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Abstract

Researchers have taken great interest in the assessment of text readability. This study expands
on this research by developing readability models that predict the processing effort involved
during first language (L1) and second language (L2) text reading. Employing natural language
processing tools, the study focused on assessing complex linguistic features of texts, and these
features were used to explain the variance in processing effort, as evidenced by eye movement
data for L1 or L2 readers of English that were extracted from an open eye-tracking corpus.
Results indicated that regression models using the indices of complex linguistic features pro-
vided better performance in predicting processing effort for both L1 and L2 reading than the
models using simple linguistic features (word and sentence length). Furthermore, many of the
predictive variables were lexical features for both L1 and L2 reading, emphasizing the import-
ance of decoding for fluent reading regardless of the language used.

Introduction

Matching text difficulty to the abilities of language learners helps them better understand the
text and improve their reading skills over time (McNamara, Graesser, McCarthy & Cai, 2014;
Mesmer, 2008). Therefore, assessing how easily written texts can be read and understood has
been an important issue among researchers, educators, and publishers, leading to the develop-
ment of a large number of formulas to assess text readability (particularly in the English
language). Although most readability formulas were developed for first language (L1) users,
some of them have also been used for second language (L2) users (Greenfield, 1999, 2004).

However, researchers have noted that traditional readability formulas only consider surface
linguistic features such as word and sentence length, resulting in weak construct and theoretical
validity (e.g., Bertram & Newman, 1981; Crossley, Greenfield & McNamara, 2008). In addition,
previous readability studies are limited in that most have focused solely on comprehension and
have not considered processing, which is an important aspect of readability (Crossley, Skalicky &
Dascalu, 2019b). Moreover, they have been conducted in either the L1 or L2 reading context,
which makes it difficult to deepen our understanding of the nature of bilingual reading.

To address these issues, the current study aims to build readability models that predict how
much cognitive effort is required to process text (i.e., processing effort) in L1 and L2 reading,
respectively. This study was based on two previous studies: Crossley et al. (2019b) and
Nahatame (2021). Specifically, it assessed an extensive range of text linguistic features by employ-
ing advanced natural language processing (NLP). tools (as in Crossley et al., 2019b), which were
then used to explain the variance in the processing effort as evidenced by eye movements (as in
Nahatame, 2021) during L1 and L2 reading. The findings will not only offer insights into the
readability assessment of L1 and L2 texts but also shed light on the common or different linguistic
features that are closely related to the cognitive processes of L1 and L2 reading.

Background

The background of the current study is two-fold: (a) the theoretical account for the cognitive
processes of reading in relation to text linguistic features and (b) a review of previous studies
on text readability that motivated the current study.

Cognitive processes of reading and text linguistic features

Multiple cognitive processes during reading
Reading comprises multiple cognitive processes, including word recognition, syntactic parsing,
meaning encoding in the form of propositions, text-model formation, situation-model build-
ing, and inferencing (Grabe, 2009). Lower-level processing, such as word recognition, has the
potential to be strongly automatized; therefore, automatizing such processing is crucial for
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fluent reading. On the other hand, higher-level processing, such
as inferencing, is more conscious and is required for building
coherent text comprehension because it is often activated beyond
the sentence level. Similarly, Graesser and McNamara (2011)
identified the six different levels: words, syntax, the explicit
textbase, the referential situation model, the discourse genre and
rhetorical structure, and the pragmatic communication level
(see also McNamara et al., 2014). They suggested the importance
of considering these levels when assessing text difficulty, and
this model has been the theoretical foundation for some text
analysis tools mentioned later (see the Assessing text readability
section).

Although the cognitive processes described above are common
regardless of the languages used for reading (i.e., L1 or L2), it is
well known that L2 reading is more cognitively effortful than L1
reading (Dirix, Vander Beken, De Bruyne, Brysbaert & Duyck,
2019). One of the theoretical accounts for this is the resource
hypothesis, which suggests that L2 processing demands greater
cognitive load on working memory (Sandoval, Gollan, Ferreira
& Salmon, 2010). In L2 reading, cognitive resources must be heav-
ily allocated for lower-level processing, and therefore, few remain
for higher-level processing (Horiba, 1996, 2000; Morishima,
2013). Another instance is the weaker links hypothesis (Gollan,
Montoya, Cera & Sandoval, 2008), which proposes that for bilin-
guals, the frequency of use of lexical items is divided between the
two languages, resulting in L2 word representations that are as
weak and less detailed as low-frequency L1 words. Eye-tracking
studies provided empirical evidence that L2 reading is less effi-
cient than L1 reading, showing longer reading times, shorter sac-
cades, and less frequent word skipping for L2 reading than for L1
(Cop, Drieghe & Duyck, 2015a; Dirix et al., 2019; Kuperman,
Siegelman, Schroeder, Alexeeva, Acartürk, Amenta & Usual,
2022; Nisbet, Bertram, Erlinghagen, Pieczykolan & Kuperman,
2021).

However, it is worth noting that studies have also suggested the
factors underlying the similarity of L1 and L2 reading behavior.
Kuperman et al. (2022) found that the variance in L2 reading flu-
ency, as assessed by eye movement data, is explained by L1 read-
ing fluency to the greatest extent. Nisbet et al. (2021) statistically
demonstrated that when L2 English readers had reading compo-
nent skill levels similar to those of L1 readers (i.e., spelling skills,
vocabulary size, and exposure to print) and their L1 was linguis-
tically close to English, they showed similar eye-tracking reading
times as the L1 English readers.

Word recognition
Because the current study considered the first four of the six levels
proposed by Graesser and McNamara’s (2011) model in the text
analysis (see the Method section for the rationale for this deci-
sion), this and the following sections provide an in-depth review
of the cognitive processes activated at these levels (i.e., word, sen-
tence, textbase, and situation model) in relation to text linguistic
features.

The most fundamental process of reading is word recognition
(or, more specifically, decoding). Efficient word recognition is
essential for fluent and successful reading comprehension (Jeon
& Yamashita, 2014; Koda, 2005; Yamashita, 2013). It is well
attested that the frequency of the occurrence of a word in a lan-
guage is a robust predictor of word recognition; for instance,
highly frequent words are fixated for a shorter period of time
than less frequent words in both L1 and L2 reading (Cop,
Keuleers, Drieghe & Duyck, 2015b; Whitford & Titone, 2017).

This is in line with E-Z reader, an influential model of eye-
movement control (Reichle, Rayner & Pollatsek, 1999). The
model assumes the large effects of linguistic features such as
word frequency, length, and predictability on the early stage of
lexical processing.

Previous studies have also investigated the effects of word
properties beyond frequency, including concreteness, familiarity,
age of acquisition (AoA), word neighborhood, word association,
and contextual distinctiveness. In general, research has indicated
that words are processed more quickly when they are more famil-
iar, more concrete, and acquired earlier (Chaffin, Morris & Seely,
2001; Dirix & Duyck, 2017; Juhasz & Rayner, 2003), when they
have more phonological and orthographic neighbors (Yap &
Balota, 2009; Yarkoni, Balota & Yap, 2008), and when they are
associated with more words (Buchanan, Westbury & Burgess,
2001) and used with a broader range of context words
(McDonald & Shillcock, 2001).

Several of these factors have also been found to influence L2
word reading. Kim, Crossley, and Skalicky (2018) showed that
L2 words are read faster when they are more frequent, less con-
crete, and orthographically indistinct. Other studies have indi-
cated that word frequency (Cop 2015b) and L1/L2 AoA (Dirix
& Duyck, 2017) influence eye movement patterns during L2
word reading. In addition, these features (i.e., orthographic dis-
tinctiveness, frequency, and AoA) indicated greater effects for
L2 and lower-proficiency readers than for L1 and higher-
proficiency readers.

In addition to single-word processing, the processing of multi-
word units has received a fair amount of attention in recent stud-
ies. Research has provided converging evidence that frequent
sequences of multi words (i.e., formulaic language) have a pro-
cessing advantage over less frequent sequences of words (i.e., non-
formulaic language) for L1 speakers (e.g., Siyanova-Chanturia,
Conklin & Schmitt, 2011; Tabossi, Fanari & Wolf, 2009).
Evidence also indicates the effects of phrasal frequency on the
processing of formulaic sequences (Li, Warrington, Pagán,
Paterson & Wang, 2021; Sonbul, 2015). Although the findings
are mixed for L2 speakers, some studies suggest that learners
with higher L2 proficiency are more likely to enjoy the advantage
provided by formulaic language (e.g., Conklin & Schmitt, 2008;
Underwood, Schmitt & Galpin, 2004).

Syntactic parsing
Syntactic parsing also plays a role in successful reading compre-
hension, such that syntactic structures and complexity have an
impact on text processing. For instance, object-relative center-
embedded sentences are found to induce longer reading times
and more regressive eye movements than subject-relative center-
embedded sentences (Holmes & O’Regan, 1981).

Syntactic processing patterns can differ between L1 and L2
speakers, which is known as the shallow structure hypothesis
(Clahsen & Felser, 2006). The hypothesis posits that L1 speakers
make use of both structural processing (computation of syntactic
structure) and shallow processing (dependence on pragmatic and
lexical information), whereas L2 learners tend to rely more on the
latter. As a result, L2 readers can be less sensitive to syntactic
structures than L1 readers during text processing (Marinis,
Roberts, Felser & Clahsen, 2005).

Discourse processing
While word recognition and syntactic parsing are conducted,
information extracted from the words and sentences constructs

Bilingualism: Language and Cognition 725

https://doi.org/10.1017/S136672892200089X Published online by Cambridge University Press

https://doi.org/10.1017/S136672892200089X


meaning units called semantic propositions (Grabe, 2009). These
units are connected to each other based on their semantic overlap
(Kintsch, 1998), which helps readers construct larger patterns of
meaning for discourse comprehension (Nahatame, 2018, 2020)
such as the explicit textbase and referential situation model
(McNamara et al., 2014).

The coherence in discourse comprehension can be facilitated
by text cohesion. This indicates the presence of text elements
that make the relationship between sentences or ideas explicit.
If the text was rewritten to be more cohesive by replacing ambigu-
ous pronouns with nouns, adding connectives, and rearranging
the order of text information, it generally improves students’
text comprehension (Britton & Gülgöz, 1991; Ozuru, Dempsey
& McNamara, 2009). Although discourse processing is often lim-
ited in L2 reading (Horiba, 1996, 2000; Morishima, 2013), some
studies have indicated that cohesion features such as the use of
connectives and sentence relatedness affect eye movements during
L2 reading (e.g., Nahatame, 2022; Zufferey, Mak, Degand &
Sanders, 2015).

In summary, empirical evidence has indicated that various text
linguistic features affect multiple cognitive processing during L1
and L2 reading (as often assessed by eye movements). However,
most studies have focused on individual linguistic features (e.g.,
word frequency); the few that focused on multiple linguistic fea-
tures only examined features at one level (e.g., lexical features),
and not at multiple levels (e.g., lexical, syntactic, and cohesion fea-
tures). It is possible that linguistic features at a particular level
control the effect of other levels and that some levels are more
influential than others. Given this, it is worth examining the
effects of text linguistic features at multiple levels on bilingual
reading processing within a single study.

Assessing text readability

According to Richards and Schmidt (2013), text readability is
defined as “how easily written materials can be read and under-
stood” (p. 482). Dale and Chall (1949), a classic readability
study, include in their definition “the extent to which readers
understand the text, read it at an optimal speed, and find it inter-
esting” (p. 23). Importantly, these definitions encompass a notion
of text processing (i.e., how quickly and comfortably a text can be
read) in addition to comprehension.

Researchers have proposed numerous formulas to assess
English text readability, most of which are traditional formulas
based on simple linguistic features (e.g., Dale & Chall, 1949;
Flesch, 1948; Kincaid, Fishburne, Rogers & Chissom, 1975).
Others are newer formulas or models that employ advanced com-
putational techniques to assess more complex linguistic features
(e.g., Crossley et al., 2008, 2019b; De Clercq & Hoste, 2016;
Feng, Jansche, Huenerfauth & Elhadad, 2010; Pitler & Nenkova,
2008).

Traditional methods for assessing readability formulas
Among the traditional formulas, the most widely adopted mea-
sures are the Flesch formulas: Flesch Reading Ease (Flesch,
1948) and Flesch-Kincaid Grade Level (Kincaid et al., 1975).
These formulas rely on two simple linguistic features: word length
(the number of syllables) and sentence length (the number of
words). Research has reported high correlations between text
difficulty as assessed by these formulas and comprehension as
assessed by reading tests (typically cloze tests) for both L1

(Fry, 1989; Hamsik, 1984) and L2 reading (Greenfield, 1999; cf.
Brown, 1998).1

For simple algorithms, these traditional formulas have been
commonly used for reading materials and standardized reading
tests. However, they have also received criticism for their weak
construct and theoretical validity (e.g., Bertram & Newman,
1981; Crossley et al., 2008). The traditional formulas rely on
only two levels of linguistic features (i.e., word length and sen-
tence length), and these features are only weak proxies of word
recognition and syntactic parsing. In addition, traditional formu-
las do not consider text cohesion, which plays a role in discourse
processing. To address these issues, recent studies have attempted
to develop new formulas that are more theoretically valid and per-
form better than traditional ones by employing more sophisti-
cated and innovative linguistic techniques.

Using complex linguistic features for readability assessment
Studies in computer science have aimed to improve readability
prediction by assessing more complex, fine-grained linguistic fea-
tures using NLP techniques. These studies showed that more
complex features, such as word probability, syntactic structures
based on parse trees, and discourse elements based on semantic
overlap, are helpful for the prediction of readability (e.g., De
Clercq & Hoste, 2016; Feng et al., 2010; Pitler & Nenkova, 2008;
see also review from Collins-Thompson, 2014). Nevertheless, in
many studies, the most reliable features remain lexical in nature
(Pitler & Nenkova, 2008; Kate, Luo, Patwardhan, Franz, Florian,
Mooney, Roukos & Welty, 2010).

In the field of cognitive science, a series of studies conducted
by Crossley and his colleagues developed readability formulas
that build on the theoretical account of the reading process and
include indices of complex linguistic features obtained from sev-
eral NLP tools. Crossley et al. (2008) proposed a readability for-
mula for L2 reading, termed the Coh-Metrix L2 Reading Index
(CML2RI), that relies on three indices obtained from the web-
based NLP tool Coh-Metrix (McNamara et al., 2014). These indi-
ces are word frequency, syntactic similarity of the sentences, and
word overlap between adjacent sentences. Several studies have
found that CML2RI performs better than traditional formulas
for predicting the cloze test scores of L2 readers (Crossley et al.,
2008) and simplification levels of L2 reading texts (Crossley,
Allen & McNamara, 2011). Other studies also found that (more)
simplified L2 texts were characterized by more frequent and famil-
iar words, less complex syntactic structures, and higher levels of
lexical and semantic overlap between sentences (e.g., Crossley,
Allen & McNamara, 2012).

In more recent studies, Crossley and his colleagues adopted a
crowdsourcing approach to develop readability models using a
large dataset (Crossley, Heintz, Choi, Batchelor, Karimi &
Malatinszky, 2022; Crossley, Skalicky, Dascalu, McNamara &
Kyle, 2017b; Crossley et al., 2019b). They recruited online partici-
pants (L1 English users) through a website and asked them to
judge which of the two texts was easier to understand (comprehen-
sion difficulty) and could be read more quickly (reading speed). In
Crossley et al.’s (2019b) study, the linguistic features of the texts
were obtained by employing five advanced freely available NLP
tools: the Tool for the Automatic Analysis of Lexical
Sophistication (TAALES; Kyle & Crossley, 2015), the Tool for the

1Brown (1998) did not demonstrate strong correlations between traditional formulas
and L2 English text difficulty. Given this result, Greenfield (2004). suggested that trad-
itional formulas can be more predictive for specific types of L2 text.
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Automatic Analysis of Syntactic Sophistication and Complexity
(TAASSC; Kyle & Crossley, 2018), the Tool for the Automatic
Analysis of Text Cohesion (TAACO; Crossley, Kyle & McNamara,
2016), the Sentiment Analysis and Social Cognition Engine
(SEANCE; Crossley, Kyle & McNamara, 2017a), and
ReaderBench (Dascalu, Dessus, Bianco, Trausan-Matu & Nardy,
2014). They were then used to develop regression models for pre-
dicting judgments of comprehension and reading speed. The com-
prehension model, the Crowdsourced Algorithm of Reading
Comprehension (CAREC), contained 13 indices, including mea-
sures of lexical sophistication (e.g., age of acquisition, frequency,
and imageability), n-gram features2 (e.g., range and frequency of
two-word sequences [bigrams] or three-word sequences [trigrams]
in a corpus), cohesion (e.g., lexical overlap at the paragraph and sen-
tence levels and lemma type count for content words), and senti-
ment (positive adjectives). On the other hand, the reading speed
model, the Crowdsourced Algorithm of Reading Speed (CARES),
contained nine indices, including measures of text structure (e.g.,
number of content lemmas and function words), lexical sophistica-
tion (e.g., word naming response times and word concreteness),
and syntactic complexity (e.g., complex nominals per T-unit).
They found that both comprehension and reading speed models
accounted for a significantly larger amount of variance in judg-
ments than did traditional formulas. In addition, other studies
reported that models of comprehension and processing were
strongly informed by indices related to decoding (e.g., AoA,
range, concreteness for words; Crossley et al., 2017b, 2022).

Text readability and processing effort
As noted in the introduction, most readability studies adopted
objective measures of comprehension as assessed by reading
tests despite the fact that the definitions of readability include
the notion of text processing (Dale & Chall, 1949; Richards &
Schmidt, 2013). Empirical evidence suggests that processing
does not necessarily lead to comprehension: the eye-tracking
reading times of particular sentences did not correlate with the
accuracy of comprehension questions on these sentences (Dirix
et al., 2019; Yeari, van den Broek & Oudega, 2015). Similarly,
Kuperman et al. (2022) reported weak correlations at best for
eye movement measures and comprehension accuracy in L2 read-
ing. Given these findings, text readability deserves to be further
investigated in terms of how easily text can be processed.

Although not so many, some studies have examined the rela-
tionship between text difficulty and processing. For instance,
Rayner, Chace, Slattery, and Ashby (2006) demonstrated that
readers’ subjective ratings of overall text difficulty correlated with
their eye movement measures, indicating more and longer fixations
for more difficult text. Rets and Rogaten (2021) recorded the eye
movements of adult L2 English users while reading authentic and
simplified texts. Their analyses showed that the simplified texts
induced longer initial processing (as indicated by first-pass fixation
duration) and shorter later processing (as indicated by second-pass
fixation duration) of the sentences than did the authentic texts,
suggesting that text simplification induced more effective initial pro-
cessing and, therefore, less necessity for rereading.

Although these studies provide insight into the relationship
between processing effort and text difficulty, only a limited num-
ber of studies have examined processing in relation to text diffi-
culty as assessed by readability formulas. One such study is that

of Ardoin, Suldo, Witt, Aldrich, and McDonald (2005), which
indicated a moderate relationship between readability as evaluated
by traditional formulas and reading fluency as assessed by the
number of words students read correctly. Another example is
Crossley et al. (2019b), as described above, which developed a
readability model specifically designed for text processing and
demonstrated higher correlations with processing than traditional
readability formulas. However, the model was derived from pair-
wise judgments of reading speed. Thus, as noted in Crossley
et al.’s (2019b) study itself, “it is an open question as to how
accurately these reflect effortful processing on the part of readers”
and “it was impossible to assess how long readers spent on each
text because the texts needed to be displayed next to each other
for the comparisons” (p. 556).

To address this issue and explore more objective measures of
text processing, Nahatame (2021) examined processing effort as
reflected by eye movements during L2 reading. This study exam-
ined the performance of several readability formulas, including
both traditional and new (e.g., the Flesch formulas, CML2RI,
CAREC, and CARES), to predict global reading measures such as
average fixation duration and saccade length. The results indicated
that the new formulas performed better than the traditional ones in
predicting some eye-movement measures. However, all of the for-
mulas failed to significantly predict all eye-movement measures
and to show consistent results in a pair of experiments, suggesting
“the difficulty of providing strong and consistent performances for
predicting processing effort using existing readability formulas”
(p. 33). In addition, the use of a holistic scale of readability in
this study did not allow for examination of what specific linguistic
features included in the formulas (e.g., lexical, syntactic, and cohe-
sion features) contributed to the prediction of processing effort.

The current study

The current study builds on the two previous studies described
above, Crossley et al. (2019b) and Nahatame (2021), and aims
to develop models that predict the processing effort involved dur-
ing L1 and L2 text reading. This study analyzed eye movement
measures as an indication of processing effort during reading
(Nahatame, 2021) and used complex linguistic features as assessed
by the NLP tools (Crossley et al., 2019b) to explain the variance in
the processing effort. The study developed the models for L1 and
L2 reading, respectively, and then compared their performance
with the models including only simple linguistic features, as
used in traditional readability formulas (i.e., word and sentence
length). The following two research questions (RQs), each of
which consists of two sub-questions, were addressed:

RQ1

(a) Do models with complex linguistic features perform better than mod-
els based on simple linguistic features in predicting processing effort
during reading?

(b) Does the performance differ between L1 and L2 reading?

RQ2

(a) Which of the lexical, syntactic, and cohesion features are predictive of
processing effort during reading?

(b) Do these features differ between L1 and L2 reading?

In regard to RQ1, it was hypothesized that using complex lin-
guistic features would allow for better prediction of processing

2N-grams are contiguous word sequences of n number of words. Researchers have
most often investigated bigrams (e.g., very much) and trigrams (e.g., a lot of).
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effort because they are more closely associated with theories of
reading than are simple linguistic features (Crossley et al., 2008,
2011, 2019b). However, it is difficult to articulate predictions
for the difference between L1 and L2 reading due to very limited
research on this topic. Nevertheless, given the larger effects of
some complex lexical features for L2 or lower-proficiency readers’
text processing (Cop et al., 2015b; Dirix & Duyck, 2017; Kim
et al., 2018), complex features may be more useful for predicting
processing effort in L2 reading than in L1.

In regard to RQ2, given that eye movements are strongly influ-
enced by word length and frequency (Cop et al., 2015a; Reichle
et al., 1999) and lexical features are useful for estimating readabil-
ity (Crossley et al., 2017b, 2022; Pitler & Nenkova, 2008), it is rea-
sonable to assume that lexical features are more predictive than
other features. As for the difference between L1 and L2, L2 read-
ing models may depend on more lexical indices in comparison to
L1 models because L2 reading requires more cognitive resources
for lower-level processing than L1 reading (Horiba, 1996, 2000;
Morishima, 2013).

In contrast to Nahatame (2021), who included the existing
readability indices as a predictor in the model, the current
study is more exploratory in that it aimed to develop the readabil-
ity models by selecting the predictors from a range of complex
linguistic features. This approach allows us to better understand
the links between individual text linguistic features and their
roles in predicting processing effort.

In addition, the current study used eye movement measures as
a dependent variable because eye tracking “provides a ‘direct’meas-
ure of processing effort” (Conklin, Pellicer-Sánchez & Carrol, 2018,
p. 6) rather than subjective ratings of reading speed as used by
Crossley et al. (2019b). Eye tracking also allows assessment of pro-
cessing effort in more natural reading situations (see the review by
Godfroid, 2019; Conklin et al., 2018; Rets, 2021 for more details).
Furthermore, using eye tracking advances existing readability
research by providing “a promising new source of cues about
text difficulty that could be integrated as features in prediction
settings, especially in real time” and helping with “estimating
individual cognitive difficulty or ease” (Collins-Thompson,
2014, p. 127).

Method

Eye-tracking corpus and eye movement measures

The current study analyzed data from Cop et al.’s (2015a) open
eye-tracking corpus (available from https://figshare.com/articles/
dataset/new_fileset/1482031). The corpus contained eye move-
ment data collected from 14 English monolinguals and 19 unba-
lanced Dutch (L1)–English (L2) bilinguals reading an Agatha
Christie novel. Bilingual participants read half of the novel in
their L1 and the rest in their L2 (the order of the languages was
counterbalanced). During each trial, the participants read the
text that appeared on the computer screen, with a maximum of
145 words presented at a time, and their eye movements were
recorded with a tower-mounted EyeLink 1000 (SR Research,
Canada). Six eye-movement measures for each sentence were
included in the corpus: total reading time, number of fixations,
average fixation duration, average saccade length, skipping rate,
and regression rate. After eliminating data for overly long sentences,
data for 4,649 sentences per participant remained on average.

The current study analyzed the entire dataset for both L1 and L2
reading (cf. Nahatame, 2021). Because the current study explored

reading of English texts, it analyzed the data of monolingual (L1
English) reading and bilingual L2 (L2 English) reading.
Importantly, the proficiency test in Cop et al.’s (2015a) study indi-
cated that English proficiency was clearly lower for bilingual parti-
cipants than monolinguals (see Cop et al., 2015a for more details).

Among several eye-movement measures available, the current
study adopted the total reading time and number of fixations as
an indication of processing effort. Nahatame (2021) adopted
other eye-movement measures that are less likely to correlate
with text length (e.g., average fixation duration, skipping rates,
and regression rates), given that some of the readability measures
are more sensitive to text length than others. The current study,
however, aimed to develop models that directly predict how
much time and effort readers spend on the processing of a par-
ticular text. Thus, eye-movement measures were selected that dir-
ectly reflect reading speed and processing time as dependent
variables while including text length (i.e., word count) as a control
variable in the models. Total reading time and the number of fixa-
tions will increase as text length increases; thus, the focus of the
current study is whether and which linguistic features explain
additional variance of these eye-movement measures beyond the
effects of text length.

Although the original data consisted of sentence-level mea-
sures, in this study, the data needed to be reconstructed for larger
text units to assess text readability. Thus, they were reaggregated
for each trial to match the participants’ experience of reading,
resulting in the dataset consisting of 588 trials (i.e., texts) per par-
ticipant for L1 reading and about half as many trials per partici-
pant for L2 reading. As shown in Table 1, L2 reading showed
longer reading times and more fixations per trial than L1 reading
(Cop et al., 2015a).

Total reading time and the number of fixations were highly
correlated (r = .93 for L1 reading; r = .95 for L2 reading). To con-
solidate these measures, a principal component analysis was per-
formed (Godfroid & Hui, 2020), indicating a high proportion of
variance for the first components (.97 for L1 reading and .98
for L2 reading). Thus, the current study used the principal com-
ponent scores for the first components without considering fur-
ther components as dependent variables in the following
analysis. For the statistical model development, these component
scores were averaged over L1 or L2 participants for each trial.
Each trial included 14 monolinguals (L1 readers) and nine or
10 bilinguals (L2 readers).

Text analysis

Texts used for the 588 trials were extracted from Cop et al.’s
(2015a) study, each of which consists of 91.54 words on average
(SD = 18.26). The texts were analyzed using the following three
advanced NLP tools: TAALES 2.2 (Kyle, Crossley & Berger,

Table 1. Total Reading Time and Number of Fixations (per Trial) for L1 and L2
Reading

Total Reading Time (ms)
Number of
Fixations

M SD M SD

L1 15,039.19 5,313.44 68.33 20.80

L2 18,631.59 6,307.95 81.85 24.89

Note. N = 8,206 for L1 reading; 5,566 for L2 reading.
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2018), TAASSC 1.3.8 (Kyle & Crossley, 2018), and TAACO 2.0.4
(Crossley, Kyle & Dascalu, 2019a). These tools were employed to
assess lexical, syntactic, and cohesion features of texts, respect-
ively. These linguistic features correspond to the first four of the
six levels of Graesser and McNamara’s (2011) model (i.e., word,
syntax, textbase, and situation model). The fifth level, discourse
genre and rhetorical structure, was not considered because the
target texts in this study were extracted from a single novel, mak-
ing the understanding of genres less important to complete the
task. The sixth and highest level, the pragmatic communication
level, is often beyond the scope of the computational tools used
in cognitive science (McNamara et al., 2014).

Additionally, the Simple Natural Language Processing Tool
(SiNLP; Crossley, Allen, Kyle & McNamara, 2014) was employed
to compute simple linguistic features (i.e., word count, average
word length, and average sentence length) for these texts. All of
the tools used in this study are freely available from NLP for
the Social Sciences at https://www.linguisticanalysistools.org/.
Appendix S1 in the Supplementary Materials provides an over-
view of the tools used in this study along with the linguistic fea-
tures, measures, and indices assessed by the tools.

Lexical features
The TAALES computes many indices of lexical sophistication of
the text (Kyle et al., 2018). This study adopted indices for word
frequency, range, L1 AoA, psycholinguistic word information
(e.g., familiarity and concreteness), word response norms (i.e.,
L1 English users’ reaction times and accuracies of the lexical deci-
sion and naming tasks), word neighbor information (i.e., ortho-
graphic and phonological neighbors), word association (i.e., the
number of other words associated with a word), contextual dis-
tinctiveness (i.e., the diversity of contexts in which a word is
encountered based on statistical regularities observed in corpora),
semantic lexical relations (i.e., polysemy and hypernymy), and
n-gram features (i.e., the frequency, range, and association
strength of the bigrams and trigrams). Although the TAALES
computes some indices for academic language use, they were
not considered in this study, given that the current target text
was a novel.

Frequency and range indices are calculated from available cor-
pora such as the British National Corpus (BNC Consortium,
2007), SUBTLEXus (Brysbaert & New, 2009), and the Corpus of
Contemporary American English (COCA; Davies, 2009). Indices
from both the written and spoken sub-corpora of the BNC were
used, whereas only those from the spoken and fiction sub-corpora
of COCA were used, given the genre of the current target text.

If any lexical features provided the indices of all words, content
words, and function words separately, only indices for content
and function words were used (i.e., all-word indices were not
used) to reduce redundancy (Eguchi & Kyle, 2020) and increase
the interpretability of the results. More details on the lexical indi-
ces described above can be found in Appendix S1 in the
Supplementary Materials along with additional references (see
also Kyle & Crossley, 2015; Kyle et al., 2018).

Syntactic features
The TAASSC was employed to assess syntactic sophistication and
complexity within the text (Kyle & Crossley, 2018). It computes
traditional indices of syntactic complexity as well as fine-grained
indices of clausal and phrasal complexity. The traditional indices
contained 14 indices measured by Lu’s (2010) L2 syntactic com-
plexity analyzer (SCA), including the mean length of clauses or

T-units, the number of dependent clauses per clause or per T-unit,
and the number of complex nominals per clause or per T-unit.

The fine-grained indices of clausal complexity included the
average number of specific structures (e.g., clausal subject and dir-
ect object) per clause within the text. There are also two general
indices of clausal complexity: the mean and standard deviation
of the number of dependents per clause. Standard deviation mea-
sures indicate the variety of syntax within a text.

Fine-grained indices of phrasal complexity are categorized into
three types (Kyle & Crossley, 2018). The first indicates the average
number of dependents per specific phrase type (e.g., direct
objects) and the average number of dependents for all phrase
types as well as their standard deviations. The second represents
the incidence of specific dependent types (e.g., adjective modi-
fiers), regardless of the noun phrase type in which they occur.
The third is the average occurrence of specific dependent types
in specific types of noun phrases (e.g., adjective modifiers occur-
ring in direct object phrases). This study used phrasal complexity
indices that do not count pronoun noun phrases, given that the
use of pronouns as phrases may bias the counts of dependents
(Kyle & Crossley, 2018).

Cohesion features
The TAACO reports on several types of cohesion indices
(Crossley et al., 2016, 2019a). The current study focused on the
following four categories: lexical overlap, semantic overlap, con-
nectives, and type-token ratio (TTR). Lexical overlap computes
a variety of types of lemma overlap (e.g., all lemma overlap and
content word lemma overlap) between sentences or paragraphs.
Semantic overlap measures the semantic similarity between sen-
tences or paragraphs by employing NLP techniques such as latent
semantic analysis (LSA; Landauer, Foltz & Laham, 1998), latent
Dirichlet allocation (LDA; Blei, Ng & Jordan, 2003) and
Word2Vec (Mikolov, Chen, Corrado & Dean, 2013). Connectives
indicate the occurrence of several classes of connectives in the
text (e.g., positive, negative, causal, additive, and temporal). TTR
measures the diversity of words in the text by dividing the number
of types by the number of tokens. Several different TTR indices are
reported by the TAACO, including simple, content word, and
lemma TTRs.

Connective measures assess cohesion at the local level
(between adjacent sentences), whereas lexical and semantic over-
lap measures assess cohesion at both the local and global levels
(between adjacent sentences and between adjacent paragraphs).
However, because the current target texts are relatively short
and do not necessarily consist of paragraphs, this study adopted
only the overlap measures for local cohesion. The TTR indices
assess overall text cohesion.

Simple linguistic features
The SiNLP (Crossley et al., 2014) was employed to compute indi-
ces of the following simple linguistic features: word count (i.e., the
total number of words in the text), average word length (i.e., the
average number of letters per word),3 and average sentence length
(i.e., the average number of words per sentence). These indices
were used to develop the models for comparison to the models
that include complex linguistic features, although word count
was also used as a control variable in the complex models.

3Although some traditional readability measures include the number of syllables per
word as an index of word length (e.g., Flesch formula), it usually highly correlates
with the number of letters per word, which only the SiNLP calculates.
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Statistical analysis

The statistical analysis was primarily conducted with R 4.0.5
(R Core Team, 2021). Multiple regression models were con-
structed using indices of complex linguistic features of target
texts to explain the variance in eye movement measures for L1
and L2 reading. This study used multiple regression models so
that the results could be compared with those of Crossley,
Skalicky and Dascalu (2019) study, which also developed multiple
regression readability models, and considering their simplicity,
interpretability, and greater theoretical commitments.

The models were developed following the procedures
employed by Crossley, Skalicky and Dascalu (2019). Prior to the
model construction, the dataset was divided into training and
test sets using a 67/33 split, resulting in 388 texts in the training
set and 200 texts in the test set, to allow for cross-validation of the
models. The model was first derived from the training set and
then applied to the test set to assess the generalizability.

Indices of complex linguistic features were then selected for
developing the models. First, all indices were checked for normal-
ity, and those that exceeded 2.0 kurtosis or skewness values was
removed (George & Mallery, 2010). Then, any index that did
not indicate a meaningful (r > .10) and significant relationship
( p < .05) with the component scores of eye movement measures
was excluded. Finally, if any multiple indices were highly collinear
(r > .90), only the index with the strongest relationship to eye
movement measures was retained. The remaining indices were
then entered into a stepwise multiple regression based on the
Akaike information criterion (AIC). The models also included
word count as a control variable given that the adopted eye move-
ment measures (i.e., total reading time and the number of fixa-
tions) are closely related to text length. If any of the indices in
the model demonstrated suppression (i.e., the bivariate correlation
and the beta weight had opposite signs; Tabachnick & Fidell,
2014), the model was run again without the indices. This process
was repeated until there were no suppressed indices in the models.

After obtaining the final model, a posteriori approach
informed by model criticism was conducted (Baayen & Milin,
2010) to alleviate the effects of outliers. The residuals were
inspected for the model, and the observations with large residuals
(in excess of 3.0 SDs in this case), which were poorly predicated
by the analysis, were removed (less than 2% of the data). This
approach is advantageous in that it potentially leaves a larger por-
tion of the dataset intact while still improving the model fit
(Godfroid, 2019). Relative weight analysis was then performed
for the final model to partition explained variance among the pre-
dictors and assess their relative importance (Tonidandel &
LeBreton, 2011).4 The analysis was conducted by employing
Mizumoto’s (2022) R-based web application from the langtest.jp,
available at http://langtest.jp/shiny/relimp/.

The models constructed using complex linguistic features were
then compared with the models including simple linguistic fea-
tures. The first simple model included only the word count
index, and the second model added the indices of word and sen-
tence length to word count. The index of sentence length in the
training set was log-transformed because of the violation of nor-
mal distribution. Note that the models with complex linguistic

features are likely to include more parameters (i.e., linguistic indi-
ces) than the simple linguistic-feature models. In general, the
model better fits the observed data if it has a larger number of
parameters. However, if the model is too complex, it will not be
effective in predicting future phenomena. Thus, this study com-
pared the complex and simple linguistic feature models with the
AIC, which is an evaluation criterion for deciding the better
model in terms of the prediction. It defines the goodness of fit of
the model to the data as the maximum log likelihood and incorpo-
rates the number of free parameters of the model as a penalty for
the complexity of the model. The model that exhibits the smaller
AIC value is considered better. The Fisher r-to-z transformation
was also conducted using Weiss’s (2011) calculator to examine
the differences in the correlations with eye movement measures
reported by the models with complex and simple linguistic features.

Results

L1 reading

The model with complex linguistic features
After controlling for normality, correlations, and multicollinear-
ity, 44 linguistic indices remained for L1 reading. These indices
were entered into a stepwise multiple regression, along with the
control variable of word count. The initial model included 16
indices. After controlling the suppression effects, 10 indices
remained in the model, including the indices of word count,
familiarity of content words, frequency of function words, bigram
and trigram frequency, association for function words (types and
tokens), phonological neighborhood of content words, standard
deviations for the number of dependents per direct object, and
average number of prepositions per clause. After conducting the
model criticism, the final model was significant, F (10, 371) =
176.20, p < .001, r = .91, R2 = .83, AIC = 345.60, explaining 83%
of the variance in eye movement measures, and four indices in
the model were significant predictors5: word count, bigram fre-
quency, trigram frequency, and the average number of preposi-
tions per clause (see Table 2). The effects of these indices
indicated that processing effort increased when the text included
more words, less frequently used bigrams and trigrams, and more
prepositions per clause.

Relative wight analysis indicated that of the variance explained
by the model (i.e., 83% of the overall variance), word count
accounted for 72%, indicating its major role in this model.
Nevertheless, the combination of the other indices explained the
remaining 11% of the variance. Of these indices, bigram and tri-
gram frequency contributed the most to the explanation, account-
ing for 3.9% of the variance in combination (see Appendix S3-2 in
the Supplementary Materials for detailed results).6

4The use of the standardized beta coefficients to determine the relative importance of
predictors in the regression model has been criticized as the misuse of multiple regression
analysis, and some alternative approaches are recommended, including relative weight
analysis (see Appendix S3-1 in the Supplementary Materials for more details).

5The remaining indices were originally significant or approached significance before
controlling the suppression effects and conducting model criticism. This is also true
for the L2 reading model. Although these processes made some indices insignificant,
they were necessary for model improvement and interpretation. The results from the
model post-criticism are more reliable and indicate an effect “that is actually supported
by the majority of data points” (Baayen & Milin, 2010, p. 26). In addition, the suppressed
variables are often removed during the construction of multiple regression models (e.g.,
Crossley et al., 2022; Kyle et al., 2018). This study found no prominent difference in the
variance explained by the current models with and without suppressed variables (83.4%
vs. 82.6% for L1; 79.5% vs. 77.8% for L2).

6Although relative weight analysis and dominance analysis are largely interchangeable
with one another, Mizumoto (2022) recommends the use of the latter accompanied by
random forest, a machine learning method. The results of these analyses are also available
in Appendices S3-2 and S3-3 in the Supplementary Materials.
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When the model was applied to the test dataset, it reported
r = .92 and R2 = .84. This demonstrated that the combination of
10 indices accounted for 84% of the variance in the eye movement
measures found in the test set and did not support the overfit of
the constructed model.

Comparison with simple linguistic feature models
The first simple model that included only word count accounted
for 71% of the variance of eye-movement measures in L1 reading,
F (1, 382) = 942.10, p < .001, r = .84, R2 = .71, AIC = 521.74. The
second simple model that included word and sentence length
in addition to word count accounted for 79% of the variance,
F(3, 379) = 479.40, p < .001, r = .89 R2 = .79, AIC = 401.12, show-
ing the significant effect of both word length and sentence length
(see Table 3).

Nevertheless, the model with complex linguistic features indi-
cated a much smaller AIC score than did the simple models, pro-
viding support for the better prediction ability of the complex
linguistic feature model. In addition, Fisher r-to-z transformation
indicated that the complex model explained a significantly greater

amount of variance than the first simple model (z = 3.97,
p < .001). However, the difference failed to approach significance
for the second simple model (z = 1.39, p = .164).

L2 reading

The model with complex linguistic features
After controlling for normality, correlations, and multicollinear-
ity, 43 linguistic indices remained for L2 reading. Similar to the
L1 reading model, they were entered into a stepwise multiple
regression along with the control variable of word count. The ini-
tial model included 17 indices. After controlling the suppression
effects, 12 indices remained in the model, including the indices
of word count; familiarity, concreteness, and frequency of content
words; frequency, association (types and tokens), and contextual
distinctiveness of function words; bigram and trigram frequency;
bigram association strength; and the proportion of subordinate
clauses. After conducting the model criticism, the final model
was significant, F (12, 370) = 108.30, p < .001, r = .88, R2 = .78,
AIC = 457.41, explaining 78% of the variance in eye movement

Table 2. Multiple Regression Model with Complex Linguistic Features for L1 Reading

r
β

[95% CI] B SE t p

Word.Count .85 0.88
[0.83, 0.92]

0.04 0.00 39.15 < .001*

MRC_Familiarity_CW (familiarity of content words) −.10 −0.01
[−0.05, 0.04]

0.00 0.00 −0.37 .711

SUBTLEXus_Freq_FW
(frequency of function words)

−.19 −0.03
[−0.08, 0.02]

0.00 0.00 −1.13 .259

COCA_fiction_bi_prop_70k
(bigram frequency)

−.16 −0.18
[−0.25, −0.11]

−2.15 0.40 −5.44 < .001*

COCA_fiction_tri_prop_40k
(trigram frequency)

−.15 −0.09
[−0.15, −0.03]

−1.37 0.50 −2.75 .006*

eat_types_FW
(association for function words)

.16 0.03
[−0.02, 0.08]

0.01 0.01 1.21 .229

eat_tokens_FW
(association for function words)

−.09 −0.03
[−0.07, 0.02]

−0.01 0.00 −1.32 .188

PLD_CW
(phonological neighborhood of content words)

.14 0.04
[−0.01, 0.10]

0.21 0.15 1.47 .142

dobj_NN_stdev
(SD of the number of dependents per direct object)

.16 0.03
[−0.02, 0.07]

0.05 0.05 1.06 .292

prep_per_cl
(number of prepositions per clause)

.20 0.05
[0.01, 0.10]

0.30 0.13 2.26 .024*

Note. N = 382. R2 = .83. Asterisks indicate that the p values are significant at alpha = .05. See Table S2 in the Supplementary Materials for a more detailed description of the indices.

Table 3. Multiple Regression Model with Simple Linguistic Features for L1 Reading

r
β

[95% CI] B SE t p

Word.Count .85 0.90
[0.85, 0.94]

0.05 0.00 37.44 < .001*

word length
(number of letters per word)

.13 0.27
[0.22, 0.32]

0.80 0.07 11.12 < .001*

sentence length_Log (number of words per sentence) .07 −0.06
[−0.11, −0.01]

−0.14 0.05 −2.52 .012*

Note. N = 383. R2 = .79. Asterisks indicate that the p values are significant at alpha = .05.
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measures, and five indices in the model were significant: word
count, frequency of function words, bigram association strength,
bigram frequency, and trigram frequency (see Table 4). The
model indicated that processing effort increased when the text
included more words, less frequent function words, more strongly
associated bigrams, and less frequent bigrams and trigrams.

Relative weight analysis found that of the variance explained by
the model (i.e., 78% of the overall variance), word count accounted
for approximately 67%, indicating its major role in this model.
Nevertheless, the combination of the other indices explained the
remaining 11% of the variance. Of these indices, the bigram and
trigram frequency contributed the most to the explanation,
accounting for 3.7% of the variance in combination (see
Appendix S3-3 in the Supplementary Materials for detailed results).

The model was then applied to the test dataset and reported
r = .88, R2 = .78. This demonstrated that the combination of
12 indices accounted for 78% of the variance in the eye movement

measures found in the test set and did not support the overfit of
the constructed model.

Comparison with simple linguistic feature models
The first simple model (i.e., word count model) accounted for
67% of the variance in eye movement measures for L2 reading,
F (1, 381) = 763.00, p < .001, r = .82, R2 = .67, AIC = 587.06. The
second simple model (i.e., word and sentence length model)
accounted for 71% of the variance, F (3, 380) = 305.50, p < .001,
r = .84, R2 = .71, AIC = 546.72, indicating the significant effect of
only word length (see Table 5).

Similar to L1 reading, the complex model indicated a much
smaller AIC score than those of the simple models, providing
support for better prediction of the complex model. Moreover,
the comparison using Fisher r-to-z transformation indicated
that the model with complex linguistic features explained a sig-
nificantly greater amount of variance than both the first simple

Table 4. Multiple Regression Model with Complex Linguistic Features for L2 Reading

r β B SE t p

Word.Count .82 0.84
[0.79, 0.89]

0.04 0.00 33.16 < .001*

MRC_Familiarity_CW
(familiarity of content words)

−.12 −0.04
[−0.10, 0.02]

0.00 0.00 −1.27 .206

MRC_Concreteness_CW
(concreteness of content words)

.12 0.01
[−0.05, 0.08]

0.00 0.00 0.45 .650

SUBTLEXus_Freq_CW
(frequency of content words)

−.18 −0.05
[−0.13, 0.02]

0.00 0.00 −1.42 .156

BNC_Spoken_Freq_FW_Log
(frequency of function words)

−.11 −0.08
[−0.13, −0.02]

−0.61 0.21 −2.86 .005*

COCA_fiction_bi_DP
(bigram association strength)

.15 0.07
[0.01, 0.12]

4.72 2.06 2.29 .022*

COCA_fiction_bi_prop_70k
(bigram frequency)

−.15 −0.10
[−0.17, −0.02]

−1.14 0.44 −2.57 .011*

COCA_fiction_tri_prop_40k
(trigram frequency)

−.17 −0.15
[−0.22, −0.08]

−2.45 0.60 −4.08 < .001*

eat_types_FW
(association of function words)

.19 0.04
[−0.02, 0.10]

0.01 0.01 1.28 .203

eat_tokens_FW
(association of function words)

−.10 −0.02
[−0.08, 0.03]

0.00 0.00 −0.86 .392

McD_CD_FW
(contextual distinctiveness of function words)

.16 0.04
[−0.01, 0.09]

0.20 0.12 1.67 .096

DC_C (proportion of dependent clauses) .13 0.04
[−0.01, 0.09]

0.25 0.17 1.46 .144

Note. N = 383. R2 = .78. Asterisks indicate that the p values are significant at alpha = .05. See Table S3 in the Supplementary Materials for a more detailed description of the indices.

Table 5. Multiple Regression Model with Simple Linguistic Features for L2 Reading

r
β

[95% CI] B SE t p

Word.Count .81 0.84
[0.78, 0.89]

0.04 0.00 29.53 < .001*

word length
(number of letters per word)

.09 0.21
[0.16, 0.27]

0.64 0.09 7.43 < .001*

sentence length_Log (number of words per sentence) .17 0.05
[0.00, 0.11]

0.12 0.07 1.80 .072

Note. N = 384. R2 = .71. Asterisks indicate that the p values are significant at alpha = .05.
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model (z = 3.30 p < .001) and the second simple model (z = 2.23,
p = .026).

Discussion

Predicting reading processing effort using text linguistic
features (RQ1)

(a) The use of complex linguistic features
RQ1 compared the performance of the models that used complex
linguistic features with that of the models that used simple lin-
guistic features. The analysis yielded significant models including
several complex linguistic features in addition to word count,
which explained 83% and 78% of the variance in eye movement
measures (i.e., the combination of total reading times and the
number of fixations) for L1 and L2 reading, respectively (see
Appendix S4-1 in the Supplementary Materials for an explanation
of this large variance accounted for by the models). These com-
plex feature models provided better performance in predicting
processing effort for both L1 and L2 reading than either the
word count models or the models including word and sentence
length in addition to word count. In addition, the complex mod-
els explained approximately 12% and 11% more of the variance in
eye movement measures than did the word count models and 4%
and 7% more than did the word and sentence length models for
L1 and L2 reading, respectively. Although the difference between
the models was less than expected, it is reasonable given that word
length is a determining factor for eye movements during reading
(Cop et al., 2015a; Reichle et al., 1999).

There is no doubt that readers need more time and effort to
process text as it increases in length. Therefore, it is not surprising
that the word count accounted for the large variance in the pro-
cessing effort calculated from the total reading times and the
number of fixations. However, the inclusion of indices of complex
linguistic features in addition to word count significantly
improved the performance of the models. Moreover, this
improvement was greater than when adding the indices of word
and sentence length to the word count model. Thus, these results
support the notion that more complex linguistic features, rather
than simple linguistic features, are more useful for the accurate
estimation of readability (e.g., Crossley et al., 2011, 2019b; Piler
& Nenkova, 2008). Importantly, the current study extended this
view from readability for comprehension to readability for pro-
cessing. This is noteworthy given that comprehension does not
always correlate with processing (Dirix et al., 2019; Kuperman
et al., 2022).

(b) The comparison of L1 and L2 reading models
As described above, the complex linguistic features were useful for
the prediction of processing effort during both L1 and L2 reading.
However, the difference in the variance explained by the complex
and simple feature (word and sentence length) models failed to
reach significance for L1 reading, whereas it was significant for
L2 reading. This suggests that the use of complex linguistic fea-
tures is more important for estimating processing effort involved
during L2 reading than L1, which is partly in line with the previ-
ous finding that the effect of some complex linguistic features
(e.g., word frequency) can be larger for L2 or lower-proficiency
readers (Cop et al., 2015b; Dirix & Duyck, 2017; Kim et al., 2018).

In addition, the variance explained by the L2 reading models
was always lower by 4% to 8% compared to the L1 reading mod-
els. The remaining variance for L2 reading might be explained by

individual differences such as L2 proficiency, given the large dif-
ferences in L2 proficiency in this dataset compared to L1 profi-
ciency (see Cop et al., 2015a). This suggests the benefits of
including the variable of proficiency or the interaction of profi-
ciency and linguistic features for L2 readability models (see also
the Limitations and future directions).

Linguistic features that are predictive of reading processing
effort (RQ2)

(a) The importance of lexical features
RQ2 concerned which linguistic features are predictive of reading
processing effort. Although this study assessed lexical, syntactic,
and cohesion features, many of the indices included in the final
models were lexical in nature (e.g., word frequency, familiarity,
concreteness, association, and n-gram features) for both L1 and
L2 reading. These results suggest that after controlling for the
effects of text length, processing effort during text reading is
more likely to be explained by lexical features than by syntactic
and cohesion features. This supports the view that lexical indices
are the most predictive variables in readability models (e.g.,
Crossley et al., 2017b, 2022; Pitler & Nenkova, 2008). Again, it
is worth mentioning that the current study extended this view
from readability for comprehension to readability for processing.
In addition, the importance of lexical features in modeling eye
movements during reading partly concurs with E-Z reader
(Reichle et al., 1999), which assumes a large effect of word length
and frequency on eye movements (see Appendix S4-2 in the
Supplementary Materials for further discussion compared with
E-Z reader as well as model from Graesser and McNamara, 2011).

When comparing the current models with Crossley, Skalicky and
Dascalu (2019) model (based on the human judgments of reading
speed), they are similar in that both contained several lexical indices
but no cohesion indices. However, Crossley et al.’s (2019b) model
included the index of naming response times, which can be a direct
measure of ease of lexical processing similar to lexical decision
times, whereas no such indices were included in the current
eye-movement-based models. Nevertheless, this seems reasonable
given the small variance shared between lexical decision times
and some eye movement measures (Dirix et al., 2019; Kuperman
et al., 2013).

(b) The comparison of L1 and L2 reading models
L2 reading showed much more and longer fixations than L1 read-
ing (see Table 1), supporting the long-standing notion that L2
reading requires more cognitive effort than L1 reading (Cop
et al., 2015a; Kuperman et al., 2022; Nisbet et al., 2021).
However, despite such a prominent difference, lexical features
played a dominant role for estimating both L1 and L2 reading effort
after controlling the text length effect. Although this is not congru-
ent with the expectation that L2 reading models depend on lexical
indices to a great extent than L1 reading models, the finding
emphasizes the importance of decoding for fluent reading regard-
less of the language used (Koda, 2005; Yamashita, 2013).

Recent studies on bilingual reading have suggested that L1 and
L2 reading fluency, as assessed by eye movement measures, are
explained by readers’ cognitive speed of information processing
and reading component skill (Kuperman et al., 2022; Nisbet
et al., 2021). The current study is similar to these studies in
that it suggests the cognitive factor that explains L1 and L2 read-
ing fluency. This study found that both L1 and L2 reading fluency
largely depend on the decoding difficulty of the text as assessed by
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lexical sophistication, which suggests the cognitive process under-
lying the similarity of L1 and L2 reading.

Focusing on individual linguistic features, indices of bigram
and trigram frequency were included in both L1 and L2 reading
models, and they were significant predictors. In addition, except
for the word count, these indices contributed the most to both
models, as shown by the relative weight analysis, although care
should be taken in interpreting this result given the sampling
error in rank order of weights and overlap of confidence intervals
between the predictors (Mizumoto, 2022; Tonidandel & LeBreton,
2011). Taken together, these results suggest that the frequency of
multiword sequences, rather than the frequency of individual
words, plays a role in explaining the processing effort for both
L1 and L2 reading. Processing effort decreased when the text
included highly frequent bigrams and trigrams (see Appendix
S5 in the Supplementary Materials for example texts with higher
and lower scores for bigram and trigram frequency), which is in
accordance with the view of previous studies on formulaic lan-
guage (e.g., Li et al., 2021; Tabossi et al., 2009; Siyanova-
Chanturia et al., 2011; Sonbul, 2015). Additionally, it also sup-
ports the view that formulaic language is processed more quickly
even by L2 speakers, particularly those with higher L2 proficiency
(e.g., Conklin & Schmitt, 2008; Underwood et al., 2004). Given
that 17 out of 19 bilinguals in the current dataset were classified
as upper-intermediate to advanced L2 users (see Cop et al., 2015a
for more details), it is reasonable to assume that most of the bilin-
guals in the current dataset were proficient enough in their L2 to
enjoy the advantage of formulaic language.

On the other hand, the index of bigram association strength
(based on the fiction sub-corpus) was only included and signifi-
cant in the L2 reading model. Given that bigram frequency was
also a significant predictor in the L2 model, this result supports
the view that “n-gram frequency and strength-of-association indi-
ces may capture related but different aspects of collocational
knowledge” (Kyle et al., 2018, p. 1041). Processing effort increased
for the text that contained more strongly associated bigrams
(the bivariate correlation was also positive). Although there are
possible explanations for this finding (see Appendix S4-3 in the
Supplementary Materials), further investigation is required to
determine whether and why strongly associated bigrams require
more time and effort to process in L2 reading.

Furthermore, the L1 model included the two indices of syntactic
features, the standard deviations for the number of dependents per
direct object and the average number of prepositions per clause,
which explained 2.7% of the variance in combination. On the
other hand, the L2 model included an index of syntactic features,
the proportion of subordinate clauses in the text, which explained
only 1% of the variance. These differences may indicate that syntac-
tic features are related to L1 text processing to a greater extent than
L2 text processing, as suggested by the shallow structure hypothesis
(Clahsen & Felser, 2006). However, given that the variance
explained by these syntactic features was small compared to that
explained by other linguistic features (i.e., lexical features) in both
language models, it is plausible to interpret this result as suggesting
that syntactic features are less related to processing effort than lex-
ical features in both L1 and L2 reading.

Conclusion and implications

The findings of the current study are summarized as three points.
First, the use of several complex linguistic features in addition to
word count in the readability models led to a better prediction of

the processing effort during both L1 and L2 reading as evidenced
by eye movements. These features were more useful for prediction
than were simple linguistic features, such as word and sentence
length, particularly for L2 reading. Second, most of the linguistic
indices that were useful for prediction were lexical features for
both L1 and L2 reading. Third, except for the word count, the fre-
quency of multiword sequences (bigrams and trigrams) is likely to
play a key role in predicting both L1 and L2 reading processing
effort.

Although the results showed some differences between L1 and
L2 reading (e.g., L2 reading was much more effortful than L1, and
a few different indices explained the L1 and L2 reading behavior),
this study concludes the similar qualitative relationship between
processing effort and text linguistic features for L1 and L2 reading.
Importantly, this similarity raises the possibility of building a sin-
gle readability model that estimates the processing effort for both
L1 and L2 reading (i.e., readability can be scaled similarly regard-
less of the L1 or L2), which will be of practical use.

The findings of this study suggest that future investigation of
readability for processing should consider the effects of more var-
ied and complex linguistic features and that the use of lexical
sophistication indices, in particular, will be helpful in providing
a more accurate readability assessment for both L1 and L2 texts.
Although a similar idea has been already proposed by several
studies (e.g., Crossley et al., 2011, 2022), most are related to read-
ability for comprehension and not to processing itself. The cur-
rent findings deepen our understanding of text readability in
terms of the cognitive difficulty that readers experience in real
time (Collins-Thompson, 2014).

From a theoretical perspective, this study emphasizes the
importance of decoding for both L1 and L2 fluent reading (Koda,
2005; Yamashita, 2013). It also sheds light on the processing of
multiword units. Although extant studies have already provided evi-
dence for the processing advantage of formulaic language in both
L1 and L2 reading (e.g., Conklin & Schmitt, 2008; Siyanova-
Chanturia et al., 2011; Sonbul, 2015; Tabossi et al., 2009;
Underwood et al., 2004), the current findings are distinct from
these investigations in that the effects of phrasal frequency
remained significant for both L1 and L2 models even after control-
ling for the effects of several other linguistic features. Thus, continu-
ing to explore the processing of multiword units may be key to
understanding how fluent bilingual reading can be achieved.

Limitations and future directions

This study has several limitations, offering promising directions
for future studies. First, it targeted the processing of a single
novel, which limits the generalizability of the current findings.
A novel text typically includes many conversations, which do
not necessarily illustrate syntactic complexity and higher levels
of cohesion. This might explain why lexical features, rather than
syntactic and cohesion features, played an important role in the
current readability models.

In relation, attention should be paid to the language registers
reflected by the corpus used for readability assessment.
Although this study examined the indices of n-gram features
based on the spoken and fiction sub-corpora of COCA, the indi-
ces selected for the final models were those from the fiction sub-
corpus. Given the genre of the current target text (i.e., a novel),
this suggests the importance of selecting appropriate language
registers for readability assessment. Therefore, it may be reason-
able to develop readability models using specific language
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registers according to the text genre being assessed or to incorp-
orate genre-related features in the readability models (Collins-
Thompson, 2014). Similarly, it would be beneficial to use a corpus
that more accurately approximates the exposure experienced by
target readers. For example, given that the monolingual readers
in the current dataset are British and that the L2 readers are
taught British English as well, the use of SUBTLEX-UK rather
than SUBTLEX-US may contribute to explaining additional vari-
ance in processing effort (van Heuven et al., 2014).

Second, a cross-validation of the current models should be
conducted with either other eye-tracking corpus data or a small
set of new data. Although the current study demonstrated that
the models based on the training set predicted the variance in
the test set well, the eye-tracking reading times are quite consist-
ent on the individual level in the current dataset (see Dirix et al.,
2019). For this purpose, the Multilingual Eye-Movements Corpus
(MECO). for L1 (Siegelman et al., 2022) and L2 reading
(Kuperman et al., 2022), the latest publicly available eye move-
ment data for bilingual reading, might be a possible data source.

Third, this study did not consider reader variables, such as
proficiency in the target language, reading component skills, L1
background, motivation, and strategy use. Although few readabil-
ity models do not include these variables because readability is
usually computed without assuming the specific audience, it is
beneficial to discuss and examine the role of these variables in
text readability assessment (Collins-Thompson, 2014; Rets &
Rogaten, 2021). Additionality, it may be worth considering the
interaction effect of reader and text variables (Cop et al., 2015b;
Dirix & Duyck, 2017; Kim et al., 2018).

Fourth, this study used global reading measures – specifically,
total time and fixation count – as dependent variables. Thus, the
current models did not discriminate between early (or lower-
level) and late (or higher-level) processing and should be
interpreted as estimating cognitive effort at both lower- and
higher-levels of processing. Given this limitation, the use of
early and late processing measures, separately, will allow us to
obtain more nuanced insight into the processing effort and text
linguistic features (see Appendix S4-4 in the Supporting
Materials for more details).

Finally, although this study adopted generalized linear models
(multiple regression) as a modeling approach, several alternatives
exist (e.g., generalized linear mixed-effects model and tree-based
model). In particular, recent linguists find tree-based approaches
(particularly random forests) appealing as an alternative to regres-
sion approaches, although each approach has its own advantages
and disadvantages (see Gries, 2021 for more detailed discussion).
In addition, there are several other text features that can be
obtained via more advanced linguistic techniques and used for
the readability model (e.g., De Clercq & Hoste, 2016).
According to Collins-Thompson (2014), the choice of features
can be more important than the choice of modeling approaches
in readability assessment. Further discussion and investigations
are needed to determine more appropriate and effective methods
for developing readability models.
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