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Abstract. We define “star reducible” Coxeter groups to be those Coxeter groups
for which every fully commutative element (in the sense of Stembridge) is equivalent to
a product of commuting generators by a sequence of length-decreasing star operations
(in the sense of Lusztig). We show that the Kazhdan—Lusztig bases of these groups
have a nice projection property to the Temperley—Lieb type quotient, and furthermore
that the images of the basis elements C,, (for fully commutative w) in the quotient have
structure constants in Z=%[v, v=']. We also classify the star reducible Coxeter groups
and show that they form nine infinite families with two exceptional cases.

2000 Mathematics Subject Classification. 20F55, 20C08.

Introduction. Let (W, S) be a Coxeter group, with finite generating set S.
Stembridge [19] introduced the set W, of fully commutative elements of W as those
for which any two reduced expressions in the generators are equivalent via iterated
application of short braid relations, that is, relations of the form ss’ = §'s, where
s, 8" € S. For example, if w is a product of commuting generators from S, then w
is fully commutative.

If 1 = {s, s’} € Sisapair of noncommuting Coxeter generators, then / induces four
partially defined maps from W to itself, known as star operations. A star operation,
when it is defined, respects the partition W = W.U(W\W,) of the Coxeter group, and
increases or decreases the length of the element to which it is applied by 1.

In this paper we will analyse the situation where every fully commutative element
can be reduced to a product of commuting generators from S by iterated application
of length-decreasing star operations; this property is called “Property F” in [12], as it is
essentially the same as Fan’s notion of cancellability in [5]. Groups with this property
are the eponymous “star reducible Coxeter groups”, and they include the finite Coxeter
groups as a subclass.

We shall show (Theorem 4.1) that arbitrary elements of star reducible Coxeter
groups have reduced expressions of a particularly nice type, which allows us to prove
(Theorem 4.3) a strong form of a certain conjectured projection property (in the sense
of [14, 18]) for the associated Kazhdan—Lusztig basis {C;, : w € W}. This has some
strong consequences (Theorem 4.6) for the Kazhdan—Lusztig type basis {¢,, : w € W.}
introduced by J. Losonczy and the author for a Temperley—Lieb type quotient of the
Hecke algebra H associated to W. In the star reducible case, this basis turns out
simply to be the projection of the Kazhdan-Lusztig basis elements {C, : w € W.}.
Furthermore, there is a simple inductive construction for the ¢,, and the c-basis can
be shown to have nonnegative structure constants, that is, structure constants that
are Laurent polynomials with nonnegative coefficients. One of the reasons this is
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interesting is that in many cases (see [12, §6] and [15, Theorem 2.2.3, §3.1]), these
structure constants are also structure constants for the Kazhdan—Lusztig basis, whose
positivity is generally very difficult to prove.

Finally (Theorem 6.3), we classify all star reducible Coxeter groups for which S is
a finite set. This class of groups contains the seven infinite families of groups (4, B, D,
E, F, H and I) for which W. is finite, which were classified independently by Graham
[8] and Stembridge [19], as well as three other infinite families (one of which subsumes
type ) and two exceptional cases.

Combining the main result of this paper (Theorem 4.6) with the classification of
star reducible Coxeter groups (Theorem 6.3), one obtains an extensive class of examples
of situations where the projection of the Kazhdan—Lusztig basis elements C;, (for fully
commutative w) to the Temperley—Lieb quotient have positive structure constants.
These quotients are useful because they provide combinatorially tractable models for
Kazhdan-Lusztig theory that are useful for formulating and checking conjectures, and
in a future paper we plan to explain the application of the quotient algebras to the
representation theory of the corresponding Lie algebras. Our results here also provide
unifying conceptual proofs for various results already in the literature.

1. Preliminaries. Let X be a Coxeter graph, of arbitrary type, and let W = W (X)
be the associated Coxeter group with distinguished (finite) set of generating involutions
S(X). (The reader is referred to [1] or [16] for details of the theory of Coxeter groups.)
In other words, W = W(X) is given by the presentation

W = (S(X) | (s1)"" = 1 for m(s, ) < 00),

where m(s, s) = 1 and m(s, t) = m(t, s). It turns out that the elements of S = S(X) are
distinct as group elements, and that m(s, f) is the order of sz.

Denote by S* the free monoid on S = S(X). We call the elements of S letters and
those of S* words. The length of a word is the number of factors required to write the
word as a product of letters. Let ¢ : S* —> W be the surjective morphism of monoid
structures satisfying ¢(i) = s; for all i € S. A word i € S* is said to represent its image
w = ¢(i) € W; furthermore, if the length of i is minimal among the lengths of all the
words that represent w, then we call i a reduced expression for w. The length of w,
denoted by ¢(w), is then equal to the length of i. A product wyw; - - - w, of elements
w; € W is called reduced if £(wyw; - - - wy,) = Y, €(w;). We write

Lw)={seS:Lsw) < l(w)}
and
R(w) ={s € S: &L(ws) < £(w)}.
The set L(w) (respectively, R(w)) is called the left (respectively, right) descent set of w.
The commutation monoid Co(X, S) is the quotient of the free monoid S* by the
congruence = generated by the commutation relations:

st = ts for all s, t € S with ¢(s) ¢ (1) = ¢(2) ¢ (s);

note that, as a monoid, W is a quotient of Co(X, S).
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The elements of Co(X, S), which computer scientists call traces [3], have the
following normal form, often called the Cartier—Foata normal form (see [2]).

THEOREM 1.1 (Cartier—Foata normal form). Let s be an element of the
commutation monoid Co(X, S). Then s has a unique factorization in Co(X, S) of the
form

S=S818--§)

such that each s; is a product of distinct commuting elements of S, and such that for each
1 <j < pand each generator t € S occurring insjyy, there is a generator s € S occurring
ins; such that st # ts. |

REMARK 1.2. The Cartier-Foata normal form may be defined inductively, as
follows. If we define L(s) to be the set of possible first letters in all the words s’ for which
s’ =sin Co(X, S), then s; is just the product of the elements in £(s). Since Co(X, S) is
a cancellative monoid, there is a unique element s’ € Co(X, S) with s = s;s". If

S/ZSZ"’Sp

is the Cartier—Foata normal form of §/, then
S18y - - - S[l
1s the Cartier—Foata normal form of's.

Denote by H = H(X) the Hecke algebra associated to W. This is a Z[q, ¢~']-
algebra with a basis consisting of (invertible) elements T, with w ranging over W,
satisfying

Ty if £(sw) > £(w),
Tr Tw = .

qTw +(q— DT, ifl(sw) < L(w),
where £ is the length function on the Coxeter group W, w € W,and s € S.

For many applications it is convenient to introduce an .A-form of H, where A =
Z[v,v"'] and v? = ¢, and to define a scaled version of the T-basis, {T,, : w € W},
where T, := v‘™T, . Unless otherwise stated, we will use the A-form of H from now
on, and we will denote the Z[g, ¢~']-form by H,. We will write A* and A~ for Z[v]
and Z[v~!'], respectively, and we denote the Z-linear ring homomorphism A — A
exchanging v and v~! by ~. We can extend ~ to a ring automorphism of H (as in
[7, Theorem 11.1.10]) by the condition that

~ =~ o~
E ay T, = E ayT 1,
weW weW

where the a,, are elements of A.
In [17], Kazhdan and Lusztig proved the following.

THEOREM 1.3. (Kazhdan, Lusztig). For each w € W, there exists a unique C,, € H
such that both C!, = C., and

C, = T,+ ZayTy,

y<w
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where < is the Bruhat order on W and a, € v=' A~. The set {C,, : w € W} forms an A-

basis for H. O

Following [7, § 11.1], we denote the coefficient of T inC/

Lusztig polynomial P, is then given by v/ =0 ps
Let J(X) be the two-sided ideal of H generated by the elements

> T,
we(s,s’)

by P; . The Kazhdan—

where (s, s') runs over all pairs of elements of S that correspond to adjacent nodes in
the Coxeter graph, and (s, s’) is the parabolic subgroup generated by s and s'. (If the
nodes corresponding to (s, s") are connected by a bond of infinite strength, then we
omit the corresponding relation.)

Following Graham [8, Definition 6.1], we define the generalized Temperley—Lieb
algebra TL(X) to be the quotient A-algebra H(X)/J(X). We denote the corresponding
epimorphism of algebras by 6 : H(X) — TL(X). Since the generators of J(X) lie in
H,(X), we also obtain a Z[q, g ']-form TLy(X) of TL(X). Let t, (respectively, 7,)
denote the image in TL(X) of the basis element T, (respectively, 7,,) of H.

Call an element w € W complex if it can be written as a reduced product xjwyy x3,
where x1, x € W and w,y is the longest element of some rank 2 parabolic subgroup
(s, s') such that s and s’ correspond to adjacent nodes in the Coxeter graph. An element
w € W is said to be weakly complex if it is complex and of the form w = su, where u is
not complex and s € S. In this case, we must have su > u.

Denote by W.(X) the set of all elements of 1 that are not complex. The elements
of W, are the fully commutative elements of [19]; they are characterized by the property
that any two of their reduced expressions may be obtained from each other by repeated
commutation of adjacent generators; in other words, all reduced expressions are equal
as elements of Co(X, S). Each reduced expression for w has a Cartier—Foata normal
form, by considering it as an element of Co(.X, S), and this normal form is an invariant
of w if and only if w is fully commutative.

We define the A~ -submodule £ of TL(X) to be that generated by {7, : w € W.}.
We define v : £L —> L£/v~!L to be the canonical Z-linear projection.

By [13, Lemma 1.4], the ideal J(X) is fixed by 7, so ~ induces an involution on
TL(X), which we also denote by .

The following result is an analogue of Theorem 1.3 for the quotient algebra.

THEOREM 1.4.

() The set {t, - w € W,} is a Z[q, g~ '1-basis for TLy(X). The set {T,, : w € W} is
an A-basis for TL(X), and an A~ -basis for L.

(i1) For each w € W,, there exists a unique c,, € TL(X) such that both ¢, = c,, and
7 (cw) = 7 (T,). Furthermore, we have

Co =Ty + ZayTy,

y<w
yeWwe

where < is the Bruhat order on W, and a,, € A~ for all y.
(iii) The set {c,, : w € W,} forms an A-basis for TL(X) and an A~-basis for L.
(iv) If x € L and X = x, then x is a Z-linear combination of the c,,.
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Proof. This is a subset of [12, Theorem 2.1]. (Note that (i) is due to Graham
[8, Theorem 6.2], and (ii) and (iii) are essentially due to J. Losonczy and the author
[13, Theorem 2.3].) O

Let W be any Coxeter group and let I = {5, ¢} C S be a pair of noncommuting
generators whose product has order m (where m = oo is allowed). Let W/ denote
the set of all w € W satisfying L(w) NI = (. Standard properties of Coxeter groups
[16, § 5.12] show that any element w € W may be uniquely written as w = w;w?, where
wy € Wy = (s, 1) and £(w) = £(w;) + £(w’). There are four possibilities for elements
we W:

(i) w is the shortest element in the coset Wyw, so w; = 1 and w € W/;

(i1) w is the longest element in the coset W;w, so wy is the longest element of ¥}
(which can only happen if W is finite);

(iii) w is one of the (m — 1) elements sw’, tsw’, stsw’, ...;

(iv) w is one of the (m — 1) elements tw!, stw?, tstw?, .. ..

The sequences appearing in (iii) and (iv) are called (left) {s, t}-strings, or strings
if the context is clear. If x and y are two elements of an {s, ¢}-string such that £(x) =
£(y) — 1, we call the pair {x, y} left {s, t}-adjacent, and we say that y is left star reducible
to x.

The above concepts all have right-handed counterparts, leading to the notion of
right {s, t}-adjacent and right star reducible pairs of elements, and coset decompositions
(w)(w).

If there is a (possibly trivial) sequence
X =wo, Wy ..., W =)

where, for each 0 < i < k, w;y is left star reducible or right star reducible to w; with
respect to some pair {s;, #;}, we say that y is star reducible to x. Because star reducibility
decreases length, it is clear that this defines a partial order on W

If w is an element of an {s, ¢}-string, S,,, we have {£(sw), £(tw)} = {L(w) — 1, L(w) +
1}; let us assume without loss of generality that sw is longer than w and tw is shorter. If
sw is an element of S,,, we define *w = sw; if not, *w is undefined. If fw is an element
of S,,, we define ,w = tw; if not, ,w is undefined.

There are also obvious right handed analogues to the above concepts, so the
symbols w* and w, may be used with the analogous meanings.

EXAMPLE 1.5. In the Coxeter group of type B, with w = ts, we have
LW =S, *w=sts, w, =rand w* = tst.

If x = sts then *x and x* are undefined; if x = ¢ then ,x and x, are undefined.

DEFINITION 1.6. We say that a Coxeter group W(X), or its Coxeter graph X, is star
reducible if every element of W, is star reducible to a product of commuting generators
from S.

2. Acyclic monomials. In order to derive some of the results in this paper, and § 2
in particular, we will need to use the author’s theory of acyclic heaps [10, 11]. Heaps,
as introduced by Viennot in [21], are certain combinatorial structures associated to
elements of Co(X, S); they are known as “dependence graphs” in the computer science
literature [3]. However, in order to keep the paper as accessible as possible, we will avoid
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mention of heaps and work directly with monomials, or traces. All Coxeter groups in
§ 2 will be star reducible.

THEOREM 2.1. Let (W, S) be a star reducible Coxeter group. There is a unique
function h : Co(X, S) — Z=° with the following properties.

(1) If u e Co(X, S) and s, t € S are noncommuting generators, then h(stu) = h(tu)
and h(uts) = h(uz).
(i1) If'u € Co(X, S) is represented by a monomial

S182 ¢+ -8y

that is a reduced expression for some w € W, then h(u) = 0.
(iil) If'u = uyssuy for some generator s € S, and W' = wysuy, then h(n) = h(u') + 1.
(iv) If u = uystsuy for some noncommuting generators s, t € S, and W' = wyswy, then
h(u) = h(u').
(v) If u = uysuy for some generator s € S, and W' = ujuy, then |h(u) — h(u')| < 1.

Proof. Let k be a field.

According to [21, Proposition 3.4], elements u of Co(X, S) are in bijection with
certain heaps [E, <, ¢] (see [10], and [10, Proposition 3.1.4] in particular, for more
details on these concepts and the notation). Let A(u) = dim H;(E, k); it will turn out
that the definition is independent of k.

Part (i) follows from the proof of the inductive step in [10, Proposition 2.2.3].

Since W is star reducible, it follows from using (i) repeatedly that (ii) is true if and
only if it is true when u is a product of distinct commuting generators. In this case, the
claim follows from the proof of the base case of the induction in [10, Proposition 2.2.3].

Part (iii) is a restatement of [10, Lemma 2.3.4], part (iv) is a restatement of [10,
Lemma 2.3.5], and part (v) is a restatement of [10, Theorem 2.1.1] (star reducibility
plays no role in these proofs).

It follows from [1, Theorem 3.3.1 (i)] that the elements of Co(X, S) corresponding
to reduced expressions of some w € W are precisely those that have no monomial
representative of the form wujssu;, where s € S, and no monomial representative
ujuus where u, is an alternating product of mi(s, ) > 2 occurrences of s and 7. It
follows from this that any element of Co(X, S) can be transformed into an element
of Co(X, S) corresponding to a reduced expression for some w € W, by repeatedly
applying transformations of the form ss — s or sts — s, as used in parts (iii) and (iv).
Applying (ii), we see there is at most one function 4 satisfying (ii), (iii) and (iv). This
proves uniqueness of /4 and also shows that the definition is independent of the choice
of field k. O

DEFINITION 2.2. In the set-up of Theorem 2.1, an element u of Co(X, S) (and, by
extension, an element of S* representing u) is called an acyclic monomial if h(u) = 0.
(The acyclic monomials are those that correspond to the acyclic heaps of [10, 11].)

For our purposes in this paper, it is convenient to work with another basis of
TL(X), namely the monomial basis. Although the fact that this is a basis is well-
known, we provide a proof since there does not seem to be an easily available general
proof in the literature.
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DEFINITION 2.3. Let W be a Coxeter group and let w € W, be a fully commutative
element. Let

w = 818528

be a reduced expression for w. For each s € S, let by = v~'7] +7,, then define b, €
TL(X) by

by, 1= by, by, - - - by,.

Note that the element b, is well-defined precisely because any two reduced
expressions for w are commutation equivalent.

PROPOSITION 2.4. The set {b, : w € W,} is a free A-basis for TL(X), and by, = by,
forallw e W,.

Proof. The second assertion follows from the fact that ~is a ring endomorphism of
TL(X) that fixes the generators by = ¢,(s € S).

To prove the first assertion, first observe that by definition of the ideal J(X), we
have the relation

?wl‘l‘/ - _ Z UZ(“’)_Z(“’m’ )’i’w . (1)

we(s,s' ), w<wgy

in TL(X), where w,y is the longest element in the parabolic subgroup (s, s') of W. This
has the consequence that any monomial

~

tS[ t‘Yz e [A‘kv

where all s; € S, can be expressed as a linear combination of basis elements 7, for which
£(x) < k. Now let x € W, and let 515, - - - 5, be a reduced expression for x. Since

by =byby, by,
we have
by =W ' +T)0T+T) -0 H 4T

Expanding the parentheses and using equation (1), we see that

bo=7t Y af,

yeWe
Ly)<t(x)

for some coefficients a, € A. Itis now clear that the set in the statement is a basis, and
that the change of basis matrix from the 7-basis to the b-basis is unitriangular. |

It will be convenient to have a presentation of T'L(X) in terms of the generators
by; compare with [8, Proposition 9.5].

DEFINITION 2.5. We define the Chebyshev polynomials of the second kind to be
the elements of Z[x] given by the conditions Py(x) = 1, P;(x) = x and

Pn(x) = XPn_l(X) - Pn—Z(x)

https://doi.org/10.1017/50017089506003211 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089506003211

590 R. M. GREEN

forn > 2. If f(x) € Z[x], we define f}f”(x) to be the element of T'L(X) given by the linear
extension of the map sending x" to the product

bb; . ..
R —
n factors

of alternating factors starting with b.

PROPOSITION 2.6. As a unital A-algebra, TL(X) is given by generators {b, : s € S}
and relations

b* = 8b,, 2
biby = biby i m(s, ) = 2, 3)
(xPu_1)y (x) =0 if2 <m=m(s, 1) < o0, 4)

where § = (v +v™1).

Proof. This follows from [12, Corollary 6.5] and its proof, which shows that if
2 < m(s, t) < 00,

(XPp-1)y (%)
is the image in TL(X) of C,, . (A similar result appears in [8, Proposition 9.5].) d
EXAMPLE 2.7. Relation (4) reads
bbby — by =0 ifm =3,
bbb, — 2bb, =0 if m =4,

bsbibsbiby — 3bsbibs + by =0 ifm=35, and
bsb[bxbtbsbf - 4bsbrbxb[ + 3b‘yb[ == 0 ifm == 6

REMARK 2.8. Since the relations (3) all occur in Co(X, S), it makes sense, given
an element s € Co(X, S) represented by a monomial sys, - - - 5, to define an element
b(s) € TL(X) by

b(s) := by, by, - - - by,

The following lemma is the generalization of [10, Theorem 3.2.3] alluded to in [10,
84.1].

LEMMA 29. Let (W, S) be a star reducible Coxeter group, let sis;---s, be an
arbitrary monomial in S* representing the trace s € Co(X, S), and let b(s) be the element
of TL(X) given in Remark 2.8. Express b as a linear combination of the monomial basis,
namely

bis)= > Auby.

weW,

Then i, is an integer multiple of 8"®, where h is as in Theorem 2.1 and 8 = (v + v=").
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Proof. We claim that T'L(X) has the structure of a graded Z-module

@Mk,

k>0
where M, is the image of the free Z-module on the set
{8”b(t) such that p > 0, t € Co(X, S) and p + A(t) = k}.

The only nontrivial thing to check is that the grading is respected by the relations
of Proposition 2.6. Relation (3) clearly respects the grading, because it is a relation in
Co(X, S). Relation (2) respects the grading by Theorem 2.1 (iii).

Note that relation (4) is a linear combination of monomials, each of which can be
transformed into any of the others by iterated substitutions of the form bbb, <> by
(see Example 2.7 for clarification). Although these substitutions are not generally valid
relations in T'L(X), it now follows from Theorem 2.1 (iv) that relation (4) respects the
grading given.

Now consider the monomial b(s). By applying relations (2), (3) and (4) repeatedly
to express b in terms of shorter monomials, we can write b as a linear combination

b(S) = Z Awbw,

weW,

where A, = n,,6% for some integer n,, and nonnegative integer d,,. By Theorem 2.1
(ii), all the monomials b,, in the sum are of the form 5(u), where 4(u) = 0. Since each
side of the equation lies in M), it follows that d,, = A(s), as required. [

LEMMA 2.10. If W is a star reducible Coxeter group, then the b-basis and the c-basis
of TL(X) have the same Z-span. In particular, the b-basis is an A~ -basis for L.

Proof. Lets = 515, - - - 5, be a reduced expression for w € W,, and write

= (by, —v )by, — v (b, — V7).

Expanding the parentheses, we express 7, as a linear combination of elements
(—v)~*b(u), where u is obtained from s by deletion of k generators. By Theorem
2.1 (i1), s is acyclic, so by Theorem 2.1 (v), we must have A(u) < k. By Lemma 2.9, if we
express (—v) “b(u) in terms of the monomial basis, namely

(=) b = Y (—v) F Ay,

weW,

we see that (—v)*i, € A~.

It follows from this that 7,, is an A~-linear combination of monomial basis
elements. Since any monomial in the b, is a linear combination of basis monomials
of shorter length, the above argument shows that the coefficient of b,, in 7,, is 1. This
means that the change of basis matrix from the 7-basis to the b-basis is unitriangular
with entries in A~ with respect to a suitable total ordering, and hence the inverse of
this matrix has the same properties, in other words, the monomial basis elements lie
in L.
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By Proposition 2.4, b, = b, for any w € W,.. By Theorem 1.4 (iv), b,, is a Z-linear
combination of ¢-basis elements. By the above paragraph, we have

by =Ty + Z viTy

xeWe
for certain v, € A~. Applying 7 to both sides and appealing to Theorem 1.4 (ii) and
(iv), we have

bw =cCy + Z sxcx

xeWe
for certain integers &,. This shows that the change of basis matrix between the b-
basis and the c-basis is unitriangular with entries in Z with respect to a suitable total
ordering, from which it follows that the b-basis and the c-basis have the same Z-span.
This implies that they also have the same A~ -span, namely £. [

3. Monomials and weakly complex elements. In § 3, we develop the properties of
the lattice £ by using the monomial basis which, as we know from Lemma 2.10, is an
A~ -basis for L.

LEMMA 3.1. Let W be a star reducible Coxeter group. Then, for s € S, the set
{x € TL(X) : byx = (v + v~ 1)x}

is the free A-submodule of TL(X) with basis By .= {b, : y € W,, sy < y}.

Proof. If y € W, is such that sy < y, it is clear that b;b, = 8b, by relation (2), and
it follows that the set By is contained in the required subset of TL(X).

To finish the proof, it is enough to show that if b(u) € TL(X), then b;b(u) is a linear
combination of elements b, with y € W, and sy < y.

Let us say that a monomial s = s15;---5, € S* is “s-minimal” if the following
conditions are satisfied:

1. s;=sforsomel <i<r

2.sp £ sforany 1 < h < i;

3. s; and s; commute forany 1 < A < i.

Condition 3 above means that it also makes sense to speak of an element s €
Co(X, S) being s-minimal.

We see that applying one of the relations (2), (3) or (4) to b(s) results in a linear
combination of monomials h(t) where t is also s-minimal. Repeating this argument
shows that if b(s) is s-minimal, then it is a linear combination of s-minimal basis
elements. However, the s-minimal basis elements are precisely those basis elements
b, where y has a reduced expression beginning with s, which implies by relation (2)
that byby, = 8b,. Since any monomial of the form b;b(u) is s-minimal, the proof is
complete. O

REMARK 3.2. It is tempting to think from Lemma 3.1 that if b, is a monomial
basis element such that b;b, is § times another basis element, then sy < y, but this is
not true. If W is the (star reducible) Coxeter group of type Bz, and S = {s1, 57, 53} 18
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indexed so that m(sy, s2) = 4 and m(s,, s3) = 3, then setting y = 51575153 € W, we have
by, b, = 8b.,

where z = 5153 € W,, even though 53y > y. The c-basis does not have this disadvantage,
as will be clear from Theorem 4.6 (ii) below.

We recall the following definition from [12, § 4].

DEFINITION 3.3. Let W’ C W,. We define LW’ to be the free A~-module with
basis

T we WYU™'T, :we WAW'.

If 5, ¢ € S are noncommuting generators, W, = {w € W, :sw < w} and W, ={w €
W, : w = stu reduced}, we write £} and LY for L and £, respectively.

One can also define right handed versions, £} and L7, of the above concepts, and
of Lemma 3.1.

LEMMA 3.4. Let W be a star reducible Coxeter group. Then the set
{by:ye W, sy <ylu wlb.ize W, sz>z}
is an A~ -basis for Lj .

Proof. Since the monomial basis is an .4~ -basis for £ and there is a natural bijection
between the set in the statement and the defining A~ -basis for £, the claim will follow
if we can show that whenever we have y € W, with sy < y, then

7(@) =m(by) + Y Eum(bw),

w<y
sSw<w

where w € W, in the sum and &, € Z. Apart from the assertion that sw < w, this
follows from the observations relating the b-basis to the 7-basis made in the proof of
Lemma 2.10.

Since y = sy’ is reduced, we have

7, =70 = (by — v )7y,

and clearly v='7, e v7!L. Since 7, € £, it follows that b7, € L. However, by
Lemma 3.1, we have

bszv/ = Z )waws

w<y
swew

where the sum is over w € W, and we have 1,, € A~ by Lemma 2.10. Since 7 (7;) =
7 (byTy), the assertion follows. O

LEMMA 3.5. Let W be a star reducible Coxeter group, and let s,t € S be
noncommuting generators. Then byL} C L% and T,L, € L.

Proof. The second assertion is immediate from the first and the identity b, =
(v~'71 +7;), so we concentrate on the first assertion.
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Suppose that y € W, is such that fy < y, and write b, = b(u) in the usual way,
where u € Co(X, S). By Theorem 2.1 (ii), #(u) = 0, and by Theorem 2.1 (i), i(su) = 0
too. Lemma 2.9 now shows that b;b, is a Z-linear combination of basis elements b,
and then lemmas 2.10 and 3.1 show that bb, € L.

Suppose now that y € W, is such that zy > y, and write b, = b(u) as before. In this
case, h(u) = 0, and Theorem 2.1 (v) shows that /(su) < 1. Lemma 2.9 then shows that
bsb, is a v.A~-linear combination of basis elements b,,. Lemmas 2.10 and 3.1 show that

bsb, € vLT.
An application of Lemma 3.4, combining the above two observations, completes
the proof. 0

To prove the main result of §3, we need to recall some of the combinatorial
properties of weakly complex elements from [12]. The next result shows that weakly
complex elements respect the left and right weak Bruhat orders.

LEMMA 3.6. Let W be any Coxeter group and let w € W, be such that sw ¢ W, for
somes € S. Ifue Sandy e W are such that we have either w = uy or w = yu reduced,
then either sy € W, or sy is weakly complex.

Proof. See[12, Lemma 4.5 (iii)]. O

LEMMA 3.7. Let W be a star reducible Coxeter group, let w € W, and x = sw > w,
where s € S. Then one of the following situations must occur:

(1) x is a product of commuting generators;

(i) x € W, and there exists I = {s, t} C S with st # ts such that when x = x;x!, we
have £(xy) > 1;

(i) x is weakly complex and has a reduced expression begining with wy for some
t € S with st # ts;

(iv) there exists I = {u,u'} C Swiths & I, uu' # v'u, su = us and su' = u's such that
when we write w = wyw’, we have £(w;) > 1;

(V) there exists I = {u, '}y C S withuu' # u'u such that when we write w = (‘w)(;w),
we have £(;w) > 1;

(vi) x is weakly complex and there exist t,u € S with st # ts, ut # tu and su = us such
that w has a reduced expression of the form

u(tsts - - )x/,

where the alternating product of t and s contains m(s, t) — 1 terms, and we have
u(tuw) > tuw;

(vil) x is weakly complex and there exist t,u € S withm(s, t) = 3, ut # tu and su = us
such that w = sx has a reduced expression of the form w = utsux'.

Proof. Thisis [12, Lemma 6.9]. d

LEMMA 3.8. Let W be a star reducible Coxeter group and let x € W be a fully
commutative or weakly complex element. Then we have:
() 7. € £;
(ii) if's € S is such that sx < x, thenT, € L
(i) if's € S is such that xs < x, thenT, € L%.
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Proof. The proof is by induction on £(x), and the base case, £(x) = 0, is easy. In
the inductive step, we will freely use the facts that, by Lemma 3.6, the elements sx and
xs occurring in assertions (ii) and (iii) satisfy the inductive hypotheses.

We first prove assertion (i).

If ¢(x) > 0, we may use a case analysis based on Lemma 3.7 to prove the first
assertion. If we are in case (i) of Lemma 3.7, this follows from the observation that
if x =s5182---s, is a product of commuting generators, then 7, € £} for each s €
{s1,52,...,8}.

In case (ii) of Lemma 3.7, we may assume that x has a reduced expression beginning
with s¢, where s and 7 are noncommuting generators. Since fsx < sx, we have 7, € L%
by induction, and then 7, € £ by Lemma 3.5. The analysis of case (iii) uses a similar
argument.

In case (iv), we may assume that both sx and x have reduced expressions beginning
ui', following the notation of Lemma 3.7. By induction, 7,,, € Ez', and hence 7, € L by
Lemma 3.5. The analysis of case (v) uses a similar argument.

In case (vi), we have x = uwyx’ reduced, so that x has a reduced expression
beginning ut. By induction, 7, € £}, and hence 7, € £ by Lemma 3.5. The analysis of
case (vii) is the same, thus completing the proof of assertion (i).

We will now prove assertion (ii); the proof of assertion (iii) is by an analogous
argument.

We know that 7;, € £ by induction, and we have just shown that 7, € £. Now

Z’c = ?;?;x = (bs - U_l)?:vx,
and we have v~!7,, € v='£ from the definitions, which shows that
byf € L.

By Lemma 3.1, we have

bs?;x = Z )Vwbwy

weWw,

where A,, # 0 implies sw < w, and the fact that b,7;, € £ means that all A,, lie in A~
Lemma 3.4 shows that b,7;,, and therefore 775y, lies in £}, as required. |

PROPOSITION 3.9. Let W be a star reducible Coxeter group, let s,t € S be non-
commuting generators and let w € W,. Then we have:

)

T o vLy ifsw < w,

ULy ifsw > w;

(i) ZLNLCLY,

(i) 7.L, < L.

(iv) if a € S does not commute with t and a # s, thenT,LY < L. O

Proof. This was proved in [12, Proposition 4.10] for any Coxeter group satisfying
the property that 7, € £} whenever x = uw is a weakly complex element, w € W, and
u € S. This hypothesis is satisfied by Lemma 3.8 (ii). |
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4. Main results. In §4, we will show that any element of a star reducible
Coxeter group (not just a fully commutative element) has a reduced expression with a
particularly nice form. More precisely, we have the following.

THEOREM 4.1. Let W be a star reducible Coxeter group, and let w € W. Then one
of the following possibilities occurs for some Coxeter generators s, t, u with m(s, t) # 2,
m(t, u) # 2 and m(s, u) = 2:

(1) w is a product of commuting generators,

(i1) w has a reduced expression beginning with st;
(ii1) w has a reduced expression ending in ts;
(iv) w has a reduced expression beginning with sut.

Proof. Let s be any reduced expression for w, and let
S18y - - - Sp

be its Cartier—Foata normal form. If p = 1, then case (i) applies, and we are done.

If not, let ¢ be a generator occurring in the factor s;. By definition of the normal
form, ¢ fails to commute with some generator in s;. If 7 fails to commute with only one
such generator, s, then s is commutation equivalent to a reduced expression beginning
with sz, and case (ii) applies.

If ¢ fails to commute with precisely two generators, s and u, in s;, then s is
commutation equivalent to a reduced expression beginning sut, and we necessarily
have su = us by definition of the normal form, so case (iv) applies.

Note that there cannot be four distinct generators uy, u,, us, u4 in s; not commuting
with ¢, or ujustusus would be an element of W, that is neither star reducible nor
a product of commuting generators, a contradiction. We may therefore assume that
each generator #; in s, fails to commute with precisely three (necessarily distinct and
mutually commuting) generators, {u;; : 1 <j < 3}, ins;.

Suppose that s; contains k generators and the set

consists of 3k distinct elements of s;. This implies that, given such a u;;, the only
generator in s, not commuting with u;; is #;. Consequently, if s3 is empty, then w has
a reduced expression ending in u)17;, and case (iii) applies. We may therefore assume
that s; contains a generator, . We know ¢’ fails to commute with some element of s;,
and without loss of generality, we may assume that m(¢, t;) # 2. None of the elements
{t', u11, u12, u13} commutes with ¢1, and if they were all distinct then

J
upuptiust

would be an element of W, that would be neither star reducible nor a product of
commuting generators, a contradiction. Without loss of generality, we may assume
that ¢/ = uy;, meaning that w has a reduced expression beginning

uppuzUL fiugg.

https://doi.org/10.1017/50017089506003211 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089506003211

STAR REDUCIBLE COXETER GROUPS 597

If m(t;, u11) = 3, we may apply a braid relation to transform this expression to one
beginning

uppuihu,
and case (iv) applies. If, on the other hand, m(¢;, u;;) > 3, the element

Y = upuitiuus

satisfies y € W, but y is neither star reducible nor a product of commuting generators,
a contradiction.
We have now reduced to the case where the set

is redundantly described. Without loss of generality, we may assume that u := u;; =
ur. Now

/
Y = uppuizfiulunis;s

lies in W, even if the set {u12, u;3, un, up3} is redundantly described, because any two
repeated occurrences of a generator s in the given reduced expression are separated by
at least two occurrences of generators not commuting with s (see [11, Remark 3.3.2]).
However, )’ is neither a product of commuting generators, nor star reducible, so this
case cannot occur, completing the analysis. O

REMARK 4.2. By symmetry of the definitions, one can state a version of Theorem
4.1 in which condition (iv) is replaced by the condition “w has a reduced expression
ending in fsu”.

The following result, which was proved by Losonczy [18, Proposition 2.6, Theorem
3.4] in type D,, is new in type E,, type F, (n > 4), type H, (n > 4) and the two
exceptional cases E¢ and Fs discussed later (see Theorem 6.3).

THEOREM 4.3. If W is a star reducible Coxeter group and Ly is the free A~-
submodule of H with basis {T,, : w € WY}, then the homomorphism

0:H— TLX)

restricts to an A”-linear map from Ly to L. In particular, for any w € W, we have
0(Ty) € L, and n(0(T)) = 7(8(C,)).

Proof. We first prove that 7,, € £ using induction on £(w) and the case analysis of
Theorem 4.1.

If w is a product of commuting generators, then w € W, and the assertion is
immediate from the definitions. This deals with the cases £(w) < 1.

If w has a reduced expression beginning with sz, as in Theorem 4.1 (ii), then
Tow» Tisw € L by induction, and thus

Tttr.vw = Tsw S ’Eﬁ NnL c Ei
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by Proposition 3.9 (ii). We therefore have

by Proposition 3.9 (iii), as required.

If w has a reduced expression ending in s, as in Theorem 4.1 (iii), a symmetrical
argument gives the desired conclusion.

Finally, suppose that w has a reduced expression beginning with sut, as in Theorem
4.1 (iv). By induction, 7., Tw, Tisuw € £. We also have

TTisuw = T € LN L C L]
by Proposition 3.9 (ii), and
5T = Tuw € T,LY C L]
by Proposition 3.9 (iii). Finally, we have
Tt =Ty e L C L

by Proposition 3.9 (iv), as required.

This completes the proof that 7,, € £, and it is then clear that Q(T w) € L. Since C),
and T',, agree modulo v=' £ (as explained in, for example, [14, Proposition 1.2.2]), the
final claim also follows. O

LEMMA 4.4. Let W be an arbitrary Coxeter group such that I = {s, t} € S is a pair
of noncommuting generators, and suppose that w € W satisfies tw < w and sw > w.
W) Ifwe W, tw < wand sw & W, then sw = wgw' is reduced.
(i1) Taking star operations with respect to I, we have
¢ C,=C.,+C, modJX),

STw
where C. is defined to be zero if z is an undefined symbol.

Note. There is also a right-handed version of this result.

Proof. Part (1) follows from [19, Proposition 2.3] (see also [12, Lemma 4.5 (1)]), and
part (ii) follows from [12, Lemma 6.2]. O

LEMMA 4.5. Let W be a star reducible Coxeter group and let x € W be weakly
complex. Then 6(C},) = 0.

Proof- We write x = sw with s € Sand w € W,. The proofis by induction on £(x),
using Lemma 3.6 and the case analysis of Lemma 3.7.

Since x is weakly complex, we are in one of cases (iii)—(vii) of Lemma 3.7. Let
us first suppose we are in case (iii), meaning that x = wyx’ is reduced. Since x has
a reduced expression beginning with st and 7y, 7;x € £ by Theorem 4.3, Proposition
3.9 (ii) shows that 7, € £}. Similarly, x has a reduced expression beginning with s,
and 7, € £} . Since s and 7 do not commute, we have £} N L} C v~'L, which shows
that 77(7,) = 0. By Theorem 4.3, we also have 7(6(C")) = 0. Since 6(C,) = 6(C".) and
0(C,) € L, [15, Lemma 2.2.2] shows that 6(C".) = 0, as required.
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Suppose that we are in case (iv) of Lemma 3.7. We may assume without loss of
generality that w and x each have a reduced expression beginning uu/’, where I’ = {u, v’}
is a pair of noncommuting generators and u, ¢’ satisfy the conditions of Lemma 3.7
(iv). We cannot have x = w,,x’ reduced, or w = sx = w,,,/(sx’) would not be fully
commutative, which is a contradiction. Taking star operations with respect to I’, we
may therefore assume that *ux is defined and equal to x, and furthermore (by Lemma
4.4 (1)), that ux is weakly complex. By Lemma 4.4 (ii), we then have

C,C,.=C.+C, modJX).

Since €, € J(X) by induction, we need to show that ', € J(X). We may assume that
«ux is defined, or this is obvious. By Lemma 3.6, either ,ux is weakly complex or fully
commutative, and in the former case we are done by the inductive hypothesis. However,
if ,ux € W,, then the fact that ux ¢ W, implies by Lemma 4.4 (i) that u.ux = x < ux, a
contradiction. This completes the analysis of case (iv), and case (v) follows by a similar
argument. The only difference in the argument needed to treat case (v) is that we may
have x = x'w,,, reduced, in which case we are done by an argument like that used to
treat case (iii).

Suppose we are in case (vi) of Lemma 3.7, and keep the same notation. In this case,
we have x = uwg, X’ reduced, and furthermore, wy, has a reduced expression beginning
with ¢, which does not commute with u. As in case (iii), we may assume that we do
not have x = wy,x’ reduced. Taking star operations with respect to I” = {u, t}, we may
assume as in the analysis of case (iv) that *ux is defined and equal to x, and that ux is
weakly complex. By Lemma 4.4 (ii), we now have

cC,.=C.+ C:ux mod J(X).

As in the analysis of case (iv), the only nonobvious case left to consider is when ,ux is
defined and fully commutative. In this case, ,ux is reduced of the form

(stst-- )X/,
where there are m(s, ) — 1 occurrences of s or ¢. However, this cannot happen: ¢ €

L(ux) implies that u € L(,ux), and a fully commutative element cannot have a reduced
expression beginning with st and another beginning with u if s # u and ¢ and « do not

commute.
The analysis for case (vii) is exactly the same as that for case (vi), and this completes
the proof. O

THEOREM 4.6. Let W be a star reducible Coxeter group.

() If w € W is weakly complex, thenT,, € v='L; in other words, W has “Property
W, in the sense of [12].
(i) If w € W,, then we have

v+ v He, if L(sw) < L(w),
Csw + gy L WYy i L(sw) > L(w),

CsCy =

where ¢, is defined to be zero whenever z ¢ W, and where u(y, w) is the integer
defined by Kazhdan and Lusztig in [17].
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(ii1) If I = {s, t} is a pair of noncommuting generators, and we have w € W, with
tw < w, then we have

CsCy = Cryy + Cows

where c; is defined to be zero whenever z is an undefined symbol.
(iv) If w € W,, then c,, = 0(C,)).
(V) The structure constants arising from the c-basis of TL(X) lie in Z=°[5].

Proof. For part (i), let w € W be a weakly complex element. We know from
Theorem 4.3 that 7 (6(T,)) = 7(6(C,)), and we know from Lemma 4.5 that
7(8(C,))) = 0. Part (i) is immediate from these observations.

Part (ii) is essentially [12, Theorem 5.13], the only difference being that (i) allows
us to remove the extra hypothesis that W should have Property W. Similarly, parts
(ii1) and (iv) now follow from [12, Proposition 6.3], and part (v) now follows from [12,
Theorem 6.13]. O

REMARK 4.7. Note that part (iii) of the theorem allows the c-basis to be constructed
inductively. Part (v) proves [14, Conjecture 1.2.4] for star reducible Coxeter groups. This
is a new result for type F, (n > 4) and type Fs (see Lemma 5.5), and it provides a new
elementary proof of positivity in type C,_; (for n even).

5. Some examples of star reducible Coxeter groups. In §5, we present some
specific examples of star reducible Coxeter groups, and we present various methods to
construct new examples out of known ones. It will turn out in § 6 that these methods
suffice to construct all examples, assuming as always that the Coxeter generating set S
is finite.

In order to show that certain Coxeter groups are star reducible, we need to associate
a sequence of graphs to each Cartier—Foata normal form. This idea has also been used
by Fan in [5, Lemma 4.3.2], and by Fan and the author in [6, §2.4].

DEFINITION 5.1. Let s be an element of the commutation monoid Co(X, S) with
Cartier—Foata normal form s = ss; - - -s,. Forall 1 < i < p, we define the graph X(s)
to be the induced labelled subgraph of X corresponding to the set of all generators
appearing in the factors s; and s;;. If w € W,, then we define X;(w) to be the graph
Xi(s), where s is the (unique) element of Co(X, S) corresponding to w.

REMARK 5.2. If s is a reduced expression for some Coxeter group element, the
generators appearing in the subword s;s;, | of s are distinct, by definition of the normal
form.

For the next lemma, we assume that the Coxeter group (W, S) is of type Caii
(I = 1), meaning that S = {sy, s2, ..., $242} and we have the relations

(@) m(s;, s;) =2if |i —j| > 1,

(b) m(sy, $2) = m(s241, 242) = 4,

(c) m(s;, sip1) =31f 1 <i<2/+ 1.

LEMMA 5.3. Let W be the Coxeter group of type Cy.1, with the above notation.
Suppose that s € Co(X, S) corresponds to a reduced expression for w € W,, and let
S182 - - - 8, be the Cartier—Foata normal form of s. Suppose also that w € W, is not left
star reducible. Then, for 1 <i < pand1 <j < 2]+ 2, the following hold.

(1) if sy occurs in s;yy, then s, occurs in s;;
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(1) if s2142 occurs in s;y 1, then sy occurs in s;;
(iil) ifj & {1, 2] + 2} and s; occurs in 841, then both s;_y and sjy1 occur in's;.

Proof. The assertions of (i) and (ii) are immediate from properties of the normal
form, because s, (respectively, so;41) is the only generator not commuting with s
(respectively, s7712). We will now prove (iii) by induction on i. Suppose first that i = 1.

Suppose that j & {1, 2/ 4 2} and that s5; occurs in s,. By definition of the normal
form, there must be a generator s € s; not commuting with s;. Now s cannot be the only
such generator, or w would be left star reducible to sw < w. Since the only generators
not commuting with s; are s;_; and s;11, these must both occur in s;.

Suppose now that the statement is known to be true fori < N,andleti=N +1>2.
Suppose also that j & {1, 2/ + 2} and s; occurs in syi. As in the base case, there must
be at least one generator s occurring in sy that does not commute with s;.

Let us first consider the case where j & {2, 2/ + 1}, and write s = s; for some 1 <
k < 21+ 2. The restrictions on j mean that 2 < k < 2/ + 1. By the inductive hypothesis,
this means that s;_1 and s; | both occur insy_1, and that m(s;_1, sx) = m(sy, Sk+1) = 3.
Now either j = k — 1 or j = k + 1; we consider the first possibility, the other being
similar. (Since j > 3, this means k > 4.) If s;_, occurs in sy, then statement (i) follows
as both generators not commuting with s; lie in sy. If, on the other hand, s;_» does not
occur in sy, the fact that s;_; occurs both in sy_; and in sy,; means that the word s
can be parsed in the form uys;_juys;_ju3, where all the generators in u; commute with
sx—1 except for one occurrence of s;. This means that s is represented by a word in S*
containing a subword s;_;5;Sk—1, which contradicts the assumption w € W..

Now suppose that j = 2 (the case j = 2/ + 1 follows by a symmetrical argument).
If both s; and s3 occur in sy, then we are done. If 55 occurs in sy but 57 does not, then
the argument of the previous paragraph applies. Suppose then that s; occurs in sy but
s3 does not. By statement (i), s, occurs in sy_1, and we cannot have N = 2, or w would
be left star reducible to s,w < w. Applying the inductive hypothesis to (i), we see that
s1 and s3 both occur in sy_,. Putting all this together, we find that w has a reduced
expression containing a subword of the form 5351555152, which is incompatible with
w € W,.. This completes the inductive step. O

PROPOSITION 5.4. A Coxeter group of type Cayi1 is star reducible.

Proof. Keeping the previous notation, we suppose that w € W, is not left star
reducible and prove that either w is a product of commuting generators, or w is right
star reducible.

If s; is empty, then w is a product of commuting generators, and we are done.
Otherwise, the graph X,,_;(w) has the property that not all of its connected components
have size 1. Let ' be one of the components with |T'| > 1.

Suppose that I' = E’yH, which has an even number of vertices. Either this forces
s1 to occur in s,_; and s to occur in s,, or it forces 514> to occur in s,_; and sy41 to
occur in s,. In the first case, w is right star reducible with respect to {s1, 52}, and in the
second, w is right star reducible with respect to {s2/11, S2142}.

Suppose that ' is a Coxeter graph of type B,. Conditions (i)—(iii) of Lemma 5.3
show that there are four possibilities:

(a) s1 occurs in s,_; and corresponds to a vertex of I', and 7 is odd;

(b) s2142 occurs in s,_; and corresponds to a vertex of I, and 7 is odd;

(c) s1 occurs in s, and corresponds to a vertex of ', and 7 is even;

(d) s2/42 occurs in s, and corresponds to a vertex of I', and # is even.
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f;, O—0—0—0—0—0

Figure 1. The Coxeter graph X of Lemma 5.5.

Let k£ > 1 be the number of vertices in I". In case (a), w is right star reducible with
respect to {s1, 52}, and in case (b), with respect to {s2/41, $2/42}. In case (c), w is right star
reducible with respect to {sx_1, ¢}, and in case (d), with respect to {s2/+3—k, S2/+4—k}-

The only other possibility is that I" is a Coxeter graph of type A4j. In this case,

condition (iii) of Lemma 5.3 forces k > 1 to be odd. If {s,, s411,..., s} are the
generators involved in I', then s, and s; both lieins,_1, and w is right star reducible with
respect to {s,, 5,41} and with respect to {s,_1, s} O

LEMMA 5.5. Let W be the Coxeter group with Coxeter matrix

1 3 22 2 2
31 3 2 2 2
()i = 2 31 4 2 2
WIs=6 =12 2 4 1 3 2|
2 22 31 3
22 2 2 31
and denote S = {s1, 52, . . ., S¢} in the obvious way. Then W is star reducible.

Note. The graph X in this case is shown in Figure 1. Note that there is a
symmetry of the graph X, namely that sending s; to s7_;, which induces a Coxeter
group automorphism of W (X).

Proof. Let w € W, be such that w is not left star reducible or a product of
commuting generators, and suppose (for a contradiction) that w is not right star
reducible.

Lets € Co(X, S) correspond to w, and let

S=S818---8p

be the corresponding Cartier—Foata normal form. Since w is not a product of
commuting generators, there exists a generator s; € s;. Since w is not left star reducible,
there must be at least two generators in s; that do not commute with s. Because X is a
straight line, these two generators must be s;_; and sy, so that in particular we cannot
have k = 1 or k = 6. Since | X| = 6 and the generators from s; pairwise commute, we
must therefore have 2 < |s;| < 3.

Suppose first that |s;| = 2. By symmetry of X and the above remarks, it suffices to
consider the cases s; = 5153 and 81 = s52.54.

If s; = 5153 then s, can only contain s, for if s, contained s4 (the only other
generator not commuting with either s; or s3) then w would be left star reducible
to s;w. Now 51535 is right star reducible, so s; must contain a generator, and this
generator must not commute with s,. We cannot have s; occurring in s3, or w would
have a reduced expression containing s;s,5; consecutively. Similarly, we cannot have s3
occurring in s3, producing a contradiction.
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If s; = 5754 then, arguing as in the above paragraph, we find that sy = 53, 83 = 54,
s4 = 55 and s5s = s¢. At this point, we are stuck, and s,545354555 1s right star reducible,
which is a contradiction.

Suppose now that |s;| = 3. By symmetry of X, we may assume that s; = s51535s.
Now s; is nonempty, but it cannot contain sg, or w would be left star reducible to ssw. If
s, contains only 54, then s; must be nonempty as s;.535554 is right star reducible. In turn,
we must have s3 = 53, 84 = 52, S5 = 51, and then there are no possible choices for sg, a
contradiction. If s, contains only s,, then a similar argument shows that all choices for s;
lead to a contradiction. The only other possibility is for s, = 5,54, which forces s3 = s3.
However, 515355525453 1s right star reducible, and we must then have s; = s4, 85 = 55 and
then there are no possible choices for sg, a contradiction. We have exhausted all the
possibilities, so the assumption that w is not right star reducible is wrong, completing
the proof. |

LEMMA 5.6. If W is a Coxeter group for which W, is finite, then W is star reducible.

Proof. As pointed out in [12, Remark 3.5], this result follows from the argument
of [5, Lemma 4.3.1] together with [19, Proposition 2.3].

The way the argument works is as follows. Suppose that w; € W, has the property
that w, is neither left nor right star reducible. Let s be a reduced expression for w;, and
let

S=S818---§)

be the Cartier—Foata normal form of the corresponding element of Co(X, S). The
results of Fan and Stembridge just mentioned show that

SpSp—1 828182 - - - Sp—1Sp

is also a reduced expression for an element w, € W, that also has the property that
it cannot be left or right star reduced. Proceeding in this way, we obtain an infinite
sequence {w;};en of distinct elements of W, which contradicts the hypothesis. O

LEMMA 5.7. If W is a Coxeter group for which no two distinct elements of S commute,
then W is star reducible.

Proof. Let w € W,. The hypotheses show that w has a unique reduced expression,
w = 85182 Sk.

Since s; and s, do not commute by hypothesis, w is star reducible to s;w < w. Iterating
this argument proves the assertion. O

The following useful lemma is an easy consequence of the definitions.

LEMMA 5.8. If (W, S) is a star reducible Coxeter group, then so is any parabolic sub-
group (Wi, I) of (W, S). In particular, any connected component of the Coxeter graph of
a star reducible Coxeter group corresponds to another star reducible Coxeter group. [

DEFINITION 5.9. Let (W, S) be a Coxeter group corresponding to Coxeter graph X'
and function m : S x S —> N. We define the Coxeter group (v(W), S) to be the group
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corresponding to the function ' : § x S —> N, where

(i, ) = {m(l L)) ifm(i, ) < 3;

otherwise.

In other words, it is the group obtained by deleting all edge labels bigger than 3
(including edges with infinite label) in X.

LEMMA 5.10. If (W, S) is a star reducible Coxeter group, then so is (V(W), S).

Proof. Let w € v(W) be a fully commutative element, and let s be a reduced
expression for w. Since all reduced expressions for w are commutation equivalent, and
since two generators s, s € S commute in v(W) if and only if they commute in W, it
follows that s is also a reduced expression for a fully commutative element w* € W.

Since W is star reducible, either wt is a product of commuting generators in
W (which means that w is a product of commuting generators in v(W)), or w™ is
left or right star reducible to some other element of W. We treat the case of left
star reducibility, since the other case is similar. Suppose that w is left star reducible
with respectto I = {s,5'} C S.If m,n’ : S x S — N are the functions arising from the
Coxeter groups (W, S) and (v(W), S) respectively, then we have m(s, s') > m/'(s, s') > 3
by Definition 5.9 and the fact that s, 5" do not commute. This means that we can identify
the {s, s'}-string, S,,, in v(W) containing w with a subset of the {s, s'}-string, S,+, in
W containing w™; here S, will consist of the (77/(s, s') — 1) shortest elements of S,,+.
Since star reducibility moves w™ to a shorter element in S,,+, there is a corresponding
star reduction of w to a shorter element in S,,. By iterating this procedure, we see that
w can be star reduced to a product of commuting generators, as required. O

The benefit of Lemma 5.10 is that the simply laced star reducible Coxeter groups
have already been classified [11].

THEOREM 5.11 [11]. Let W be a simply laced Coxeter group with (finite) generating
set S. Then W is star reducible if and only if each component of X is either a complete
graph K, or appears in the list depicted in Figure 2: type A, (n>1), type D, (n>4),
type E, (n>6), type A,_\ (n > 3 and n odd) or type Es.

Note. The corresponding result for arbitrary |S| is not much more difficult, but we
do not state it in order to avoid cardinality issues.

Proof. Thisis arestatement of [11, Theorem 1.5.2] using the definitions and remarks
of [11,§1.2]. O

6. Classification of star reducible Coxeter groups. We are now ready to classify
the star reducible Coxeter groups (W, S) for finite S. During the argument, which is
reminiscent of the classification of finite Coxeter groups [16, § 2] and the classification
of FC-finite Coxeter groups (see [19, § 4], [8, § 7]), we will freely use the contrapositive
statement to Lemma 5.8.

By Lemma 5.10 and Theorem 5.11, the remaining part of this task will be to
determine how the edge labels in the graphs listed in Figure 2 may be increased so as
to obtain another star reducible Coxeter group. We first deal with the case where the
graph has a branch point, which means that it is of type D,,, E, or Es.
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4, O—O0—O0—O0—O----- O
p, O I O—O—O----- O
E, O—O0—O0—O0—O----- O

O O O O O

Figure 2. Connected incomplete graphs associated to simply laced star reducible
Coxeter groups.

Figure 3. Coxeter graphs considered in the proof of Lemma 6.1.

LEMMA 6.1. Suppose that X is a connected Coxeter graph with a branch point, and
that W(X) is star reducible. Then X is simply laced.

Proof. By the remarks preceding the statement (and Lemma 5.8), it is enough to
show that X cannot arise from a graph of Coxeter type D,,, where the label of the edge
furthest from the branch point is greater than 3, and where some of the other edges
with labels m > 3 may also have been increased; see Figure 3. (If n = 4, the condition
is that at least one of the edge labels must strictly exceed 3.)
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4

B, O—O0—O0—0—0O----- O

4

F O—0—0—0—0----- O
5

H O—0—0—0—0O----- O
m

Iz(m)O—O

En_l(neven)
4 4

O—O0—0O----- O—0—0
~ 4
F, O—O0—0"—0—0—0

Figure 4. Connected incomplete graphs associated to non simply laced star reducible
Coxeter groups.

Labelling the vertices as in Figure 3 (where vertices 1 and 2 commute, 3 is the
branch point, and m(n — 1, n) > 3), we find that

(5152)8354 = Su—28n—15nSn—15n—2 - - - 5453(5152)

is a fully commutative element that cannot be left or right star reduced, but that is not
a product of commuting generators, which completes the proof. O

LEMMA 6.2. Suppose that X is a Coxeter graph whose unlabelled graph is a k-cycle,
where k > 5 is odd, and that W(X) is star reducible. Then X is simply laced.

Proof. Numbering the Coxeter generators si,s$,...,8; In an obvious cyclic
fashion, let us assume that m(sy, s;) > 3. Since k > 5, we have m(s», s) = 2 and
m(sy, Sx—1) = 2. In this case, the element

(8285 )S18kSk—15k—2 - - - 382515k (Sk—151)

is a fully commutative element that cannot be left or right star reduced, but that isnot a
product of commuting generators. O

Finally, we may classify all star reducible Coxeter groups with a finite generating
set.

THEOREM 6.3. Let W(X) be a Coxeter group with (finite) generating set S. Then
W(X) is star reducible if and only if each component of X is either a complete graph with
all labels m(i, j) > 3, or appears in one of the lists depicted in Figure 2 or Figure 4: type
An (n > 1), type B, (n > 2), type D, (n > 4), type E, (n > 6), type F, (n > 4), type H,
(n > 2), type Ly(m) (m > 3), type A1 (n > 3 and n odd), type C,_1 (n > 4 and n even),
type Eﬁ or type ;75.
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Note. Although there appear to be ten infinite families in the classification above,
the family />(m) consists entirely of complete graphs and may thus be incorporated
into another family.

Proof. We first summarize why the examples listed are star reducible. The families
A, B, D, E, F, H, I have the property that W, is finite (see [19, § 4], [8, § 7]), so they are
star reducible by Lemma 5.6. Types A4,_ and E are covered by Theorem 5.11, type
C,_1 is covered by Proposition 5.4, and type Fs is covered by Lemma 5.5.

Let us now prove that the list given is complete, bearing in mind that Lemma 5.8
allows us to reduce consideration to connected components. If W is star reducible,
Lemma 5.10 shows that v(W) is as well. If the graph X is complete, then any increased
labels are permissible by Lemma 5.7, so our list of complete graphs is correct.

There is no way to increase the labels of edges of the graphs of types D, E or
E¢ appearing in Figure 2 by Lemma 6.1, so our list of graphs with branch points is
complete.

If the Coxeter graph X is a cycle and W is star reducible, it must be a cycle of odd
length by Lemma 5.10 and Theorem 5.11. A cycle of length 3 is a complete graph, and
then any labels are permissible. A cycle of length 5 or greater cannot have any labels
increased by Lemma 6.2, so our list of cycle shaped graphs is complete.

We have reduced consideration to the case where X is a straight line. Let us label
the Coxeter generators sy, 2, . .., S, in an obvious way. We shall assume that n > 3, or
else X is complete, which we have dealt with above.

We first show that X has no edge labelled 6 or greater. To check this, it is enough
by Lemma 5.8 to consider the case where n = 3 and m(s3, s3) > 6. In this case, the
element

$1535253525153

provides the required counterexample of a fully commutative element that is not a
product of commuting generators, but also not left or right star reducible.

Suppose now that X has an edge labelled 5 (but no labels strictly greater than 5,
by the above). We claim that this edge must be extremal. If not, we may reduce to the
case where n = 4 and m(s;, s3) = 5. In this case,

515352835254

provides the required counterexample.

Suppose that X has an extremal edge labelled 5. In this case, we claim that this edge
is the only edge with a label greater than 3. If not, we may reduce (using Lemma 5.8 as
always) to the case where m(s;, s2) = 5 and m(s,—1, s,) > 3. In this case, the element

$183852818528384 * -+ Sp—18pSp—1 * * - §45385251525153
provides the required counterexample. We conclude that if X has an edge with label 5,
then X is of type H,, which is on the list.
Suppose now that X has at least two edges labelled 4, but no edge with label 5 or
higher. If one of these edges is not extremal, then we may reduce to the case where

m(s,, s3) = 4 and m(s,_1, s,) = 4, and

815385283854 « - Sp—1SnSn—1 * - - 5453525153
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provides the required counterexample. We deduce that there are precisely two edges
labelled 4, and that they are both extremal.

We claim that the two edges labelled 4 in the above paragraph must have an odd
number of other edges between them. If not, we may reduce to the case where # is odd
and m(sy, s2) = m(s,_1, $,) = 4, and now

(515385 -+ - 5, )(525456 - - - Su—1)(S15355 - - - S)

provides the required counterexample.

The parity condition on n now forces X = C,_, for n even, and these graphs are
on the list.

We have now reduced to the case where X has at most one edge labelled 4. If no
such edge exists, we are in type 4, which is on the list, so suppose there is a unique edge
labelled 4. We claim that if this edge is not an extremal edge (which would give type
B,) and not adjacent to an extremal edge (which would give type F,), then X must be
the graph of type Fs shown in Figure 4. If not, we may reduce to the case where n = 7
and m(s3, s4) = 4. In this case, the required counterexample can be taken to be

(535557)(54856)(5355)(5254)(5153)(5254)(5355) (5456 )($35557).

Since Fs is on the list, our proof is complete. O

7. Concluding remarks. Using the techniques of § 2, it is possible to derive sharper
results about the structure constants of the c-basis for star reducible Coxeter groups.
In particular, writing

CxCy = Z f(x, y, w)cy,

weW,

one may show that all nonzero Laurent polynomials f(x, y, w), for a fixed x and y, are
(positive) integer multiples of the same power of 5.

According to [4], interesting algebras and representations defined over N come
from category theory, and are best understood when their categorical origin has been
discovered. In [9], the author showed how in the case of Coxeter types 4, B, H and 1,
the positivity property of Theorem 4.6 (v) may be understood in terms of a category of
tangles. However, there ought to be some representation-theoretic way to understand
this, building on the work of Stroppel [20, § 4] in the case of Coxeter types 4, B and D.
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