heat flux vector can be written in a compact
form (Alam et al. 2021)

q = −κT · ∇T − κρ · ∇ρ − κσ · ∇ · σ , (5.6)

which is nothing but a generalized version of the well-known Fourier law of heat
conduction. The first, second and third terms in (5.6) represent heat fluxes driven by the
gradients in (i) temperature (Fourier law), (ii) density (Dufour law) and (iii) deviatoric
stress, respectively. The expressions for the components of the Fourier/thermal, Dufour
and stress conductivity tensors are

κT = κ

p

(
Pxx σxy
σyx Pyy

)
, κρ = − 2κ

5ρ2

(
σxx σxy
σyx σyy

)
, κσ = 2κ

5ρ

(
1 1
1 1

)
, (5.7a–c)

where κ = κ(T) is the thermal conductivity of a monatomic gas at the NSF order, O(Kn),

κ(T) = κNSF = κ0
√

T, with κ0 = cκρlf and cκ = (1.025)
75
64

√
2π ≈ 3.013. (5.8)

Note that the above theory is strictly valid for small values of Kn < O(1).
The expression for the tangential heat flux is

qx(x, y) = −κ(T)
(

Pxx

p
∂xT − 2σxx

5ρ2 ∂xρ + 2
5ρ
∂xσxx

)

− κ(T)
(
σxy

p
∂yT − 2σxy

5ρ2 ∂yρ + 2
5ρ
∂yσxy

)
≡ qx1 + qx2, (5.9)

with qx1 and qx2 representing the terms involving x- and y-derivatives, respectively. The
order of magnitudes of the three terms in qx1 can be estimated as

Pxx

p
∂xT ∼ O(Gp) < 0, −σxx∂xρ ∼ O(G2

p) > 0, ∂xσxx ∼ O(G2
p) > 0, (5.10)

since σxx = ∂xu increases and both T and ρ decreases along the length of the channel, and
the leading behaviour of qx1 is dictated by the first term,

qx1 ∼ −κ(T)
(

1 + σxx

p

)
∂xT = O(GpKn) > 0, (5.11)

which is positive. Therefore, the leading expression of (5.9) simplifies to

qx(x, y) ≈ −κ(T)∂xT − κ(T)
(
σxy

p
∂yT − 2σxy

5ρ2 ∂yρ + 2
5ρ
∂yσxy

)
, (5.12)

which also represents its dimensionless form, with the dimensionless thermal conductivity
being given by

κ(T) = cκρ
√

TKn. (5.13)

The estimated value of (5.12) at the centre of the channel (x, y) = (0, 0) is

qx(0, 0) = −κ(T)∂xT − 2
5ρ
κ(T)

∂σxy

∂y

∣∣∣∣
(0,0)

< 0. (5.14)

Focussing on the pressure-driven flow with Kn = 0.5, δp/p0 = 1 and AR = 3 (figure 22),
our calculations indicate that the magnitude of the first term (which is positive) in
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(5.14) remains (slightly) smaller than the second term, yielding qx(0) < 0. Therefore, the
negativity of qx(0, 0) originates from the heat flux driven by the stress-gradient, and this
holds irrespective of whether the flow is driven by the pressure-gradient (figure 22b), or,
the acceleration (figure 22d, for which ∂xT = 0).

Let us now evaluate the curvature of qx( y), given by the second derivative of (5.12) as

∂yyqx = −κyy∂xT − 2κy∂xyT − κ∂yyyT − κyy

(
σxy

p
∂yT − 2σxy

5ρ2 ∂yρ + 2
5ρ
∂yσxy

)

− κ

[(
σxy

p

)
∂yyyT + 2∂y

(
σxy

p

)
∂yyT + ∂yy

(
σxy

p

)
∂yT

−
(

2σxy

5ρ2

)
∂yyyρ − 2∂y

(
2σxy

5ρ2

)
∂yyρ − ∂yy

(
2σxy

5ρ2

)
∂yρ

+ 2
5ρ
∂yyyσxy + 2∂y

(
2

5ρ

)
∂yyσxy + ∂yy

(
2

5ρ

)
∂yσxy

]
. (5.15)

Noting that

∂y(T, ρ, p)
∣∣
y=0 = 0 = ∂yyy(T, ρ, p)

∣∣
y=0 = ∂yyσxy

∣∣
y=0 = ∂yyyσxy

∣∣
y=0 , (5.16)

the simplified expression for the curvature of qx( y) at the channel centre (x, y) = (0, 0)
follows from (5.15) that

∂2qx

∂y2

∣∣∣∣
(0,0)

= −κyy

(
∂xT + 2

5ρ
∂yσxy

)
− κ

[
2∂y

(
σxy

p

)
∂yyT − 2∂y

(
2σxy

5ρ2

)
∂yyρ

+ ∂yy

(
2

5ρ

)
∂yσxy

]
y=0

=
(κyy

κ

)
y=0

qx(0, 0)− 2κ
∂σxy

∂y

[
1
p
∂yyT − 2

5ρ2 ∂yyρ − 1
5ρ2 ∂yyρ

]
y=0

=
(

1
ρ
∂yyρ + 1

2T
∂yyT

)
y=0

qx(0, 0)− 2
κ

ρ

∂σxy

∂y

[
1
T
∂yyT − 3

5ρ
∂yyρ

]
y=0

=
(

1
ρ
∂yyρ + 1

2T
∂yyT

)
y=0︸ ︷︷ ︸ qx(0, 0)

+ 5 (qx(0, 0)+ κ∂xT)
[

1
T
∂yyT − 3

5ρ
∂yyρ

]
y=0︸ ︷︷ ︸, (5.17)

where we have used (5.14) in the last expression. Since ∂yyT > 0 and ∂yyρ < 0 in the
pressure-driven channel flow, the under-braced part of the second term in (5.17) is positive,
and the underbraced part of the first term is also positive but is of much smaller magnitude
than that of the second term; these estimates can be appreciated from figures 12(b,c) and
13(b,c), for example, ∂yyT(0, 0) ≈ 0.75 (figure 12c) and ∂yyρ(0, 0) ≈ −0.9 (figure 12b) at
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Kn = 0.05. Recalling that qx(0, 0) < 0 and ∂xT < 0, (5.17) confirms

∂2qx

∂y2

∣∣∣∣
(0,0)

< 0, (5.18)

i.e. the curvature of qx around the channel centre is negative (and hence responsible
for the double-well shape of qx(0, y)) which agrees with simulations in figure 22(b).
Therefore, the generalized Fourier law ((5.6)–(5.7a–c)) is able to predict the emergence
of the double-well shaped qx(0, y)-profile at small Kn in the pressure-driven Poiseuille
flow. In the present context, the qx( y)-profile is indirectly affected by the dilatation-driven
pressure cooling that strongly influences the curvatures of T( y) and ρ( y) as discussed in
§ 3.2.2.

It should be noted that we have omitted a flux term in (5.6), driven by the gradient
of the dilatation (i.e. qΔ ∝ ∇(Δ)) – the contribution of this term to qx and ∂yyqx(0, 0)
remains negative and is of smaller magnitude compared with the retained terms, and
our overall conclusions, based on above scaling arguments, would not change even if the
dilatation-driven heat flux is included. In any case, a detailed quantitative comparison
between theory and simulation is left to a future work.

6. Conclusions and outlook

We have studied the pressure-driven plane Poiseuille flow of a rarefied gas through a
finite-length (Lx < ∞) channel, with a goal to ascertain its similarities and differences
with the well-studied idealized problem of the acceleration-driven Poiseuille flow. For
both cases, the DSMC method is used to obtain the hydrodynamic fields, the fluxes
(stress tensor and heat-flux vector) and related transport coefficients over wide ranges of
Knudsen number (0.01 ≤ Kn ≤ 100), pressure gradient (0.033 < Gp = (δp/p0)/AR < 1)
and aspect-ratio (3 ≤ AR = Lx/Ly ≤ 27) of the channel. Since a change in the gas pressure
is always accompanied by a change in its density (assuming an isothermal state at the
leading order), the steady pressure-driven Poiseuille flow, irrespective of (i) the channel
length (Lx < ∞) and (ii) the axial pressure gradient Gp > 0, cannot be in a fully developed
state as dictated by the mass balance equation (3.18). At the level of the deformation field,
the fundamental difference between pressure-driven and acceleration-driven Poiseuille
flows is identified as the presence of finite ‘dilatation’ (Δ = trace(D) = ∇ · u > 0, the
first invariant of the deformation-rate tensor D) in the former, resulting in its non-isochoric
deformation (Dρ/Dt /= 0), while the flow is dilatation-free with isochoric deformation in
the latter.

For the pressure-driven flow in finite-length channels, the mass flow rate,
M(Kn) ∼ Kn0, saturates to a constant value at Kn � AR that agrees with theory
(Raghuraman & Willis 1977; Cercignani 1979) and recent experiments (Ewart et al.
2007; Graur et al. 2009; Kunze et al. 2022), and holds irrespective of the magnitude of
the axial pressure gradient and the local Mach number. The Kn- and Lx-dependence of
M(Kn, Lx) can be predicted from the linearized Boltzmann theory (Cercignani & Daneri
1963; Raghuraman & Willis 1977; Cercignani 1979) by using the ansatz â ↔ Gp, and
the dilatation (Δ /= 0) does not affect M since this is a conserved quantity. The ansatz
‘Gp → â’ amounts to imposing a ‘constant’ pressure gradient (and hence the linearly
varying pressure and density fields along the axial direction (Cercignani 1979; Takata &
Funagane 2011)), and the asymptotic logarithmic branch, M(Kn, Lx) ∝ log Kn at Kn � 1,
is recovered in the limit of Lx → ∞. More specifically, the underlying assumptions
((3.4a,b)–(3.5a,b)) help to transform the ‘two-dimensional’ problem of the pressure-driven
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flow to an equivalent ‘one-dimensional’ problem of acceleration-driven flow (Takata &
Funagane 2011), leading to the perceived equivalence which holds for all hydrodynamic
fields up-to the NSF order of small pressure gradient O(Gp). Therefore, we conclude that
the ‘equivalence’ between the two forcings holds only for M(Kn, Lx) in the limit of an
infinite-length (Lx → ∞) channel.

In contrast to the acceleration-driven Poiseuille flow, there are two other measurable
differences in the pressure-driven flow, namely, (i) the shape of the temperature profile
T( y) and (ii) the non-zero wall-normal velocity uy( y) – both are driven by the
finite dilatation 	(x, y) > 0 in the latter flow. As explained in § 3.2.2, one important
consequence of the dilatation is an effective cooling via the pressure-dilatation work
(Φp = −pΔ < 0 since Δ > 0) that rules out the possibility of the bimodal shape (Tij &
Santos 1994; Mansour et al. 1997; Tij & Santos 2004; Alam et al. 2015; Gupta & Alam
2017) of the temperature profile T( y) in the pressure-driven flow as confirmed via DSMC
simulations over a large range of pressure gradients. This is notwithstanding the fact that
the bimodality of the T( y) profile is a super-Burnett order effect (Tij & Santos 1994;
Rongali & Alam 2018a) as it appears at O(a4) for which the degree of pressure-dilatation
cooling (Φp = −pΔ ∼ O(G2

p)) would also increase if one adopts the equivalence ansatz
of â ↔ Gp between the two forcings.

The effect of dilatation was found to decrease the effective shear viscosity
(viz. figure 16c, f ) of the gas which is in agreement with the Burnett-order shear viscosity
(4.5) that includes dilatation. The first and second normal stress differences (N1 and N2)
have opposite signs in the pressure-driven flow in comparison with their values in the
acceleration-driven flow.

From an analysis of the Burnett-order stress tensor (§ 4.3.1), we found that both N1
and N2 appear at the NSF order O(Kn) in the pressure-driven Poiseuille flow that are
driven by the dilatation, whereas they originate from Burnett-order O(Kn2) rarefaction
effects in its acceleration-driven counterpart. These findings confirmed that the two flows
are not equivalent even at the NSF order for finite axial pressure gradient Gp ∼ O(1).
We showed (§ 4.3.2) that the odd-signs of N1(0, 0) and N2(0, 0) (figures 20a,b and
20c,d) and their Kn-dependence at small Kn are tied to the dilatation-driven effects: while
(i) the coupling (∼ μ(T,Δ)S1/p) between the first NSRD (S1 = ∂xux − ∂yuy) and the
dynamic friction (μ/p) is responsible for the leading behaviour of N1 and its negative sign,
(ii) the pressure-dilatation cooling (Φp = −pΔ < 0) affects the curvatures in temperature
and pressure/density profiles (4.23), thereby resulting in the positive sign of N2(0, 0).
Although the leading expression of N2 remains the same ((4.22) and (4.29)) in the two
flows, the vanishing of the pressure work (Φp = 0 sinceΔ = 0) in the acceleration-driven
flow makes the curvatures of its temperature and pressure/density profiles (4.30a,b)
different from (4.23), resulting in the negative sign of N2(0, 0).

A double-well shape of the tangential heat flux profile (qx( y)), with a local maximum at
the channel centre and two symmetrically located minima away from the centre, has been
uncovered over a range of 0 < Kn < 0.2 in the pressure-driven case which is absent in its
acceleration-driven counterpart. The genesis of this near-continuum effect (at Kn ∼ 0) has
been explained from a generalized Fourier law in § 5.3. The heat-flow rate of the tangential
heat flux (Qqx = ∫

qx(x, y) dy) is found to be negative, i.e. Qqx is directed against the
axial pressure gradient; this holds for all Kn and pressure-gradient in contrast to the
positive/negative Qqx at large/small values of Kn in its force-driven counterpart. Similar
to the length scale dependence of M(Kn, Lx), the tangential heat flow rate Qqx(Kn, Lx)
is found to saturate to constant values at Kn � 1 in finite length channels. While the
large-Kn branch of ‘M(Kn � 1) ∼ log Kn’ in the acceleration-driven flow can be exactly
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recovered from its pressure-driven counterpart M(Kn, Lx → ∞), the large Kn-branches
of Qqx(Kn � 1) in the pressure-driven and acceleration-driven flows are qualitatively
different, i.e. Qqx(Kn � 1, Lx) is negative and positive, respectively, irrespective of the
magnitude of the forcing and the channel length. The later result provides another piece of
evidence for the inequivalence between the two forcings, and seems to rule out recovering
the large-Kn branch of Qqx(Kn � 1, Lx) using the ansatz ‘Gp ↔ â’. This also puts into
question the validity of (5.5): ‘the dimensionless heat-flow rate in the pressure-driven
Poiseuille flow can(not) be used as a proxy to estimate the dimensionless mass flow rate
in the thermal transpiration flow’ (Takata & Funagane (2011) and references therein). The
related theoretical issues are recommended for further investigation.

On the whole, the present DSMC results, backed by theoretical analyses, confirmed
that, except for the mass flow rate and its dependence on the channel length, the mapping
‘Gp ↔ â’ cannot be used to predict all flow properties in the pressure-driven Poiseuille
flow of rarefied gases from those in its acceleration-driven counterpart even at the
NSF order O(Kn). We conclude that the dilatation, Δ = ∇ · u > 0, is responsible for
the observed differences between the two flows in terms of hydrodynamic fields (§ 3),
rheology (§ 4) and the flow-induced heat transfer (§ 5). Since the pressure-driven flow
is created by an external pressure gradient (ux ∝ Gp), the dilatation scales quadratically
(3.20) with the axial pressure gradient, Δ ∝ O(G2

p), and hence the observed differences
belong to the second-order effects in Gp. Considering (i) the critical Knudsen number for
the onset of rarefaction effects as Knc ≈ 10−3 (viz. figure 1) and (ii) the leading behaviour
of the first normal stress difference

N1 = O(KnS1 + Kn2) ≈ O(KnΔ+ Kn2), (6.1)

we note that the equivalence between pressure-driven and acceleration-driven flows may
be expected only at arbitrarily small values of Gp � √

Knc ≈ 0.03. The latter constraint
is not satisfied in the present simulations since the smallest pressure gradient for which we
could produce reliable DSMC data is Gp = 1/30 ≈ 0.033.

In the context of the gaseous Poiseuille flow, the dilatation can be called
‘pressure-gradient-induced’ dilatancy and this, though of the same parental origin, differs
from the well-known Reynolds dilatancy (Reynolds 1885), also called the ‘shear-induced’
dilatancy (i.e. shear-coupled volume change at constant pressure/load, Δ = ∇ · u ∝ γ̇ ),
in the context of the dense granular media (Goddard 2014; Krishnaraj & Nott 2016). In
the latter case, there is an equation of state for the granular pressure p = p(D1,D2, φ) or,
equivalently, an equation for the dilatation D1 = Ψ (D2, p, φ), called the dilatancy relation,
where D1 ≡ Δ and D2 are, respectively, the first and second invariants of the deformation
rate tensor D; expectedly, an evolution equation for the particle volume fraction φ governs
the behaviour of the granular dilatancy Δ (Goddard 2014).

On a future perspective, the protocol of generating non-isochoric steady flows, such
as the pressure-driven Poiseuille flow, can be used to study the impact of dilatation
on the thermohydrodynamics of other related flows. For example, the present work can
be extended to dilute gas–solid suspensions undergoing non-isochoric deformation –
this is likely to shed light on certain unresolved issues (Jackson 2000) regarding the
hydrodynamic fields and heat transfer in gas–solids suspensions that are encountered in
fluidized-bed reactors. The present results may also find applications in gas-based catalytic
processes that involve pressure-driven flows (Keerthi et al. 2018) through finite-length
nanochannels for which the reactions are mediated by flow-induced heat and mass transfer
processes in different regimes.
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Appendix A. Boltzmann equation and the DSMC algorithm

The Boltzmann equation (Chapman & Cowling 1970) provides a mesoscopic description
of an N-particle system in terms of the time evolution of the single particle distribution
function f (r, v, t), and is appropriate to describe the behaviour of a dilute gas as long as
two-particle and higher-order correlations are negligible. The single-particle distribution
function is defined such that f (r, v, t) dr dv is the average number of particles in an
infinitesimal volume dr at r having velocities in an infinitesimal interval dv around v.
Thus, the integration of f (r, v, t) over the entire phase space yields∫

f (r, v, t) dr dv = N, (A1)

the total number of particles in the system. The Boltzmann equation can be written as

∂f (r, v, t)
∂t

+ v · ∂f (r, v, t)
∂r

+ F
m

· ∂f (r, v, t)
∂v

=
(
∂f
∂t

)
coll
. (A2)

This evolution equation embodies the following facts. The distribution function f (r, v, t)
can change due to three processes: (i) the change in the location of particles due to local
velocity (i.e. the second term on the left-hand side); (ii) the change in the velocity of
particles due to external forcing F (i.e. the third term on the left-hand side); (iii) the change
in the velocity of particles due to interparticle (binary) collisions represented by the term
on the right-hand side of (A2). The exact form of the last term can be written down in terms
of an integral operator in the velocity and physical space, thus making the Boltzmann
equation (A2) a nonlinear integrodifferential equation.

The behaviour of gases/fluids under the continuum hypothesis is governed by the NSF
equation and its variants, that can be obtained by coarse-graining the Boltzmann equation
in the velocity space, leading to balance equations for the relevant low-order moments
of the distribution function. For example, identifying the zeroth-, first- and second-order
moments of f (r, v, t) as the mass-density (ρ), momentum density (ρu) and energy density
(e), respectively,

mn(r, t) = m
∫

f (r, v, t) dv ≡ ρ(r, t), (A3)

mn(r, t)u(r, t) = m
∫

vf (r, v, t) dv, (A4)

3
2

kBn(r, t)T(r, t) = m
2

∫
[v − u(r, t)]2 f (r, v, t) dv ≡ e(r, t), (A5)

where n is the number density, u is the hydrodynamic velocity and T is the temperature,
the celebrated NSF equations are found for the hydrodynamic fields (ρ,u, T). The NSF
equations hold for near-equilibrium flows for which the Knudsen number is small O(Kn)
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that can also be thought of as flows having small gradients in hydrodynamic fields.
However, when Kn > 0.001, the continuum hypothesis breaks down and the rarefaction
effects (such as non-zero slip velocity, temperature slips, normal stress differences,
tangential heat flux, etc.) become increasingly important with increasing Kn, see figure 1,
which depicts different flow regimes and the applicability of NSF and Boltzmann
equations.

The main difficulty in solving the Boltzmann equation lies in computing the collision
term (∂f /∂t)coll in (A2) that involves a five-fold integral in the velocity and physical
space. To overcome this difficulty, Bird (1963) introduced a stochastic method, the DSMC
method, that solves (A2) by integrating it using ‘quasi’ particles (Bird 1994; Pöschel
& Schwager 2005). Instead of tracking the trajectories of real particles as in molecular
dynamics, the DSMC maps a system containing real particles onto a set of smaller number
of quasiparticles, thus making the computation more efficient than the standard molecular
dynamics method. Initially, N ‘computational’ particles are distributed randomly in the
simulation domain which is divided into cells for processing collisions and averaging. The
change in the distribution function is implemented in two stages due to (i) streaming and
(ii) collision of quasiparticles. The streaming stage incorporates the change in the velocity
distribution function due to (i) local particle motion and (ii) external forcing; during this
stage, the position vector and velocity vector of each particle are updated as

xi → xi + vi	t + 1
2 a	t2, (A6)

vi → vi + a	t, (A7)

where a = F/m is the external acceleration. Note that this updating is done only for the
particles which are unaffected by the boundary conditions. Once the particles are advected
and the boundary conditions (see (A13a,b) and (A14)) are applied, they are sorted out into
their respective collision cells based on their positions.

During the collision stage, the number of collisions within a cell of volume Vc during a
given time step 	t is taken as (Bird 1994)

Nc = 2πR2N2
s 〈|v12|〉	tNe

Vc
, (A8)

where Ns is the number of simulated particles in the cell, Ne is the ratio of real particles
to simulated particles and v12 = v1 − v2 is the relative velocity between two particles. A
detailed derivation of the collision frequency and hence, the number of collisions in a time
step, Nc can be found in Pöschel & Schwager (2005). The DSMC method processes this
number of collisions by randomly choosing Np pairs of particles where

Np = 8πR2N2
s v

max
12 	tNe

Vc
, (A9)

and selecting only certain pairs based on an acceptance–rejection scheme such that the
number of pairs chosen is equal to Nc. A collision between two particles is accepted if

Θ(k · v12)|k · v12| > rand[0, 1)vmax
12 , (A10)

where Θ is the Heaviside function and k is an equidistributed random vector over a unit
sphere. The maximum relative velocity vmax

12 is initially set to be three times the mean
probable velocity (Gupta & Alam 2017) and is dynamically updated to be the relative
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velocity of a chosen pair that exceeds the defined maximum relative velocity. Once a pair
of particles has been accepted, their post collision velocities are updated as

vi → vi − [(vi − vj) · kij]kij, (A11)

vj → vj + [(vi − vj) · kij]kij, (A12)

where kij is the unit vector along the line joining the centres of the colliding spheres and
can be taken as the same vector k that was used in the acceptance rejection scheme.

The lateral walls at y = ±Ly/2 have been modelled as fully ‘diffuse’ thermal walls
(Bird 1994; Pöschel & Schwager 2005; Gupta & Alam 2018) for both pressure-driven
and acceleration-driven flows. For a particle colliding with a fully diffuse thermal wall
(maintained at a fixed temperature Tw), its x and z components of velocity are forgotten
after a collision and are replaced by

vt+	t
x =

√
kBTw

m
vG + gtpost and vt+	t

z =
√

kBTw

m
vG, (A13a,b)

where vG is the velocity sampled from a Gaussian distribution with zero mean and a
variance corresponding to the temperature of the wall (Tw = 1). On the other hand, the
y-component of the postcollision velocity of a colliding particle with wall is changed
according to the following rule:

vt+	t
y =

√
2kBTw

m
vBG, (A14)

where vBG represents a biased Gaussian distribution. Other technical details of the DSMC
method can be found in Gupta & Alam (2017).

Appendix B. Local Knudsen, Mach and Reynolds Numbers

Since the density field varies across the flow domain in the pressure-driven Poiseuille flow,
the global/average Knudsen number (2.7) is different from its local value. We define the
‘local’ Knudsen number in terms of the local density ρ(x, y) as

Kn(x, y) = m√
2πd2ρ(x, y)Ly

≡ Knlocal (B1)

such that
Kn ≡ 〈Kn(x, y)〉x,y ≡ Knglobal (B2)

represents the average/global value of the Knudsen number. The corresponding ‘local’
Mach and Reynolds numbers are defined as

Ma(x, y) = ux(x, y)
cs(x, y)

, and Re(x, y) = Ma(x, y)
Kn(x, y)

√
γπ

2
, (B3a,b)

where cs is the sound speed given by

cs(x, y) =
√
γ
∂p
∂ρ

=
√
γ

kBT(x, y)
m

, (B4)

with γ = 5/3 for a monatomic gas.
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Figure 26. Contour plots of (a,b) Kn(x, y), (c,d) Ma(x, y) and (e, f ) Re(x, y) for global/average
Knav = 〈Kn〉 = 0.05 (a,c,e) and Knav = 〈Kn〉 = 0.5 (b,d, f ), with δp/p0 = 1; other parameters as in figure 3.

The contour plots of Kn(x, y), Ma(x, y) and Re(x, y) are displayed in figure 26(a–f ) –
figure 26(a,c,e) and figure 26(b,d, f ) represent the data at ‘global’ Knudsen number (B2) of
Knav = 〈Kn〉 = 0.05 and 0.5, respectively; the pressure-difference is set to δp/p0 = 1.0,
with the channel aspect-ratio being AR = Lx/Ly = 3. It is seen that there exist significant
variations of Kn(x, y), Ma(x, y) and Re(x, y) across the flow domain. The analogous plots
for a lower pressure-difference of δp/p0 = 0.1 are displayed in figure 27(a–f ). Comparing
figures 26 and 27, we find that the magnitudes of Re and Ma decrease by an order of
magnitude when the pressure difference is lowered from 1 to 0.1; also, the streamwise
variations are relatively lesser at δp/p0 = 0.1. For both cases, the flow belongs to the
low-speed, subsonic regime.

Table 4 shows a comparison between the maximum values of Mach and Reynolds
numbers occurring at the centre of the channel (x = 0 and y = 0) for the pressure-driven
flow and the corresponding maximum Ma and Re occurring in its acceleration-driven
counterpart with the dimensionless acceleration (2.10) being set to â = 0.1. We conclude
that similar values of forcing terms (δp/p0 = 1 and â = 0.1) produce flows with
comparable Re and Ma in magnitude.

Appendix C. Burnett-order stress tensor and the Poiseuille flows

Here we write down the constitutive relations for the stress tensor (§ C.1), accurate up-to
the Burnett order O(Kn2) (Burnett 1935; Kogan 1969; Chapman & Cowling 1970; Sela
& Goldhirsch 1998), and derive expressions for (i) the shear stress and viscosity (§ C.2)
and (ii) two normal stress differences (§ C.3) that hold for both pressure-driven and
acceleration-driven Poiseuille flows.
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Figure 27. Same as figure 26, but for δp/p0 = 0.1.

Force-driven Pressure-driven Pressure-driven

â = 0.1 δp/p0 = 1 δp/p0 = 0.1

Kn Ma(0) Re(0) Ma(0, 0) Re(0, 0) Ma(0, 0) Re(0, 0) p0

0.05 0.54 17.54 0.56 21.92 0.099 3.22 1.21 × 10−3

0.5 0.20 0.62 0.28 0.99 0.034 0.11 1.21 × 10−4

5 0.19 0.064 0.25 0.088 0.030 0.01 1.21 × 10−5

50 0.24 0.0078 0.25 0.0089 0.030 0.001 1.21 × 10−6

Table 4. Comparison of the maximum values of Mach number and Reynolds number between the
acceleration-driven (â = 0.1) and pressure-driven (δp/p0 = 1 and 0.1, with Lx/Ly = 3) Poiseuille flows.

C.1. Stress tensor at Burnett order
For a monatomic gas, the Burnett-order expression for the stress tensor (chapter 7 in
Chapman & Cowling (1970); equation (46) in Sela & Goldhirsch (1998) with ε = 0) is
given by

Pij = pδij − 2
√

2ω0ρlf T1/2 ∂jui + 2ω1ρl2f ∂kuk ∂jui

− 2ω2ρl2f
(

3∂i
(
n−1∂jp

) + ∂kui ∂juk + 2 ∂kui∂juk

)

+ 2ω3ρl2f ∂ijT + 2ω4
l2f
T
∂ip∂jT + 2ω5

ρl2f
T
∂iT∂jT + 2ω6ρl2f ∂kui ∂juk, (C1)
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where the numerical constants ωi are (Sela & Goldhirsch 1998)

ω0 ≈ 0.5627, ω1 ≈ 1.2845, ω2 ≈ 0.6422, ω3 ≈ 0.7656,
ω4 ≈ 0.2157, ω5 ≈ 0.0693, ω6 ≈ 2.3510,

}
(C2)

and the mean free path of the gas is defined as

lf = 1√
2πnd2

. (C3)

In (C1), an over-bar on a tensorial quantity denotes its deviatoric part, and we have adopted
the following index notation for partial derivatives:

∂i = ∂

∂xi
, ∂ij = ∂2

∂xi∂xj
. (C4a,b)

Equation (C1) can be rewritten in terms of the velocity gradient tensor L = ∇u, its
symmetric part D = sym(L), the deviatoric deformation S = dev(D) and the dilatation
Δ ≡ ∂kuk = trace(D) = trace(L) as

Pij = pδij − 2ρlf
(√

2ω0T1/2 − ω1lfΔ
)

Sji − 2(3ω2 − ω3)ρl2f

(
∂ijT − 1

3
δij∂kkT

)

− 6ω2l2f T
(
∂ijρ − 1

3
δij∂kkρ − ρ−1

(
∂in∂jρ − 1

3
δij (∂kρ)

2
))

− 2l2f (3ω2 − ω4)

(
1
2

(
∂iT∂jρ + ∂jT∂iρ

) − 1
3
δij∂kT∂kρ

)

+ 2(ω4 + ω5)
ρl2f
T

(
∂iT∂jT − 1

3
δij (∂kT)2

)
− 2ω2ρl2f

[
1
2

(
LikLkj + LjkLki

)
−1

3
δijLmkLkm +

(
DikLkj + DjkLki − 2Δ

3
Dij

)
− 2

3
δij

(
DmkLkm − Δ2

3

)]

+ 2ω6ρl2f

[(
DikDkj − 2Δ

3
Dij + Δ2

9
δij

)
− 1

3
δij

(
DmkDkm − Δ2

3

)]
. (C5)

C.2. Shear stress and shear viscosity in Poiseuille flows
The expression for the xy-component of the Burnett-order shear stress (C5) is

Pxy(x, y, z) = −2ρlf
(√

2ω0T1/2 − ω1lfΔ
)

Sxy − 2(3ω2 − ω3)ρl2f ∂xyT

− 6ω2l2f T
(
∂xyρ − ρ−1 ∂xρ∂yρ

)
− l2f (3ω2 − ω4)

(
∂xT∂yρ + ∂yT∂xρ

)
− 2ω2ρl2f

(
1
2

(
LxkLky + LykLkx

) +
(

DxkLky + DykLkx − 2Δ
3

Dxy

))

+ 2(ω4 + ω5)
ρl2f
T

(
∂xT∂yT

) + 2ω6ρl2f

(
DxkDky − 2Δ

3
Dxy

)
, (C6)
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Non-isochoric effects in pressure-driven Poiseuille flow

that holds for the pressure-driven Poiseuille flow for which the flow is homogeneous along
the z-direction and the following relations hold:

∂/∂z(.) = 0, Lzk = 0 = Lkz = Dkz = Dzk,

Dxy = Dyx = 1
2
(∂yux + ∂xuy), Dxx = ∂xux = Lxx, Dyy = ∂yuy = Lyy,

Lxy = ∂yux, Lyx = ∂xuy, L12 = Lxy − Lyx,

Δ = ∂xux + ∂yuy = Dxx + Dyy = Lxx + Lyy,

S1 = Sxx − Syy = Dxx − Dyy = D1 = Lxx − Lyy = L1,

S2 = Syy − Szz = Dyy − Dzz = D2 = Lyy − Lzz = L2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C7)

Let us evaluate the shear stress (C6) at the midchannel (x, y) = (0, 0) as

Pxy(0, 0) = −2ρlf
(√

2ω0T1/2 − ω1lfΔ
)

Sxy − 2(3ω2 − ω3)ρl2f ∂xyT − 6ω2l2f T∂xyρ

− 2ω2ρl2f

(
1
2

(
Lxy + Lyx

)
Δ+ DxxLxy + DyyLyx + Δ

3
Dxy

)
+ 2

3
ω6ρl2f DxyΔ,

≈ −2ρlf
(√

2ω0T1/2 − (ω1 + ω6/3 − ω2/3) lfΔ
)

Sxy − 2ω2ρl2f

(
3
2

SxyΔ

)
,

= −2ρlf
(√

2ω0T1/2 − δ1lfΔ
)

Sxy, (C8)

with

δ1 = ω1 + 1
3ω6 + 11

6 ω2 ≈ 3.2455. (C9)

The leading expression for the shear-viscosity, μ(0, 0) = −P(0, 0)/2Sxy, in the
pressure-driven Poiseuille flow simplifies to

μ(0, 0) = ρlf
(√

2ω0T1/2 − δ1lfΔ
)

= μ0T1/2
(

1 − δ1lfΔ√
2ω0T1/2

)
≡ μNSFF0(T,Δ),

(C10)
where

μNSF = μ0
√

T, with μ0 =
√

2ω0ρlf ≈ 0.7957ρlf , (C11)

is the viscosity at the NSF order and

F0(T,Δ) = 1 − cμKn
Δ̃√
T̃
, with cμ = ω1 + ω6/3 + 11ω2/6√

2ω0
≈ 4, (C12)

is its correction due to dilatation. Note that T̃ = T/T0 is the dimensionless temperature
and

Δ̃ = Δ/

(
u0

Ly

)
=

(
∂ux

∂x
+ ∂uy

∂y

)(
Ly

u0

)
(C13)

is the dimensionless dilatation, with u0 = √
2kBT0/m, kB = 1/2 and T0 = 1 in the present

simulations. In the main text and here onwards, we omit the ‘tilde’ to denote the
dimensionless dilatation by Δ.
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S. Ravichandir and M. Alam

On the other hand, for the acceleration-driven Poiseuille flow, it is straightforward to
verify from (C6) that the expression for the Burnett-order shear stress is

Pxy = −2
√

2ω0ρlf T1/2Sxy (C14)

which is identical to that at the NSF order. Therefore, for the acceleration-driven Poiseuille
flow, the shear viscosity is

μ =
√

2ω0ρlf T1/2 ≡ μ0T1/2, with μ0 =
√

2ω0ρlf ≈ 0.7957ρlf , (C15)

that holds up to the Burnett-order O(Kn2). For viscometric flows such as in the plane shear
flow, it is known (Chapman & Cowling 1970; Saha & Alam 2020) that

μNSF = μBurnett, (C16)

for a monatomic gas, and the non-zero contribution (beyond NSF order) to the shear
viscosity of gases appears at the super-Burnett order and beyond.

C.3. First and second normal stress differences in Poiseuille flows
For general flows with arbitrary deformation L, the scaled first normal stress difference is

N1(x, y, z) def= Pxx − Pyy

p

= −2
lf
T

(√
2ω0T1/2 − ω1lfΔ

) (
Sxx − Syy

) − 2 (3ω2 − ω3)
l2f
T

(
∂xxT − ∂yyT

)
− 6ω2

l2f
ρ

(
∂xxρ − ∂yyρ − ρ−1

(
(∂xρ)

2 − (
∂yρ

)2
))

− 2 (3ω2 − ω4)
l2f
p

(
∂xT∂xρ − ∂yT∂yρ

) + 2(ω4 + ω5)
l2f
T2

(
(∂xT)2 − (

∂yT
)2
)

− 2ω2
l2f
T

(
LxkLkx − LykLky + 2

(
DxkLkx − DykLky

) − 2Δ
3

(
Dxx − Dyy

))

+ 2ω6
l2f
T

[
DxkDkx − DykDky − 2Δ

3

(
Dxx − Dyy

)]
, (C17)

and the scaled second normal stress difference is

N2(x, y, z) def= Pyy − Pzz

p

= −2
lf
T

(√
2ω0T1/2 − ω1lfΔ

) (
Syy − Szz

) − 2 (3ω2 − ω3)
l2f
T

(
∂yyT − ∂zzT

)
− 6ω2

l2f
ρ

(
∂yyρ − ∂zzρ − ρ−1

(
(∂yρ)

2 − (∂zρ)
2
))

− 2 (3ω2 − ω4)
l2f
p

(
∂yT∂yρ − ∂zT∂zρ

) + 2(ω4 + ω5)
l2f
T2

(
(∂yT)2 − (∂zT)2

)
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Non-isochoric effects in pressure-driven Poiseuille flow

− 2ω2
l2f
T

(
LykLky − LzkLkz + 2

(
DykLky − DzkLkz

) − 2Δ
3

(
Dyy − Dzz

))

+ 2ω6
l2f
T

[
DykDky − DzkDkz − 2Δ

3

(
Dyy − Dzz

)]
. (C18)

Note that

−2
lf
T

(√
2ω0T1/2 − ω1lfΔ

)
= −2μ0

√
T

p

(
1 − ω1√

2ω0
Kn

Δ√
T

)
= −2μ(T,Δ)

p
, (C19)

where

μ(T,Δ) = μNSF(Δ), F(Δ) = 1 − cμKn
Δ√

T
and μNS = μ0

√
T, (C20a–c)

with cμ = ω1/
√

2ω0 ≈ 1.6144.
For the pressure-driven case, inserting (C7) into (C17) and (C18), the expressions for

the first and second normal stress differences at the middle (x, y) = (0, 0) of the channel
are considerably simplified:

N1(0, 0) = c1
l2f
ρ

(
∂yyρ − ∂xxρ − ρ−1(∂xρ)

2
)

+ c2
l2f
T

(
∂yyT − ∂xxT

) − 2μ(T,Δ)
p

S1

− 2 (3ω2 − ω4)
l2f
p
(∂xT∂xρ)+ 2(ω4 + ω5)

l2f
T2 (∂xT)2 − 2

3
(4ω2 − ω6)

l2f
T
S1Δ

≈ c1Kn2p−1∂yyp − (c1 − c2)Kn2T−1 ∂yyT − 2μ(T,Δ)
p

S1

− c3Kn2p−1 ∂xT∂xρ + c4Kn2T−2(∂xT)2 − c5Kn2T−1S1Δ, (C21)

≈ −2μ(T,Δ)
p

S1 + c1Kn2p−1∂yyp − (c1 − c2)Kn2T−1∂yyT, (C22)

N2(0, 0) = −Kn2
(

c1p−1∂yyp + (c2 − c1)T−1∂yyT
)

− 2μ(T,Δ)
p

S2

− 2ω2
l2f
T

(
3L2

yy − 2
3
S2Δ

)
+ 2ω6

l2f
T

[
D2

yy − 2
3
S2Δ

]

= −Kn2
(

c1p−1∂yyp + (c2 − c1)T−1∂yyT
)

− 2μ(T,Δ)
p

S2

− Kn2T−1 (c6Δ− c7S2)S2, (C23)
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≈ (c1 − c2)Kn2T−1∂yyT − c1Kn2p−1∂yyp − 2μ(T,Δ)
p

S2. (C24)

In the above the density derivatives are replaced by the pressure derivatives via the
equation of state p = ρT and

ρ−1∂yyρ = p−1∂yyp − T−1∂yyT, aty = 0. (C25)

The numerical values of ci are

c1 = 6ω2 = 3.8532, c2 = 2 (3ω2 − ω3) = 2.322, c3 = 2(2ω2 − ω4) ≈ 2.1374,

c4 = 2(ω4 + ω5) = 0.57, c5 = 2
3 (4ω2 − ω6) ≈ 0.1452,

c6 = 4
3 (ω6 − ω2) ≈ 2.2784, c7 = 2 (ω6 − 3ω2) ≈ 0.8488.

⎫⎪⎪⎬
⎪⎪⎭

(C26)

From the present simulation data on the pressure-driven Poiseuille flow with
Kn = 0.05, AR = 3 and δp/p0 = 1.0, the following estimates hold at the channel centre
(x, y) = (0, 0):

∂yyT ≈ 0.75, ∂yyp ≈ 0.07, ∂yyρ ≈ −0.90,

∂xxT ≈ −0.025, ∂xxp ≈ −0.11, ∂xxρ ≈ −0.09,

∂xT ≈ −0.04, ∂xp ≈ −0.27, ∂xρ ≈ −0.23,

⎫⎪⎬
⎪⎭ (figures 10 and 12) (C27)

Dxy(0, 0) = 1
2
∂uy

∂x
(0, 0) = 0 = Dyx = Sxy = Syx = Lxy = Lyx, lim

γ̇→0

Lxy

Dxy
= 2,

Dxx(0, 0) = ∂ux

∂x
(0, 0) = −ρux

ρ2

∂ρ

∂x

∣∣∣∣
(0,0)

≈ 0.096 ∼ O(10−1), (figures 5c, 10e and 12b)

Dyy(0, 0) = Lyy(0, 0) = ∂uy

∂y
(0, 0) ∼ O(5 × 10−3), (figure 6c)

S1(0, 0) = (
Dxx − Dyy

)
(0, 0) ≈ Dxx(0, 0) ∼ O(10−1)

S2(0, 0) = Dyy(0, 0) ∼ O(5 × 10−3)

	(0, 0) = (
Lxx + Lyy

)
(0, 0) ≈ Lxx(0, 0) ∼ O(10−1)

Dxx

Dyy

∣∣∣∣
(0,0)

≈ 20,
Δ

Dyy

∣∣∣∣
(0,0)

≈ 21,
μ

p

∣∣∣∣
(0,0)

≈ 0.05. (figures 12a and 16c)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C28)
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Non-isochoric effects in pressure-driven Poiseuille flow

Using the above values, the different terms in (C22)–(C24), evaluated at the midchannel
(0, 0) for Kn = 0.05, are approximated as

− c3Kn2p−1∂xT∂xρ ≈ −4.3 × 10−5, c4Kn2T−2(∂xT)2 ≈ +2.6 × 10−6,

− c5Kn2T−1S1Δ ≈ −3.88 × 10−6

c1Kn2p−1∂yyp ≈ +6 × 10−4, −(c1 − c2)Kn2T−1 ∂yyT ≈ −3 × 10−3

c1Kn2p−1∂yyp − (c1 − c2)Kn2T−1 ∂yyT ≈ −2.4 × 10−3

−2μ
p
(1 − 1.6141KnΔ)S1 ≈ −10−2

⎫⎬
⎭ ⇒ N1(0, 0) < 0

− 2μ
p
(1 − 1.6141KnΔ) (S1,S2) |(0,0) ≈ − (10−2, 5 × 10−4)

− Kn2T−1 (c3Δ− c4S2)S2|(0,0) ≈ −0.2383Kn2S2 ≈ −3 × 10−6

− c1Kn2p−1∂yyp ≈ −9 × 10−4

−c1Kn2p−1∂yyp − 2μ
p
(1 − 1.6141KnΔ)S2 ≈ −1.4 × 10−3

(c1 − c2)Kn2T−1∂yyT ≈ + 2 × 10−3

⎫⎬
⎭ ⇒ N2(0, 0) > 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C29)

We have verified from our simulation data that the above estimates also hold at Kn = 0.5.
In summary, the Burnett-order theory predicts that

N1(0, 0) < 0 and N2(0, 0) > 0, (C30a,b)

for small Kn in the pressure-driven gaseous Poiseuille flow through a finite-length
(Lx < ∞) channel.

For the acceleration-driven Poiseuille flow, we have

∂/∂x(.) = 0 = ∂/∂z(.), Δ = 0 = Lzk = Lkz = Dkz = Dzk = Dii,

Dxy = Dyx = 1
2∂yux, Lxy = ∂yux, Lyx = 0.

}
(C31)

Hence the expressions for the first and second normal stress differences are

N1( y) = 2 (3ω2 − ω3)
l2f
T
∂yyT + 6ω2

l2f
ρ

(
∂yyρ − ρ−1 (∂yρ

)2
)

+ 2 (3ω2 − ω4)
l2f
p
∂yT∂yρ − 2(ω4 + ω5)

l2f
T2

(
∂yT

)2

+ 2ω2
l2f
T

(
∂ux

∂y

)2

, (C32)

N2( y) = −2 (3ω2 − ω3)
l2f
T

(
∂yyT

) − 6ω2
l2f
ρ

(
∂yyρ − ρ−1 (∂yρ

)2
)

− 2 (3ω2 − ω4)
l2f
p
∂yT∂yρ + 2(ω4 + ω5)

l2f
T2 (∂yT)2
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− 1
2
(4ω2 − ω6)

l2f
T

(
∂ux

∂y

)2

. (C33)

At the midchannel y = 0 (for which ∂/∂y(ux, ρ, T) = 0), these expressions simplify to

N1(0) = 2 (3ω2 − ω3)
l2f
T
∂yyT + 6ω2

l2f
ρ
∂yyρ

= −1.5312
l2f
T
∂yyT + 3.853

l2f
p
∂yyp (C34)

N2(0) = −2 (3ω2 − ω3)
l2f
T
∂yyT − 6ω2

l2f
ρ
∂yyρ = −N1( y). (C35)

From the simulation data in figures 12(d) and 12( f ), it is clear that

∂yyp > ∂yyT > 0, (C36)

and therefore N1(0) > 0 and N2(0) < 0 at the middle of the channel (see figure 20c,d) in
the acceleration-driven Poiseuille flow.
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