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Abstract
We give an explicit characterization on the singularities of exceptional pairs in any dimension. In particular, we
show that any exceptional Fano surface is 1

42 -lc. As corollaries, we show that any R-complementary surface X has
an n-complement for some integer 𝑛 ≤ 192 · 84128·425 ≈ 101010.5 , and Tian’s alpha invariant for any surface is
≤ 3

√
2 · 8464·425 ≈ 101010.2 . Although the latter two values are expected to be far from being optimal, they are the

first explicit upper bounds of these two algebraic invariants for surfaces.
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1. Introduction

We work over the field of complex number C.
Birkar famously proved the boundedness of n-complements for R-complementary varieties and pairs

with hyperstandard coefficients [3], which was later generalized to arbitrary DCC coefficients [20] and
arbitrary coefficients [40] under milder conditions. It is interesting to ask whether we can give an explicit
bound of n, as such an explicit bound is expected to be useful for the moduli of log surfaces (cf. [1, 26,
28]) and threefold minimal log discrepancies [19]. [39] shows that an R-complementary surface pair
(𝑋, 𝐵) is n-complementary for some 𝑛 ∈ {1, 2, 3, 4, 6} when B has standard coefficients and (𝑋, 𝐵) is
not exceptional, but the question remained open in general for surfaces. In this paper, we provide an
explicit upper bound of n for surfaces.

Theorem 1.1. Let 𝑋/𝑍 � 𝑧 be an R-complementary surface. Then, 𝑋/𝑍 � 𝑧 has an n-complement for
some 𝑛 ≤ 192 · 84128·425 . In particular, if Z is a point, then ℎ0 (−𝑛𝐾𝑋 ) > 0.
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The key ingredient of the proof of Theorem 1.1 is the following result which provides an explicit
characterization of the singularities of exceptional pairs in any dimension. Recall that lct(𝑑, Γ) is the set
of lc thresholds for effective Weil divisors with respect to pairs of dimension d with coefficients in Γ.

Theorem 1.2. Let d be a positive integer and Γ ⊂ [0, 1] a DCC set. Let

𝜖1(𝑑, Γ) := inf

{
1 − 𝑡

����� 𝑡 < 1, there exists a pair (𝑊,Δ + 𝑡Ψ) of dimension 𝑑 such that
(𝑊,Δ + 𝑡Ψ) is lc, 𝐾𝑊 + Δ + 𝑡Ψ ≡ 0,Δ ∈ Γ, and 0 ≠ Ψ ∈ N+

}
,

𝜖2(𝑑, Γ) := inf{1 − 𝑡 | 𝑡 < 1, 𝑡 ∈ lct(𝑑, Γ)},

and 𝜖 (𝑑, Γ) := min{𝜖1(𝑑, Γ), 𝜖2(𝑑, Γ)}. Then, for any exceptional Fano type pair (𝑋, 𝐵) of dimension
d such that 𝐵 ∈ Γ and any 0 ≤ 𝐺 ∼R −(𝐾𝑋 + 𝐵), (𝑋, 𝐵 + 𝐺) is 𝜖 (𝑑, Γ)-lc. In particular, (𝑋, 𝐵) is
𝜖 (𝑑, Γ)-lc.

We have the following corollary, which implies Theorem 1.1.

Corollary 1.3. Exceptional Fano type surfaces are 1
42 -lc.

With Corollary 1.3, we also provide an explicit upper bound of Tian’s 𝛼-invariant for surfaces:

Corollary 1.4. Tian’s 𝛼-invariant for any surface is ≤ 3
√

2 · 8464·425 (when it is well-defined).

Although the bounds in Theorem 1.1 and Corollary 1.4 are expected to be far from being optimal,
these are the first precise upper bounds of these two algebraic invariants for surfaces. Similar topics
and alternative directions include the estimation of the lower bound n (cf. [15, 42]), the boundedness
of the the anti-canonical volume of Fano varieties (cf. [35, 36, 11, 37, 12, 38, 13, 14, 23, 22, 24, 4]),
estimation of (𝜖, 𝑛)-complement [9], the explicit McKernan-Shokurov conjecture [18], precise bounds
of mlds [21, 33, 31], etc.

Postscript

After the first version of this paper, 1) Totaro [41] conjectured that the smallest Tian’s alpha invariant for
del Pezzo surfaces is equal to 21

2 , given by 𝑋154 ⊂ P(77, 45, 19, 14), and 2) The author and Shokurov [32]
prove that 𝜖 (2, {0}) = 1

13 . This result allows us to get better explicit bounds of the n-complements and
the 𝛼-invariants. Nevertheless, in order to make the paper self-contained, we will not use any results
in [32].

2. Preliminaries

We adopt the standard notation and definitions in [29, 6] and will freely use them. For the notation of
(relative) pairs (𝑋/𝑍 � 𝑧, 𝐵) and complements, we refer the reader to [9].

Definition 2.1. Let (𝑋/𝑍 � 𝑧, 𝐵) be an R-complementary pair. We say that (𝑋/𝑍 � 𝑧, 𝐵) is exceptional
if (𝑋/𝑍 � 𝑧, 𝐵 + 𝐺) is klt for any 𝐺 ≥ 0 such that 𝐾𝑋 + 𝐵 + 𝐺 ∼R 0 over a neighborhood of z.

Definition 2.2. Let d be a positive integer and Γ ⊂ [0, 1] a set. We let

𝜖1 (𝑑, Γ) := inf

{
1 − 𝑡

����� 𝑡 < 1, there exists a pair (𝑋, 𝐵 + 𝑡𝐶) of dimension 𝑑 such that
(𝑋, 𝐵 + 𝑡𝐶) is lc, 𝐾𝑋 + 𝐵 + 𝑡𝐶 ≡ 0, 𝐵 ∈ Γ, and 0 ≠ 𝐶 ∈ N+

}
,

𝜖2(𝑑, Γ) := inf{1 − 𝑡 | 𝑡 < 1, 𝑡 ∈ lct(𝑑, Γ)},

and 𝜖 (𝑑, Γ) := min{𝜖1(𝑑, Γ), 𝜖2 (𝑑, Γ)}. By [17, Theorem 1.5], 𝜖 (𝑑, Γ) > 0 when Γ is DCC.
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Remark 2.3. Usually, 𝜖1 (𝑑, Γ) < 𝜖2 (𝑑, Γ), (e.g., when Γ = 𝐷 (Γ) [17, Lemma 11.2, Proposition 11.5])
and in such cases, 𝜖 (𝑑, Γ) = 𝜖1 (𝑑, Γ).

Lemma 2.4 [26, 5.3 Theorem, 5.4 Theorem]. Let Γ := {1 − 1
𝑛 | 𝑛 ∈ N+} ∪ {1}. Then,

1. 𝜖2 (2, Γ) = 𝜖2 (2, {0}) = 1
6 .

2. 𝜖1 (2, Γ) = 1
42 ≤ 𝜖1 (2, {0}).

Remark 2.5. It was expected that 𝜖1 (2, {0}) = 1
13 (cf. [1, Notation 4.1], [28, 40]). After the first version

of this paper, the author and Shokurov prove this result in [32]. It is interesting to ask whether 𝜖1(𝑑, Γ)
is equal to the 1-gap of mlds for pairs with coefficients in Γ in dimension 𝑑 + 1 (cf. [21, 33, 31]).

Remark 2.6. When Γ = {1 − 1
𝑛 | 𝑛 ∈ N+} ∪ {1} is the standard set, 𝜖 (𝑑, Γ) ≤ 1

𝑁𝑑+2−1 by considering
the example (P𝑑 ,

∑𝑑+1
𝑖=1 (1 − 1

𝑁𝑖
)𝐻𝑖 + (1 − 1

𝑁𝑑+2−1 )𝐻𝑑+2)), where {𝑁𝑖}+∞𝑖=1 is the Sylvester sequence
2, 3, 7, 43, . . . and 𝐻𝑖 are general hyperplanes of degree 1. It is also expected that 𝜖 (𝑑, Γ) = 1

𝑁𝑑+2−1
[27, 8.16].

Lemma 2.7 [(cf. [2, Proof of Lemma 3.7], [30, After Theorem A], [4, Lemma 2.2]).] Let 𝜖 be a positive

real number and X an 𝜖-lc Fano surface. Then, 𝐼𝐾𝑋 is Cartier for some positive integer 𝐼 ≤ 2
(

2
𝜖

) 128
𝜖 5
.

We will frequently use the following result to run minimal model programs:

Theorem 2.8 [6, Corollary 1.3.2]. Fano type varieties are Mori dream spaces. In particular, for any
Fano type variety X and any R-Cartier R-divisor D on X, any sequence of D-MMP terminates with
either a good minimal model or a Mori fiber space.

3. The nonexceptional case

Lemma 3.1. Let 𝑋/𝑍 � 𝑧 be an R-complementary surface that is not exceptional. Then, 𝑋/𝑍 � 𝑧 has
an n-complement for some 𝑛 ∈ {1, 2, 3, 4, 6}.

Proof. There exists an lc but not klt pair (𝑋/𝑍 � 𝑧, 𝐵) such that𝐾𝑋 +𝐵 ∼R,𝑍 0 over a neighborhood of z.
Let 𝑓 : 𝑌 → 𝑋 be a dlt modification of (𝑋/𝑍 � 𝑧, 𝐵) and let 𝐾𝑌 + 𝐵𝑌 := 𝑓 ∗(𝐾𝑋 + 𝐵). Then, �𝐵𝑌 � ≠ 0.
By [39, 2.3 Inductive Theorem], (𝑌/𝑍 � 𝑧, �𝐵𝑌 �) has a monotonic n-complement (𝑌/𝑍 � 𝑧, 𝐵+𝑌 ) for
some 𝑛 ∈ {1, 2, 3, 4, 6} for any 𝑧 ∈ 𝑍 . Hence, 𝑋/𝑍 � 𝑧 has an n-complement (𝑋/𝑍 � 𝑧, 𝑓∗𝐵+𝑌 ) for some
𝑛 ∈ {1, 2, 3, 4, 6}. �

Corollary 3.2. Let 𝑋/𝑍 � 𝑧 be an R-complementary surface and dim 𝑍 > 0. Then, 𝑋/𝑍 � 𝑧 has an
n-complement for some 𝑛 ∈ {1, 2, 3, 4, 6}.

Proof. For any pair (𝑋/𝑍 � 𝑧, 𝐵) such that𝐾𝑋 +𝐵 ∼R,𝑍 0 over a neighborhood of z, (𝑋/𝑍 � 𝑧, 𝐵+𝑡 𝑓 ∗𝑧)
is an lc but not klt pair such that𝐾𝑋 +𝐵+𝑡 𝑓 ∗𝑧 ∼R,𝑍 0 over a neighborhood of z, where 𝑡 := lct(𝑋, 𝐵; 𝑓 ∗𝑧).
The corollary follows from Lemma 3.1. �

4. The exceptional case

4.1. Proof of Theorem 1.2 and Corollary 1.3

Lemma 4.1. Let d be a positive integer, Γ ⊂ [0, 1] a DCC set and 𝜖 := 𝜖 (𝑑, Γ). Let (𝑋/𝑍, 𝑇 + 𝑎𝑆) be a
pair such that X is of Fano type over Z, −(𝐾𝑋 +𝑇 + 𝑎𝑆) is nef/𝑍 , 𝑇 ∈ Γ, 𝑆 ≠ 0 is a reduced divisor and
𝑎 ∈ (1 − 𝜖, 1). Then, we may run a −(𝐾𝑋 + 𝑇 + 𝑆)-MMP/𝑍 which consists of a sequence of divisorial
contractions and flips

(𝑋,𝑇 + 𝑆) := (𝑋0, 𝑇0 + 𝑆0) � (𝑋1, 𝑇1 + 𝑆1) � · · · � (𝑋𝑛, 𝑇𝑛 + 𝑆𝑛),
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such that

1. (𝑋𝑖 , 𝑇𝑖 + 𝑆𝑖) is lc for each i,
2. 𝑆𝑛 ≠ 0 and
3. −(𝐾𝑋𝑛 + 𝑇𝑛 + 𝑆𝑛) is nef/𝑍 .

Here, 𝑇𝑖 and 𝑆𝑖 are the strict transforms of T and S on 𝑋𝑖 respectively.

Proof. By Theorem 2.8, we may run a −(𝐾𝑋 + 𝑇 + 𝑆)-MMP/𝑍 .
(1) Since −(𝐾𝑋 +𝑇 +𝑎𝑆) is nef/𝑍 , (𝑋/𝑍, 𝑇 +𝑎𝑆) is R-complementary. Hence, (𝑋𝑖/𝑍, 𝑇𝑖 +𝑎𝑆𝑖) is R-

complementary for each i. In particular, (𝑋𝑖 , 𝑇𝑖 + 𝑎𝑆𝑖) is lc for each i. By the definition of 𝜖 , (𝑋𝑖 , 𝑇𝑖 + 𝑆𝑖)
is lc for each i.

(2) Since −(𝐾𝑋 + 𝑇 + 𝑎𝑆) is nef/𝑍 , by the negativity lemma, 𝑋 � 𝑋𝑛 is −(𝐾𝑋 + 𝑇 + 𝑎𝑆)-non-
negapositive. Since 𝑋 � 𝑋𝑛 is a −(𝐾𝑋 + 𝑇 + 𝑆)-MMP, 𝑋 � 𝑋𝑛 is −(𝐾𝑋 + 𝑇 + 𝑆)-negative. Hence,
𝑋 � 𝑋𝑛 is S-positive, and we get (2).

(3) Suppose not, then this MMP terminates with a −(𝐾𝑋𝑛 +𝑇𝑛 +𝑆𝑛)-Mori fiber space 𝑋𝑛 → 𝑉 . Then,
−(𝐾𝑋𝑛 + 𝑇𝑛 + 𝑆𝑛) is anti-ample/𝑉 . Since −(𝐾𝑋 + 𝑇 + 𝑎𝑆) is nef/𝑍 , −(𝐾𝑋𝑛 + 𝑇𝑛 + 𝑎𝑆𝑛) is nef/𝑉 and
there exists a real number 𝑐 ∈ [𝑎, 1) ⊂ (1− 𝜖, 1) such that 𝐾𝑋𝑛 +𝑇𝑛 + 𝑐𝑆𝑛 ≡𝑉 0. By (1), (𝑋𝑛, 𝑇𝑛 + 𝑐𝑆𝑛)
is lc. Let F be a general fiber of 𝑋𝑛 → 𝑉 , 𝑇𝐹 := 𝑇 |𝐹 and 𝑆𝐹 := 𝑆 |𝐹 . Then, (𝐹,𝑇𝐹 + 𝑐𝑆𝐹 ) is lc and
𝐾𝐹 + 𝑇𝐹 + 𝑐𝑆𝐹 ≡ 0. Thus, 𝜖 ≤ 𝜖1 (𝑑, Γ) ≤ 𝜖1(dim 𝐹, Γ) ≤ 1 − 𝑐, a contradiction. �

Proof of Theorem 1.2. Let 𝑎 := tmld(𝑋, 𝐵+𝐺) be the total minimal log discrepancy of (𝑋, 𝐵+𝐺), and
E a divisor over X such that 𝑎(𝐸, 𝑋, 𝐵 + 𝐺) = 𝑎. Suppose that 𝑎 < 𝜖 := 𝜖 (𝑑, Γ). We let 𝑐 := mult𝐸 𝐺
and let 𝑒 := 1 − 𝑎 − 𝑐. If E is exceptional over X, then we let 𝑓 : 𝑌 → 𝑋 be a divisorial contraction
which extracts E. If E is not exceptional over X, then we let 𝑓 : 𝑌 → 𝑋 be the identity morphism. Then,
we have 𝐾𝑌 + 𝑒𝐸 + 𝐵𝑌 = 𝑓 ∗(𝐾𝑋 + 𝐵), where 𝐵𝑌 is the strict transform of B on Y. We let 𝐺𝑌 := 𝑓 ∗𝐺.

Claim 4.2. Y is of Fano type.

Proof. If 𝑌 = 𝑋 , then it is clear Y is of Fano type. Otherwise, there exists a klt pair (𝑋,Δ) such that
−(𝐾𝑋 + Δ) is big and nef. Let Δ𝑌 := 𝑓 −1

∗ Δ and let 𝑎′ := 𝑎(𝐸, 𝑋,Δ). Then, 𝑎′ ≤ 𝑎 < 𝜖 < 1, so
(𝑌,Δ𝑌 + (1 − 𝑎′)𝐸) is a klt pair such that −(𝐾𝑌 + Δ𝑌 + (1 − 𝑎′)𝐸) is big and nef. Thus, Y is of Fano
type. �

Proof of Theorem 1.2 continued. Since −(𝐾𝑌 + (1 − 𝑎)𝐸 + 𝐵𝑌 ) ∼R 𝐺𝑌 − 𝑐𝐸 ≥ 0, by Claim 4.2 and
Theorem 2.8, we may run a −(𝐾𝑌 + (1 − 𝑎)𝐸 + 𝐵𝑌 )-MMP which terminates with a model T such that
−(𝐾𝑇 + (1 − 𝑎)𝐸𝑇 + 𝐵𝑇 ) is nef, where 𝐸𝑇 , 𝐵𝑇 are the strict transforms of 𝐸, 𝐵 on T, respectively.
Since E is not a component of 𝐺𝑌 − 𝑐𝐸 and the MMP only contracts divisors that are contained in
Supp(𝐺𝑌 − 𝑐𝐸), 𝐸𝑇 ≠ 0. By Lemma 4.1, we may run a −(𝐾𝑇 +𝐸𝑇 + 𝐵𝑇 )-MMP which terminates with
a model V, such that (𝑉, 𝐸𝑉 + 𝐵𝑉 ) is lc, 𝐸𝑉 ≠ 0 and −(𝐾𝑉 + 𝐸𝑉 + 𝐵𝑉 ) is nef, where 𝐸𝑉 , 𝐵𝑉 are the
strict transforms of 𝐸𝑇 , 𝐵𝑇 on V, respectively. Since X is of Fano type, V is of Fano type. It is clear that
(𝑉, 𝐸𝑉 + 𝐵𝑉 ) is not exceptional.

For any prime divisor D over X, we have

𝑎(𝐷, 𝑋, 𝐵) ≥ 𝑎(𝐷,𝑌, (1 − 𝑎)𝐸 + 𝐵𝑌 ) ≥ 𝑎(𝐷,𝑇, (1 − 𝑎)𝐸𝑇 + 𝐵𝑇 )
≥ 𝑎(𝐷,𝑇, 𝐸𝑇 + 𝐵𝑇 ) ≥ 𝑎(𝐷,𝑉, 𝐸𝑉 + 𝐵𝑉 ).

By [3, Lemma 2.17], X is not exceptional, a contradiction. �

Remark 4.3. The proof of Theorem 1.2 also works for generalized pairs [5]. For simplicity, we omit
the proof.

Corollary 4.4. Let (𝑋, 𝐵 + 𝐺) be a pair such that (𝑋, 𝐵) is exceptional, X is a Fano type surface,
𝐵 ∈ {1 − 1

𝑛 | 𝑛 ∈ N+} ∪ {1} and 0 ≤ 𝐺 ∼R −(𝐾𝑋 + 𝐵). Then, (𝑋, 𝐵 +𝐺) is 1
42 -lc. In particular, (𝑋, 𝐵)

and X are 1
42 -lc.
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Proof. It immediately follows from Theorem 1.2 and Lemma 2.4. �

Proof of Corollary 1.3. It follows from Corollary 4.4. �

Corollary 4.5. For any exceptional Fano surface X, there exists 𝐼 ≤ 2 · 84128·425 such that 𝐼𝐾𝑋 is
Cartier. In particular, 𝐾2

𝑋 ≥ 1
𝐼 .

Proof. It follows from Corollary 1.3 and Lemma 2.7. �

4.2. Exceptional surface complements

Lemma 4.6. Let (𝑋 := P1, 𝐵) be a pair such that deg(𝐾𝑋 + 𝐵) ≤ 0 and 𝐵 ∈ { 𝑘
12 | 𝑘 ∈ N+, 0 ≤ 𝑘 ≤

12} ∪ {1 − 1
𝑛 | 𝑛 ∈ N+}. Then, (𝑋, 𝐵) has a monotonic n-complement such that 12 | 𝑛 and 𝑛 ≤ 276.

Proof. We may write 𝐵 = 𝐶 + 𝐷 where 𝐶, 𝐷 ≥ 0, 𝐶 ∈ {1 − 1
𝑛 | 𝑛 ∈ N+, 12 � 𝑛}, 12𝐷 is integral and

𝐶 ∧ 𝐷 = 0. Then, the coefficients of C are ≥ 4
5 . In particular, C has at most 2 irreducible components.

Possibly adding divisors of the form 1
12 𝑝 to D where p are general points on X, we may assume that

0 ≥ deg(𝐾𝑋 + 𝐵) > − 1
12 . We have the following cases.

Case 1. 𝐶 = 0. Then, (𝑋, 𝐵) is a 12-complement of itself.

Case 2. C has 1 irreducible component 𝐶1. Then, 𝐶 = 𝑎𝐶1 for some 𝑎 ∈ (0, 1) and (𝑋, �12𝑎�
12 𝐶1 + 𝐷) is

a monotonic 12-complement of (𝑋, 𝐵).

Case 3. C has 2 irreducible components𝐶1, 𝐶2. We have𝐶 = 𝑎1𝐶1+𝑎2𝐶2. Possibly switching𝐶1, 𝐶2, we
may assume that 𝑎1 ≤ 𝑎2. If 𝐷 = 0, then (𝑋,𝐶1 +𝐶2) is a monotonic 1-complement of (𝑋, 𝐵). If 𝐷 ≠ 0,
then 𝑎1 ≤ 23

24 . Let m be the denominator of 𝑎1. Then, 𝑚 ≤ 24 and (𝑋, 𝑎1𝐶1 + (2− deg𝐷 − 𝑎1)𝐶2 +𝐷) is
a monotonic lcm(12, 𝑚)-complement of (𝑋, 𝐵). Since 12 | lcm(12, 𝑚) and lcm(12, 𝑚) ≤ 276, we are
done. �

Theorem 4.7. Let X be an R-complementary exceptional surface.

1. If 𝜅(−𝐾𝑋 ) = 0, then X has an n-complement for some 𝑛 ≤ 21.
2. If 𝜅(−𝐾𝑋 ) = 1, then X has an n-complement for some n such that 12 | 𝑛 and 𝑛 ≤ 276.
3. If 𝜅(−𝐾𝑋 ) = 2, then X has an n-complement for some 𝑛 ≤ 192 · 84128·425 .

Proof. There exists a klt pair (𝑋, 𝐵) such that 𝐾𝑋 + 𝐵 ∼R 0. Thus, (𝑋, (1 + 𝛿)𝐵) is klt for some
0 < 𝛿 � 1, so we may run a (𝐾𝑋 + (1 + 𝛿)𝐵)-MMP which terminates with good minimal model 𝑋 ′.
Since 𝐾𝑋 + (1 + 𝛿)𝐵 ∼R −𝛿𝐾𝑋 , this is also a −𝐾𝑋 -MMP. By abundance for klt surfaces, −𝐾𝑋 ′ is
semi-ample. Possibly replacing X with 𝑋 ′, we may assume that −𝐾𝑋 is semi-ample.

If 𝜅(−𝐾𝑋 ) = 0, then 𝐾𝑋 ≡ 0. Hence, 𝑛𝐾𝑋 ∼ 0 for some positive integer 𝑛 ≤ 21 [7, 43, 44], and X is
an n-complement of itself for some 𝑛 ≤ 21.

If 𝜅(−𝐾𝑋 ) = 1, then −𝐾𝑋 defines a contraction 𝑓 : 𝑋 → 𝑍 . By Kodaira’s canonical bundle formula,
we have

12𝐾𝑋 ∼ 12 𝑓 ∗(𝐾𝑍 + 𝐵𝑍 + 𝑀𝑍 )

such that 12𝑀𝑍 is an integral divisor, 𝐵𝑍 ∈ {1 − 1
𝑛 | 𝑛 ∈ N+} and

𝐵𝑍 =
∑
𝑧∈𝑍

(1 − lct(𝑋, 0; 𝑓 ∗𝑧))𝑧.

We may choose 𝑀𝑍 such that 𝐵𝑍 ∧ 𝑀𝑍 = 0 and (𝑍, 𝐵𝑍 + 𝑀𝑍 ) is klt. Since −𝐾𝑋 is semi-ample,
deg(𝐾𝑍 + 𝐵𝑍 + 𝑀𝑍 ) ≤ 0. Hence, Z is either an elliptic curve or P1. If Z is an elliptic curve, then
𝐵𝑍 = 𝑀𝑍 = 0 and 12𝐾𝑋 is base-point-free. Hence, X is a 12-complement of itself. If 𝑍 = P1, by
Lemma 4.6, there exists an integer 𝑛 ≤ 276 such that 12 | 𝑛 and (𝑍, 𝐵𝑍 + 𝑀𝑍 ) has a monotonic
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n-complement (𝑍, 𝐵𝑍 + 𝐺 + 𝑀𝑍 ). By the construction of 𝐵𝑍 , (𝑋, 𝑓 ∗𝐺) lc. Hence, (𝑋, 𝑓 ∗𝐺) is an
n-complement of X.

If 𝜅(−𝐾𝑋 ) = 2, then −𝐾𝑋 defines a birational morphism 𝑓 : 𝑋 → 𝑌 . We have 𝐾𝑋 = 𝑓 ∗𝐾𝑌 . Possibly
replacing X with Y, we may assume that X is Fano. By Corollary 1.3, X is 1

42 -lc. By Lemma 2.7, 𝐼𝐾𝑋

is Cartier for some 𝐼 ≤ 2 · 84128·425 . By the effective base-point-freeness theorem ([16, Theorem 1.1,
Remark 1.2] [25, 1.1 Theorem]), |−96𝐼𝐾𝑋 | is base-point-free. In particular, X has a 96𝐼-complement. �

5. Proof of the main theorems

Proof of Theorem 1.1. If dim 𝑍 > 0 or dim 𝑍 = 0 and X is not exceptional, the theorem follows from
Lemma 3.1 and Corollary 3.2. Otherwise, dim 𝑍 = 0 and X is exceptional, and the theorem follows from
Theorem 4.7. �

Proof of Corollary 1.4. Recall that Tian’s 𝛼-invariant for a variety X is defined as

𝛼(𝑋) := inf{𝑡 ≥ 0 | lct(𝑋, 0;𝐷) | 𝐷 ∈ | − 𝐾𝑋 |Q}.

We may assume that 𝛼(𝑋) > 1. If 𝜅(−𝐾𝑋 ) ≤ 1, then by Theorem 4.7, X has an n-complement
(𝑋, 𝐺) for some 𝑛 ≤ 276. Hence, (𝑋, 𝑛𝐺) is not klt, and 𝛼(𝑋) ≤ 276. Thus, we may assume that
𝜅(−𝐾𝑋 ) = 2. We may run a (−𝐾𝑋 )-MMP and replace X with the canonical model of −𝐾𝑋 , and assume
that −𝐾𝑋 is ample. By Corollary 4.5, 𝐾2

𝑋 ≥ 1
𝐼 . Since 𝛼(𝑋)2 · vol(−𝐾𝑋 ) ≤ 9 (cf. [8, Theorems A,D]),

𝛼(𝑋) ≤ 3
√
𝐼 ≤ 3

√
2 · 8464·425 . �

6. Further remarks

Remark 6.1 (Reasonable and optimal bounds). Recall that we expect 𝜖1 (2, {0}) = 1
13 . If we can prove

this, then the bound of n in Theorem 1.1 can be improved to 192·26128·135 ≈ 10107.8 . This is much smaller
than the current bound, albeit it is still expected to be far from optimal. However, if one can get a better
bound for 𝐼 = 𝐼 (𝜖) in Lemma 2.7, then the bound of n may be greatly improved. For example, [34, Proof
of Lemma 4.9] actually implies that the local Cartier index of any 2

5 -klt weak Fano surface is ≤ 19. With
a little more effort, one can show that the global Cartier index of any 2

5 -klt weak Fano surface is ≤ 385.
This is much smaller than the bound given by Lemma 2.7 which is 2 · 512500. By applying the arguments
in this paper, we shall get 𝑛 ≤ 36960 and 𝛼(𝑋) ≤ 3

√
385 ≈ 58.86 for exceptional 2

5 -klt surfaces.

Remark 6.2 (Explicit bound for pairs). One may also ask whether we can find an explicit bounded of n
for n-complements of surface pairs (𝑋, 𝐵).

For pairs with finite rational coefficients, the bound is computable via the methods introduced in [2],
but may be much larger than the case when 𝐵 = 0. This is because the bound 𝜖 (𝑑, Γ) = 1

42 in Lemma 2.4
will be changed to a number which is very close to 1 as in [2, 3.5] when Γ is not the standard set. It
is very difficult to represent that number in a very explicit function of the common denominator of the
coefficient set (even when the coefficient set is {0, 1

3 }, for example). We also need to go through the
inductive arguments as in [39, 2.3 Inductive Theorem] for nonexceptional complements.

For pairs with finite (maybe irrational) coefficients or DCC coefficients, a theory on ‘explicit uniform
rational polytopes’ (cf. [20]) is needed, which is still unknown.

For pairs with coefficients in [0, 1], one needs to go through all the previous simpler cases and check
the details of the proof of [40, Theorem 3] and avoid using any inexplicit boundedness result. This is
considered to be much more difficult. See [10] for a similar result.

Remark 6.3 (Explicit bound of threefold mlds). By Remark 6.2 and following the details of the proof
of [19], one will be able to provide a computable lower bound of the 1-gap of threefold mlds for pairs
with finite rational coefficients (or, more generally, hyperstandard rational coefficients). This is because
all other constants in the proof of [19] can be explicitly bounded except the t in [19, Lemma 6.4]. Here,
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an explicit boundedness of n-complement for threefold singularities is needed, but this just follows
from Theorem 1.1 and Remark 6.2. Nevertheless, such bound will, again, be far from being optimal.
For example, when we have standard coefficients, the 1-gap is expected to be 1

42 (by Remark 2.5 and
Lemma 2.4), but we can only show that the 1-gap is ≥ 𝜖 for some 𝜖 ≈ 1

192·42128·425 .
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