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Abstract. In this paper, we consider random dynamical systems formed by concatenating
maps acting on the unit interval [0, 1] in an independent and identically distributed
(i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system
possesses a unique stationary measure ν. We consider a class of non-square-integrable
observables φ, mostly of form φ(x) = d(x, x0)

−1/α , where x0 is a non-recurrent point
(in particular a non-periodic point) satisfying some other genericity conditions and, more
generally, regularly varying observables with index α ∈ (0, 2). The two types of maps we
concatenate are a class of piecewise C2 expanding maps and a class of intermittent maps
possessing an indifferent fixed point at the origin. Under conditions on the dynamics and
α, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit
law, and functional stable limit laws in both the annealed and quenched case. The scaling
constants for the limit laws for almost every quenched realization are the same as those
of the annealed case and determined by ν. This is in contrast to the scalings in quenched
central limit theorems where the centering constants depend in a critical way upon the
realization and are not the same for almost every realization.

Key words: stable limit laws, random dynamical systems, Poisson limit laws
2020 Mathematics Subject Classification: 37A50, 60F05, 60G51, 60G55 (Primary);
37H99 (Secondary)

1. Introduction
In this paper, we consider non-square-integrable observables φ : [0, 1] → R on two
simple classes of random dynamical system. One consists of randomly choosing in an
independent and identically distributed (i.i.d.) manner from a finite set of maps which
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2 R. Aimino et al

are strictly polynomially mixing with an indifferent fixed point at the origin, the other
consisting of randomly choosing from a finite set of maps which are uniformly expanding
and exponentially mixing. The main type of observable we consider is of the form
φ(x) = |x − x0|−1/α , α ∈ (0, 2)which, in the i.i.d. case, lies in the domain of attraction of
a stable law of index α. For certain results, the point x0 has to satisfy some non-genericity
conditions and, in particular, not be a periodic point for almost every realization of the
random system (see Definition 2.3). Some of our results, particularly those involving
convergence to exponential and Poisson laws, hold for general observables that are
regularly varying with index α.

The settings for investigations on stable limit laws for observables on dynamical systems
tend to be of two broad types: (1) ‘good observables’ (typically Hölder) on slowly mixing
non-uniformly hyperbolic systems; and (2) ‘bad’ observables (unbounded with fat tails)
on fast mixing dynamical systems. As illustrative examples of both settings, we give two
results.

Example of type (1): The LSV intermittent map Tγ : [0, 1] → [0, 1], γ ∈ (0, 1), is
defined by

Tγ (x) =
{
x(1 + 2γ xγ ) if 0 ≤ x ≤ 1

2 ;

2x − 1 if 1
2 < x < 1.

The map Tγ has a unique absolutely continuous invariant measure μγ .
Gouëzel [Gou04, Theorem 1.3] showed that if γ > 1

2 and φ : [0, 1] → R is Hölder
continuous with φ(0) �= 0, Eμγ (φ) = 0, then for α = 1/γ ,

1
bn1/α

n−1∑
j=0

φ ◦ T j →d Xα,β

(β has a complicated expression).
Example of type (2): Gouëzel [Gou, Theorem 2.1] showed that if T : [0, 1] → [0, 1]

is the doubling map T (x) = 2x (mod 1) with invariant measure m, Lebesgue, and
φ(x) = x−1/α , α ∈ (0, 2), then there exists a sequence cn such that

21/α − 1
n1/α

n−1∑
j=0

φ ◦ T j − cn →d Xα,1.

For further results on the first type, we refer to the influential papers [Gou04, Gou07]
and [MZ15]. In the setting of ‘good observables’ (typically Hölder) on slowly mixing
non-uniformly hyperbolic systems, the technique of inducing on a subset of phase space
and constructing a Young tower has been used with some success. ‘Good’ observables
lift to well-behaved observables lying in a suitable Banach space on the Young tower.
This is not the case with unbounded observables with fat tails, though in [Gou04], the
induction technique allows an observable to be unbounded at the fixed point in a family of
intermittent maps.

For further results on the second type, we refer to the papers by Marta Tyran-Kaminska
[TK10a, TK10b]. In the setting of Gibbs–Markov maps, she shows, among other results,
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that functions which are measurable with respect to the Gibbs–Markov partition and in the
domain of attraction of a stable law with index α converge (under the appropriate scaling)
in the J1 topology to a Lévy process of index α [TK10b, Theorem 3.3, Corollaries 4.1
and 4.2].

For recent results on limit laws, though not stable laws, in the setting of skew-products
with an ergodic base map and uniformly hyperbolic fiber maps, see also [DFGTV20a].
For a still very useful survey of techniques and ideas in random dynamical systems, we
refer to [Kif98].

Our main results are given in §2. An introduction to stable laws and a discussion
of modes of convergence are given in §§3 and 4. The Poisson point approach and its
application to our random setting are detailed in §5. Results on convergence of return
times to an exponential law and our point processes to a Poisson process are given in §6
(though the proofs of these results are delayed until §§8.1, 8.2, 9.1, and 9.2). The proofs of
the main results are given in §10. We conclude in §11 with results on stable laws for the
corresponding annealed systems.

2. Main results
For the sake of concreteness, we restrict ourselves to observables of the form

φx0(x) = |x − x0|−1/α , x ∈ [0, 1], (2.1)

where x0 is a non-recurrent point (see Definition 2.3) and α ∈ (0, 2), but it is possible
to consider more general regularly varying observables φ which are piecewise monotonic
with finitely many branches, see for instance [TK10b, §4.2] in the deterministic case. Note
that φx0 is regularity varying with index α.

We will be considering the following set-up with (�, σ) the full two-sided shift on
finitely many symbols. In most of our settings, we take Y = [0, 1].

Let σ : � → � be an invertible ergodic measure-preserving transformation on a
probability space (�, F , P). For a measurable space (Y , B), let σ : � → � be the usual
full shift and define

F : �× Y → �× Y

by

F(ω, x) = (σω, Tω(x)).

We assume F preserves a probability measure ν on �× Y . We assume that ν admits a
disintegration given by ν(dω, dx) = P(dω)νω(dx). For all n ≥ 1, we have

Fn(ω, x) = (σnω, T nω x),

where

T nω = Tσn−1ω ◦ · · · ◦ Tω,

which satisfies the equivariance relations (T nω )∗νω = νσ
nω for P-almost every (a.e.)

ω ∈ �.
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For each ω ∈ �, we denote by Pω the transfer operator of Tω with respect to the
Lebesgue measure m: for all φ ∈ L∞(m) and ψ ∈ L1(m),∫

[0,1]
(φ ◦ Tω) · ψ dm =

∫
[0,1]

φ · Pωψ dm.

We can then form, for ω ∈ � and n ≥ 1, the cocycle

Pnω = Pσn−1ω ◦ · · · ◦ Pω.

Definition 2.1. (Scaling constants) We consider a sequence (bn)n≥1 of positive real
numbers such that

lim
n→∞ nν(φx0 > bn) = 1. (2.2)

Definition 2.2. (Centering constants) We define the centering sequence (cn)n≥1 by

cn =

⎧⎪⎪⎨⎪⎪⎩
0 if α ∈ (0, 1);

nEν(φx0 1{φx0≤bn}) if α = 1;

nEν(φx0) if α ∈ (1, 2).

We now introduce two classes of random dynamical system (RDS) for which we are
able to establish stable limit laws.

2.1. Random uniformly expanding maps. We consider random i.i.d. compositions with
additional assumptions of uniform expansion. Let S be a finite collection of m piecewise
C2 uniformly expanding maps of the unit interval [0, 1]. More precisely, we assume that
for each T ∈ S, there exist a finite partition AT of [0, 1] into intervals, such that for each
I ∈ AT , T can be continuously extended as a strictly monotonic C2 function on Ī and

λ := inf
I∈AT

inf
x∈Ī

|T ′(x)| > 1.

The maps Tω (determined by the zeroth coordinate of ω) are chosen from S in an i.i.d.
fashion according to a Bernoulli probability measure P on � := {1, . . . , m}Z. We will
denote by Aω the partition of monotonicity of Tω, and by An

ω = ∨n−1
k=0(T

k
ω )

−1(Aσkω) the
partition associated to T nω . We introduce

D =
⋃
n≥0

⋃
ω∈�

∂An
ω,

the set of discontinuities of all the maps T nω . Note that D is at most a countable set.
In the uniformly expanding case, we also assume the conditions (LY), (Dec), and (Min).

Condition (LY) is the usual Lasota–Yorke inequality while conditions (Dec) and (Min)
were introduced by Conze and Raugi [CR07].
(LY) There exist r ≥ 1,M > 0 andD > 0 and ρ ∈ (0, 1) such that for all ω ∈ � and all

f ∈ BV,

‖Pωf ‖BV ≤ M‖f ‖BV
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and

Var(P rωf ) ≤ ρVar(f )+D‖f ‖L1(m).

(Dec) There exist C > 0 and θ ∈ (0, 1) such that for all n ≥ 1, all ω ∈ �, and all
f ∈ BV with Em(f ) = 0:

‖Pnωf ‖BV ≤ Cθn‖f ‖BV.

(Min) There exist c > 0 such that for all n ≥ 1 and all ω ∈ �,

inf
x∈[0,1]

(P nω1)(x) ≥ c > 0.

Definition 2.3. We say that x0 is non-recurrent if x0 satisfies the condition T nω (x0) �= x0

for all n ≥ 1 for P-a.e. ω ∈ �.

THEOREM 2.4. In the setting of expanding maps, assume conditions (LY), (Min), and
(Dec). Suppose that x0 /∈ D is non-recurrent and consider the observable φx0 .

If α ∈ (0, 1), then for P-a.e. ω ∈ �, the functional stable limit holds:

Xωn (t) := 1
bn

[ nt�−1∑
j=0

φx0 ◦ T jω − tcn

]
d→ X(α)(t) in D[0, ∞)

in the J1 topology under the probability measure νω, where X(α)(t) is the α-stable process
with Lévy measure d�α(dx) = α|x|−(α+1) on [0, ∞).

If α ∈ [1, 2), then the same result holds for m-a.e. x0.

Example 2.5. (β-transformations) A simple example of a class of maps satisfying
conditions (LY), (Dec), and (Min) [CR07] is to take m β-maps of the unit interval,
Tβi (x) = βix (mod 1). We suppose βi > 1 + a, a > 0, for all βi , i = 1, . . . , m.

2.2. Random intermittent maps. Now we consider a simple class of intermittent type
maps.

Liverani, Saussol, and Vaienti [LSV99] introduced the map Tγ as a simple model for
intermittent dynamics:

Tγ : [0, 1] → [0, 1], Tγ (x) :=
{
(2γ xγ + 1)x if 0 ≤ x < 1

2 ;

2x − 1 if 1
2 ≤ x ≤ 1.

If 0 ≤ γ < 1, then Tγ has an absolutely continuous invariant measure μγ with density hγ
bounded away from zero and satisfying hγ (x) ∼ Cx−γ for x near zero.

We form a random dynamical system by selecting γi ∈ (0, 1), i = 1, . . . , m in an i.i.d.
fashion and setting Ti := Tγi . The associated Markov process on [0, 1] has a stationary
invariant measure ν which is absolutely continuous, with density h bounded away from
zero.

We denote γmax := max1≤i≤m{γi} and γmin := min1≤i≤m{γi}.
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6 R. Aimino et al

THEOREM 2.6. In the setting of an i.i.d. random composition of intermittent maps,

suppose α ∈ (0, 1) and γmax <
1
3 . Then, for m-a.e. x0, (1/bn)

∑n−1
j=0 φx0 ◦ T jω d→ X(α)(1)

under the probability measure νω for P-a.e. ω (recall that cn = 0 for α ∈ (0, 1)).

Remark 2.7. (Convergence with respect to Lebesgue measure) We state our limiting
theorems with respect to the fiberwise measures νω, but by general results of Eagleson
[Eag76] (see also [Zwe07]), the convergence holds with respect to any measure μ for
which μ � νω, in particular, our convergence results hold with respect to Lebesgue
measure m. Further details are given in the Appendix.

Our proofs are based on a Poisson process approach developed for dynamical systems
by Tyran-Kaminska [TK10a, TK10b].

3. Probabilistic tools
In this section, we review some topics from probability theory.

3.1. Regularly varying functions and domains of attraction. We refer to Feller [Fel71]
or Bingham, Goldie, and Teugels [BGT87] for the relations between domains of attraction
of stable laws and regularly varying functions. For φ regularly varying, we define the
constants bn and cn as in the case of φx0 .

Remark 3.1. When α ∈ (0, 1), then φ is not integrable and one can choose the centering
sequence (cn) to be identically 0. When α = 1, it might happen that φ is not integrable,
and it is then necessary to define cn with suitably truncated moments as above. If φ is
integrable, then center by cn = nEν(φ).

We will use the following asymptotics for truncated moments, which can be deduced
from Karamata’s results concerning the tail behavior of regularly varying functions. Define
p by limx→∞(ν(φ > x)/ν(|φ| > x)) = p.

PROPOSITION 3.2. (Karamata) Let φ be regularly varying with index α ∈ (0, 2). Then,
setting β := 2p − 1 and, for ε > 0,

cα(ε) :=

⎧⎪⎪⎨⎪⎪⎩
0 if α ∈ (0, 1);

−β log ε if α = 1;

ε1−αβα/(α − 1) if α ∈ (1, 2),

(3.1)

and the following hold for all ε > 0:
(a) Eν(|φ|21{|φ|≤εbn}) ∼ α/(2 − α)(εbn)

2ν(|φ| > εbn);
(b) if α ∈ (0, 1),

Eν(|φ|1{|φ|≤εbn}) ∼ α

1 − α
εbnν(|φ| > εbn);

(c) if α ∈ (1, 2),

lim
n→∞

n

bn
Eν(φ1{|φ|>εbn}) = cα(ε);
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(d) if α = 1,

lim
n→∞

n

bn
Eν(φ1{εbn<|φ|≤bn}) = cα(ε);

(e) if α = 1,
n

bn
Eν(|φ|1{|φ|≤εbn}) ∼ L̃(n)

for a slowly varying function L̃.

3.2. Lévy α-stable processes. A helpful and more detailed discussion can be found, e.g.,
in [TK10a, TK10b].

TheX(t) is a Lévy stable process ifX(0) = 0, X has stationary independent increments,
and X(1) has an α-stable distribution.

The Lévy–Khintchine representation for the characteristic function of an α-stable
random variable Xα,β with index α ∈ (0, 2) and parameter β ∈ [−1, 1] has the form:

E[eitX] = exp
[
itaα +

∫
(eitx − 1 − itx1[−1,1](x))�α(dx)

]
,

where:

• aα =
{
β(α/(1 − α)) α �= 1;
0 α = 1;

• �α is a Lévy measure given by

d�α = α(p1(0,∞)(x)+ (1 − p)1(−∞,0)(x))|x|−α−1 dx;

• p = (β + 1)/2.
Note that p and β may equally serve as parameters for Xα,β . We will drop the β from

Xα,β , as is common in the literature, for simplicity of notation and when it plays no
essential role.

3.3. Poisson point processes. Let (Tn)n≥1 be a sequence of measurable transformations
on a probability space (Y , B, μ). For n ≥ 1, we denote

T n1 := Tn ◦ · · · ◦ T1. (3.2)

Given φ : Y → R measurable, recall that we define the scaled Birkhoff sum by

Sn := 1
bn

[ n−1∑
j=0

φ ◦ T j1 − cn

]
(3.3)

for some real constants bn > 0, cn and the scaled random process Xn(t), n ≥ 1, by

Xn(t) := 1
bn

[ nt�−1∑
j=0

φ ◦ T j1 − tcn

]
, t ≥ 0, (3.4)

For Xα(t), a Lévy α-stable process, and B ∈ B((0, ∞)× (R \ {0})), define

N(α)(B) := #{s > 0 : (s, �Xα(s)) ∈ B},
where �Xα(t) := Xα(t)−Xα(t

−).
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The random variable N(α)(B), which counts the jumps (and their time) of the Lévy
process that lie in B, is finite almost surely (a.s.) if and only if (m×�α)(B) < ∞. In that
case, N(α)(B) has a Poisson distribution with mean (m×�α)(B).

Similarly define

Nn(B) := #
{
j ≥ 1 :

(
j

n
,
φ ◦ T j−1

1
bn

)
∈ B

}
, n ≥ 1,

Nn(B) counts the jumps of the process in equation (3.4) that lie in B. When a realization
ω ∈ � is fixed, we define

Nω
n (B) := #

{
j ≥ 1 :

(
j

n
,
φ ◦ T j−1

ω

bn

)
∈ B

}
, n ≥ 1.

Definition 3.3. We say Nn converges in distribution to N(α) and write

Nn
d→ N(α)

if and only ifNn(B)
d→ N(α)(B) for allB ∈ B((0, ∞)× (R \ {0}))with (m×�α)(B)<∞

and (m×�α)(∂B) = 0.

4. Modes of convergence
Consider the process Xα determined by the observable φ (that is, an i.i.d. version of φ
which regularly varies with the same index α and parameter p). We are interested in the
following limits.
(A) Poisson point process convergence.

Nω
n

d→ N(α)

with respect to νω for P a.e. ω, whereN(α) is the Poisson point process of an α-stable
process with parameter determined by ν, the annealed measure.

(B) Stable law convergence.

Sωn := 1
bn

[ n−1∑
j=0

φ ◦ T jω − cn

]
d→ Xα(1)

for P-a.e. ω, with respect to νω, for φ regularly varying with index α and Xα(t)
the corresponding α-stable process, for suitable scaling and centering constants bn
and cn.

(C) Functional stable law convergence.

Xωn (t) := 1
bn

[ nt�−1∑
j=0

φ ◦ T jω − tcn

]
d→ Xα(t)

in D[0, ∞) in the J1 topology P-a.e. ω, with respect to νω for φ regularly varying
with index α and Xα(t) the corresponding α-stable process.
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For the cases we are considering, the scaling constants bn are given by equation (2.2)
in Definition 2.1, and the centering constants cn are given in Definition 2.2 (see also
Remark 3.1).

Remark 4.1. In the limit laws for quenched systems that we obtain of type (B) and (C), the
centering sequence cn does not depend on the realization ω. This is in contrast to the case
of the central limit theorem (CLT), where a random centering is necessary; see [AA16,
Theorem 9] and [NPT21, Theorem 5.3].

5. A Poisson point process approach to random and sequential dynamical systems
Our results are based on the Poisson point process approach developed by Tyran-Kamińska
[TK10a, TK10b] adapted to our random setting (see Theorems 5.1 and 5.3). Namely,
convergence to a stable law or a Lévy process follows from the convergence of the
corresponding (Poisson) jump processes, and control of the small jumps.

A key role is played by Kallenberg’s theorem [Kal76, Theorem 4.7] to check conver-

gence of the Poisson point processes, Nn
d→ N(α). Kallenberg’s theorem does not assume

stationarity and hence we may use it in our setting.
In this section, we provide general conditions ensuring weak convergence to Lévy

stable processes for non-stationary dynamical systems, following closely the approach
of Tyran-Kamińska [TK10b]. We start from the very general setting of non-autonomous
sequential dynamics and then specialize to the case of quenched random dynamical
systems, which will be useful to treat i.i.d. random compositions in the later sections.

5.1. Sequential transformations. Recall the notation introduced in §3.3. Here, (Tn)n≥1

is a sequence of measurable transformations on a probability space (Y , B, μ). For n ≥ 1,
recall we define

T n1 = Tn ◦ · · · ◦ T1.

The proof of the following statement is essentially the same as the proof of [TK10b,
Theorem 1.1].

Note that the measure μ does not have to be invariant. Moreover (see [TK10b, Remark

2.1]), the convergence Xn
d→ X(α) holds even without the condition μ(φ ◦ T j1 �= 0) = 1,

which is used only for the converse implication of the ‘if and only if’.

THEOREM 5.1. (Functional stable limit law, [TK10b, Theorem 1.1]) Let α ∈ (0, 2) and

suppose that μ(φ ◦ T j1 �= 0) = 1 for all j ≥ 0. Then Xn
d→ X(α) in D[0, ∞) under the

probability measure μ for some constants bn > 0 and cn if and only if:

• Nn
d→ N(α) and

• for all δ > 0, � ≥ 1, with cα(ε) given by equation (3.1),

lim
ε→0

lim sup
n→∞

μ

(
sup

0≤t≤�

∣∣∣∣ 1
bn

[ nt�−1∑
j=0

φ ◦ T j1 1{|φ◦T j1 |≤εbn} − t (cn − bncα(ε))

]∣∣∣∣≥ δ)=0.

(5.1)
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Remark 5.2. In some cases, the convergence Nn
d→ N(α) does not hold, but one has

convergence of the marginals, Nn((0, 1] × ·) d→ N(α)((0, 1] × ·). In this case, although
unable to obtain a functional stable law convergence of type (C), we can in some settings
prove the convergence to a stable law for the Birkhoff sums (convergence of type (B)).

In particular, we are unable to prove Nω
n

d→ N(α) for the case of random intermittent
maps. However, in the setting of random uniformly expanding maps, we use the spectral

gap to show that Nω
n

d→ N(α), and then obtain the functional stable limit law.

The next statement is [TK10b, Lemma 2.2, part (2)], which follows from [TK10a,
Theorem 3.2]. Again, the measure does not have to be invariant.

THEOREM 5.3. (Stable limit law, [TK10b, Lemma 2.2]) For α ∈ (0, 2), consider an
observable φ on the probability measure μ, and cα(ε) given by equation (3.1).

If

Nn((0, 1] × ·) d→ N(α)((0, 1] × ·)
and, for all δ > 0,

lim
ε→0

lim sup
n→∞

μ

(∣∣∣∣ 1
bn

[ n−1∑
j=0

φ ◦ T j1 1{|φ◦T j1 |≤εbn} − (cn − bncα(ε))

]∣∣∣∣ ≥ δ

)
= 0, (5.2)

then

1
bn

[ n−1∑
j=0

φ ◦ T j1 − cn

]
d→ X(α)(1)

under the probability measure μ.

5.2. Random dynamical systems. Let φ : Y → R be a measurable function such that
νω(φ �= 0) = 1.

PROPOSITION 5.4. [TK10b, proof of Theorem 1.2] Let α ∈ (0, 1). With bn as in
Definition 2.1 and cn = 0, suppose that for P-a.e. ω ∈ �,

lim
ε→0

lim sup
n→∞

1
bn

n�−1∑
j=0

E
νσ
j ω (|φ|1{|φ|≤εbn}) = 0 for all � ≥ 1 (5.3)

and

Nω
n

d→ N(α).

Then Xωn
d→ X(α) in D[0, ∞) under the probability measure νω for P-a.e. ω ∈ �.

Proof. We will check that the hypothesis of Theorem 5.1 is met for P-a.e. ω with
Tn = Tσn−1ω, μ = νω. Recall that cn = cα(ε) = 0 when α ∈ (0, 1). Using [KW69,
Theorem 1] (see Theorem 5.6) and the equivariance of the family of measures {νω}ω∈�,
we have
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νω
(

sup
0≤t≤�

∣∣∣∣ 1
bn

nt�−1∑
j=0

φ ◦ T jω 1{|φ◦T jω |≤εbn}

∣∣∣∣ ≥ δ

)
≤ 1
δbn

n�−1∑
j=0

E
νσ
j ω (|φ|1{|φ|≤εbn}),

which shows that the condition in equation (5.3) implies the condition in equation (5.1) for
all δ > 0 and � ≥ 1.

Remark 5.5. One could replace the condition in equation (5.3) by one similar to that in
equation (5.5), and use the argument in the proof of Proposition 5.7.

THEOREM 5.6. (Kounias and Weng [KW69, special case of Theorem 1 therein]) Assume
the random variables Xk are in L1(μ). Then

μ

(
max

1≤k≤n

∣∣∣∣ k∑
�=1

X�

∣∣∣∣ ≥ δ

)
≤ 1
δ

n∑
k=1

Eμ(|Xk|).

PROPOSITION 5.7. Let α ∈ [1, 2).
With bn and cn as in Definitions 2.1 and 2.2, and cα(ε) as in equation (3.1), suppose

that for all ε > 0 and all � ≥ 1,

lim
n→∞ sup

0≤t≤�

∣∣∣∣ 1
bn

[ nt�−1∑
j=0

E
νσ
j ω (φ1{|φ|≤εbn})− t (cn − bncα(ε))

]∣∣∣∣ = 0 for P-a.e. ω ∈ �,

(5.4)

and that for all δ > 0,

lim
ε→0

lim sup
n→∞

esssup
ω∈�

νω
(

max
1≤k≤n

∣∣∣∣ 1
bn

k−1∑
j=0

[φ ◦ T jω 1{|φ◦T jω |≤εbn}

− E
νσ
j ω (φ1{|φ|≤εbn})]

∣∣∣∣ ≥ δ

)
= 0. (5.5)

If Nω
n

d→ N(α) for P-a.e. ω ∈ �, then Xωn
d→ X(α) in D[0, ∞) under the probability

measure νω for P-a.e. ω ∈ �.

Proof. As in the proof of Proposition 5.4, we check the hypothesis of Theorem 5.1 with
Tn = Tσn−1ω, μ = νω for P-a.e. ω ∈ �. We will see that equation (5.1) follows from
equations (5.4) and (5.5).

Using the equivariance of {νω}ω∈�, we see that the condition in equation (5.1) is implied
by the equation (5.4) and

lim
ε→0

lim sup
n→∞

νω
(

sup
1≤k≤n�

∣∣∣∣ 1
bn

k−1∑
j=0

[
φ ◦ T jω 1{|φ◦T jω |≤εbn}

− E
νσ
j ω (φ1{|φ|≤εbn})

]∣∣∣∣ ≥ δ

)
= 0. (5.6)

We next show that the condition in equation (5.5) implies equation (5.6).
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12 R. Aimino et al

Since{
sup

1≤k≤n�

∣∣∣∣ 1
bn

k−1∑
j=0

[φ ◦ T jω 1{|φ◦T jω |≤εbn} − E
νσ
j ω (φ1{|φ|≤εbn})]

∣∣∣∣ ≥ δ

}

⊂
�−1⋃
i=0

{
sup

in<k≤(i+1)n

∣∣∣∣ 1
bn

k−1∑
j=in

[φ ◦ T jω 1{|φ◦T jω |≤εbn} − E
νσ
j ω (φ1{|φ|≤εbn})]

∣∣∣∣ ≥ δ

�

}
,

we obtain that, using again the equivariance, for P-a.e. ω ∈ �,

νω
(

sup
1≤k≤n�

∣∣∣∣ 1
bn

k−1∑
j=0

[φ ◦ T jω 1{|φ◦T jω |≤εbn} − E
νσ
j ω (φ1{|φ|≤εbn})]

∣∣∣∣ ≥ δ

)

≤
�−1∑
i=0

νσ
inω

(
sup

1≤k≤n

∣∣∣∣ 1
bn

k−1∑
j=0

[φ ◦ T j
σ inω

1{|φ◦T j
σ inω

|≤εbn}

− E
νσ
j (σ inω) (φ1{|φ|≤εbn})]

∣∣∣∣ ≥ δ

�

)

≤ � · esssup
ω′∈�

νω
′
(

max
1≤k≤n

∣∣∣∣ 1
bn

k−1∑
j=0

[φ ◦ T j
ω′1{|φ◦T j

ω′ |≤εbn}

− E
νσ
j ω′ (φ1{|φ|≤εbn})]

∣∣∣∣ ≥ δ

�

)
.

Thus, the condition in equation (5.5) implies equation (5.6), which concludes the
proof.

The analog for the convergence to a stable law is the following proposition.

PROPOSITION 5.8. Suppose that for P-a.e. ω ∈ �, we have

Nω
n ((0, 1] × ·) d→ N(α)((0, 1] × ·).

If α ∈ (0, 1) (so cn = 0), we require in addition that

lim
ε→0

lim sup
n→∞

1
bn

n−1∑
j=0

E
νσ
j ω (|φ|1{|φ|≤εbn}) = 0. (5.7)

If α ∈ [1, 2), we require instead of equation (5.7) that for all ε > 0,

lim
n→∞

∣∣∣∣ 1
bn

[ n−1∑
j=0

E
νσ
j ω (φ1{|φ|≤εbn})− (cn − bncα(ε))

]∣∣∣∣ = 0

and

lim
ε→0

lim sup
n→∞

νω
(∣∣∣∣ 1
bn

n−1∑
j=0

[
φ ◦ T jω 1{|φ◦T jω |≤εbn} − E

νσ
j ω (φ1{|φ|≤εbn})

]∣∣∣∣ ≥ δ

)
= 0.
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Then

1
bn

[ n−1∑
j=0

φ ◦ T jω − cn

]
d→ X(α)(1)

under the probability measure νω for P-a.e. ω ∈ �.

Proof. We check the conditions of Theorem 5.3.
The proof for α ∈ (0, 1) is similar to the proof of Proposition 5.4, the proof of the case

α ∈ [1, 2) is similar to the proof of Proposition 5.7.

5.3. The annealed transfer operator. We assume that the random dynamical system
F : �× [0, 1] → �× [0, 1],

F(ω, x) = (σω, Tω(x)),

which can also be viewed as a Markov process on [0, 1], has a stationary measure ν
with density h. The map F : �× [0, 1] → �× [0, 1] will preserve P × ν. Recall that
P := {(p1, . . . , pm)}Z.

We use the notation Pμ,i for the transfer operator of Ti : [0, 1] → [0, 1] with respect to
a measure μ on [0, 1], that is,∫

f · g ◦ Ti dμ =
∫
(Pμ,if )g dμ for all f ∈ L1(μ), g ∈ L∞(μ).

The annealed transfer operator is defined by

Pμ(f ) :=
m∑
i=1

piPμ,i (f )

with adjoint

U(f ) :=
m∑
i=1

pif ◦ Ti

which satisfies the duality relation∫
f (g ◦ U) dμ =

∫
(Pμf )g dμ for all f ∈ L1(μ), g ∈ L∞(μ).

As above, we assume there are sample measures dνω = hω dx on each fiber [0, 1] of
the skew product such that

Pωhω = hσω,

where Pω is the transfer operator of Tω0 with respect to the Lebesgue measure.
Therefore,

ν(A) =
∫
�

[ ∫
A

hω dx

]
dP(ω)

for all Borel sets A ⊂ [0, 1].
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14 R. Aimino et al

5.4. Decay of correlations. We now consider the decay of correlation properties of the
annealed systems associated to maps satisfying conditions (LY), (Dec), and (Min) and
intermittent maps.

By [ANV15, Proposition 3.1] in the setting of maps satisfying conditions (LY), (Dec),
and (Min), we have exponential decay in BV against L1: there are C > 0, 0 < λ < 1 such
that ∣∣∣∣ ∫

fg ◦ Un dν −
∫
f dν

∫
g dν

∣∣∣∣ ≤ Cλn‖f ‖BV‖g‖L1(ν).

In the setting of intermittent maps, by [BB16, Theorem 1.2], we have polynomial decay
in Hölder against L∞: there exists C > 0 such that∣∣∣∣ ∫

fg ◦ Un dν −
∫
f dν

∫
g dν

∣∣∣∣ ≤ Cn1−1/γmin‖f ‖Hölder‖g‖L∞(ν).

We now consider a useful property satisfied by our class of random uniformly expanding
maps.

Definition 5.9. (Condition U) We assume that almost each νω is absolutely continuous
with respect to the Lebesgue measure m, and

for some C > 0, P-a.e. ω ∈ � �⇒ C−1 ≤ hω := dνω

dm
≤ C, m-a.e. (5.8)

the map ω ∈ � �→ hω ∈ L∞(m) is Hölder continuous. (5.9)

Consequently, the stationary measure ν is also absolutely continuous with respect to m,
with density h ∈ L∞(m) given by h(x) = ∫

�
hω(x)P(dω) and satisfying equation (5.8).

LEMMA 5.10. Properties (LY), (Min), and (Dec) imply Condition U. Namely, there exists
a unique Hölder map ω ∈ � �→ hω ∈ BV such that Pωhω = hσω and equations (5.8) and
(5.9) are satisfied by [ANV15].

Proof. By condition (Dec), and as all the operators Pω are Markov with respect to m, we
have

‖Pn+k
σ−(n+k)ω1 − Pn

σ−nω1‖BV ≤ Cκn‖1 − P k
σ−(n+k)ω1‖BV ≤ Cκn, (5.10)

which proves that (P n
σ−nω1)n≥0 is a Cauchy sequence in BV converging to a unique limit

hω ∈ BV satisfying Pωhω = hσω for all ω. The lower bound in equation (5.8) follows from
the condition (Min), while the upper bound is a consequence of the uniform Lasota–Yorke
inequality of condition (LY), as actually the family {hω}ω∈� is bounded in BV. To prove
the Hölder continuity of ω �→ hω with respect to the distance dθ , we remark that if ω and
ω′ agree in coordinates |k| ≤ n, then

‖hω − hω′‖BV = ‖P k
σ−kω(hσ−kω − hσ−kω′)‖BV ≤ Cθn ≤ Cdθ(ω, ω′).

Remark 5.11. Note that the density h of the stationary measure ν also belongs to BV and
is uniformly bounded from above and below, as the average of hω over �.
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5.4.1. The sample measures hω. The regularity properties of the sample measures
hω, both as functions of ω and as functions of x on [0, 1], play a key role in our
estimates. We will first recall how the sample measures are constructed. Suppose
ω := (. . . , ω−1, ω0, ω1, . . . , ωn, . . . , ) and define hn(ω) = Pω−1 . . . Pω−n1 as a
sequence of functions on the fiber I above ω. In the setting both of random uniformly
expanding maps and of intermittent maps {hn(ω)} is a Cauchy sequence and has a limit hω.

In the setting of random expanding maps, hω is uniformly BV in ω as

‖hn(ω)− hn+1(ω)‖BV ≤ ‖Pω−1Pω−2 . . . Pω−n(1 − Pω−n−1 1)‖BV ≤ Cλn.

In the setting of intermittent maps with γmax = max1≤i≤m{γi}, the densities hω lie in
the cone

L := {
f ∈ C0((0, 1]) ∩ L1(m), f ≥ 0, f non-increasing,

Xγmax+1f increasing, f (x) ≤ ax−γmaxm(f )
}

where X(x) = x is the identity function and m(f ) is the integral of f with respect to m. In
[AHN+15], it is proven that for a fixed value of γmax ∈ (0, 1), provided that the constant
a is big enough, the cone L is invariant under the action of all transfer operators Pγi with
0 < γi ≤ γmax and so (see e.g. [NPT21, Proposition 3.3], which summarizes results of
[NTV18])

‖hn(ω)− hn+k(ω)‖L1(m) ≤ ‖Pω−1Pω−2 . . . Pω−n(1 − Pω−n−1 . . . Pω−n−k1)‖L1(m)

≤ Cγmaxn
1−1/γmax(log n)1/γmax ,

whence hω ∈ L1(m). In later arguments, we will use the approximation

‖hn(ω)− hω‖L1(m) ≤ Cγmaxn
1−1/γmax(log n)1/γmax . (5.11)

We mention also the recent paper [KL21], where the logarithm term in equation (5.11) is
shown to be unnecessary and moment estimates are given.

We now show that hω is a Hölder function of ω on (�, dθ ) in the setting of random
expanding maps.

For θ ∈ (0, 1), we introduce on � the symbolic metric

dθ (ω, ω′) = θs(ω,ω′),

where s(ω, ω′) = inf{k ≥ 0 : ω� �= ω′
� for some |�| ≤ k}.

Suppose ω, ω′ agree in coordinates |k| ≤ n (that is, backwards and forwards in time) so
that dθ (ω, ω′) ≤ θn in the symbolic metric on �. Then

‖hω − hω′ ‖BV ≤ ‖Pω−1Pω1 . . . Pω−n+1(h(σ−n+1ω) − h(σ−n+1ω′))‖BV

≤ Cλn−1 = C′dθ (ω, ω′)logθ λ.

Recall that ‖f ‖∞ ≤ C‖f ‖BV, see e.g. [BG97, Lemma 2.3.1].
That is, Condition U (see Definition 5.9) holds for random expanding maps.
The map ω �→ hω is not Hölder in the setting of intermittent maps; in several arguments,

we will use the regularity properties of the approximation hn(ω) for hω.
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However, on intervals that stay away from zero, all functions in the cone L are
comparable to their mean. Therefore, on sets that are uniformly away from zero, all the
above densities/measures (dν = h dx, hω, hn(ω)) are still comparable.

Namely,

for any δ ∈ (0, 1), there is Cδ > 0 such that

h ∈ L �⇒ 1/Cδ < h(x)/m(h) < Cδ for x ∈ [δ, 1]. (5.12)

Indeed, h/m(h) is bounded below by [LSV99, Lemma 2.4], and the upper bound follows
from the definition of the cone.

6. Ancilliary results
Let x0 ∈ [0, 1], and, for α ∈ (0, 2), recall we define the function φx0(x) = |x − x0|−1/α . It
is easy to see that φx0 is regularity varying with index α and that p = 1.

6.1. Exponential law and point process results. We denote by J the family of all finite
unions of intervals of the form (x, y], where −∞ ≤ x < y ≤ ∞ and 0 /∈ [x, y].

For a measurable subset U ⊂ [0, 1], we define the hitting time of (ω, x) ∈ �× [0, 1]
to U by

RU(ω)(x) := inf{k ≥ 1 : T kω(x) ∈ U}. (6.1)

Recall that φx0(x) := d(x, x0)
−1/α depends on the choice of x0 ∈ [0, 1]. Recall also

that

D =
⋃
n≥0

⋃
ω∈�

∂An
ω,

the set of discontinuities of all the maps T nω .

THEOREM 6.1. In the setting of §2.1, assume conditions (LY), (Min), and (Dec). If x0 /∈ D
is non-recurrent, then, for P-a.e. ω ∈ � and all 0 ≤ s < t ,

lim
n→∞ νσ

ns�ω(RAn(σ
ns�ω) > n(t − s)�) = e−(t−s)�α(J ),

where An := φ−1
x0
(bnJ ), J ∈ J .

THEOREM 6.2. In the setting of intermittent maps, assume that γmax <
1
3 . Then for m-a.e.

x0 for P-a.e. ω ∈ � and all 0 ≤ s < t ,

lim
n→∞ νσ

ns�ω(RAn(σ
ns�ω) > n(t − s)�) = e−(t−s)�α(J ),

where An := φ−1
x0
(bnJ ), J ∈ J .

THEOREM 6.3. In the setting of §2.1, assume conditions (LY), (Min), and (Dec). If x0 /∈ D
is non-recurrent, then for P-a.e. ω ∈ �,

Nω
n

d→ N(α),

under the probability νω.
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THEOREM 6.4. In the setting of intermittent maps for m-a.e. x0 for P-a.e. ω,

Nω
n ((0, 1] × ·) d→ N(α)((0, 1] × ·).

After some preliminary lemmas and results, Theorem 6.1 is proved in §8.1, Theorem 6.2
in §8.2, Theorem 6.3 in §9.1, and Theorem 6.4 in §9.2.

7. Scheme of proofs
7.1. Two useful lemmas. We now proceed to the proofs of the main results. We will use
the following technical propositions which are a form of spatial ergodic theorem which
allows us to prove exponential and Poisson limit laws.

LEMMA 7.1. Assume Condition U and let χn : Y → R be a sequence of functions inL1(m)

such that Em(|χn|) = O(n−1L̃(n)) for some slowly varying function L̃. Then, for P-a.e.
ω ∈ � and for all � ≥ 1,

lim
n→∞ sup

0≤k≤�

∣∣∣∣ kn−1∑
j=0

(E
νσ
j ω (χn)− Eν(χn))

∣∣∣∣ = 0.

Therefore, given (s, t] ⊂ [0, ∞) and ε > 0, for P-a.e. ω, there exists N(ω) such that∣∣∣∣ nt�∑
r=ns�+1

(E
νσ
j ω (χn)− Eν(χn))

∣∣∣∣ ≤ ε

for all n ≥ N(ω).

Proof. We obtain the second claim by taking the difference between two values of � in the
first claim.

Fix � ≥ 1. For δ > 0, let

Unk (δ) =
{
ω ∈ � :

∣∣∣∣ kn−1∑
j=0

(E
νσ
j ω (χn)− Eν(χn))

∣∣∣∣ ≥ δ

}
and

Bn(δ) =
{
ω ∈ � : sup

0≤k≤�

∣∣∣∣ kn−1∑
j=0

(E
νσ
j ω (χn)− Eν(χn))

∣∣∣∣ ≥ δ

}
.

Note that

Bn(δ) =
�⋃
k=0

Unk (δ).

We define fn(ω) = Eνω(χn) and f n = EP(fn). We claim that fn : � → R is Hölder with
norm ‖fn‖θ = O(n−1L̃(n)). Indeed, for ω ∈ �, we have

|fn(ω)| =
∣∣∣∣ ∫

Y

χn(x) dν
ω(x)

∣∣∣∣ ≤ ‖hω‖L∞
m

‖χn‖L1
m

≤ C

n
L̃(n),
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and for ω, ω′ ∈ �, we have

|fn(ω)− fn(ω
′)| =

∣∣∣∣ ∫
Y

χn(x) dν
ω(x)−

∫
Y

χn(x) dν
ω′
(x)

∣∣∣∣
≤

∫
Y

|χn(x)| · |hω(x)− hω′(x)| dm(x)
≤ ‖hω − hω′‖L∞

m
‖χn‖L1

m

≤ C

n
L̃(n)dθ (ω, ω′),

since ω ∈ � �→ hω ∈ L∞(m) is Hölder continuous. In particular, we also have that
f n = O(n−1L̃(n)).

We have, using Chebyshev’s inequality,

P(Unk (δ)) = P

({
ω ∈ � :

∣∣∣∣ kn−1∑
j=0

(fn ◦ σ j − f n)

∣∣∣∣ ≥ δ

})

≤ 1
δ2EP

(( kn−1∑
j=0

(fn ◦ σ j − f n)

)2)

≤ 1
δ2

[ kn−1∑
j=0

(EP|fn ◦ σ j − f n|2

+ 2
∑

0≤i<j≤kn−1

EP((fn ◦ σ i − f n)(fn ◦ σ j − f n))

]
.

By the σ -invariance of P, we have

EP|fn ◦ σ j − f n|2 = EP|fn − f n|2,

and, since (�, P, σ) admits exponential decay of correlations for Hölder observables, there
exist λ ∈ (0, 1) and C > 0 such that

EP((fn ◦ σ i − f n)(fn ◦ σ j − f n)) = EP((fn − f n)(fn ◦ σ j−i − f n))

≤ Cλj−i‖fn − f n‖2
θ .

We then obtain that

P(Unk (δ)) ≤ C

δ2

[
kn‖fn − f n‖2

L2
m

+ 2
∑

0≤i<j≤kn−1

λj−i‖fn − f n‖2
θ

]

≤ C
nk

δ2 ‖fn‖2
θ

≤ C
k

nδ2 (L̃(n))
2,

which implies that

P(Bn(δ)) ≤ C
�2

nδ2 (L̃(n))
2.

https://doi.org/10.1017/etds.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.5


Stable laws for random dynamical systems 19

Let η > 0. By the Borel–Cantelli lemma, it follows that for P-a.e. ω ∈ �, there exists
N(ω, δ) ≥ 1 such that ω /∈ Bp1+η�(δ) for all p ≥ N(ω, δ).

Let now P := p1+η� < n ≤ P ′ = (p + 1)1+η� for p large enough. Let 0 ≤ k ≤ �.
Then, since ‖fn‖∞ = O(n−1L̃(n)),∣∣∣∣ kP−1∑

j=0

(fn(σ
jω)− f n)−

kn−1∑
j=0

(fn(σ
jω)− f n)

∣∣∣∣ ≤
kn−1∑
j=kP

|fn(σ jω)− f n|

≤ C
P ′ − P

P
L̃(n) ≤ C

L̃(p1+η)
p

,

because on the one hand,

P ′ − P

P
= (p + 1)1+η� − p1+η�

p1+η� = O
(

1
p

)
,

and on the other hand, by Potter’s bounds, for τ > 0,

L̃(n) ≤ CL̃(P )

(
n

P

)τ
≤ CL̃(P )

(
P ′

P

)τ
≤ CL̃(P ).

Since ∣∣∣∣ kP−1∑
j=0

(fn(σ
jω)− f n)

∣∣∣∣ < δ

for all 0 ≤ k ≤ �, it follows that for P-a.e. ω, there exists N(ω, δ) such that ω /∈ Bn(2δ)
for all n ≥ N(ω, δ), which concludes the proof.

We now consider a corresponding result to Lemma 7.1 in the setting of intermittent
maps.

LEMMA 7.2. Assume that γmax < 1/2, and that χn ∈ L1(m) is such that Em(|χn|) =
O(n−1), ‖χn‖∞ = O(1) and there is δ > 0 such that supp(χn) ⊂ [δ, 1] for all n.

Then, for P-a.e. ω ∈ � and for all � ≥ 1,

lim
n→∞ sup

0≤k≤�

∣∣∣∣ kn−1∑
j=0

(E
νσ
j ω (χn)− Eν(χn))

∣∣∣∣ = 0.

Proof. In the setting of intermittent maps, we must modify the argument of Lemma 7.1
slightly as hω is not a Hölder function of ω. Instead, we consider hiω = P i

σ−iω1 and use
that, by equation (5.11),

‖hiω − hω‖L1(m) ≤ Ci1−1/γmax (leaving out the log term). (7.1)

Note that hiω is the ith approximate to hω in the pullback construction of hω. Let νiω be the
measure such that dνiω/dm = hiω.
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Consider

f in(ω) = Eνiω
(χn) , fn(ω) = Eνω(χn),

f
i

n = EP(f
i
n) , f n = EP(fn).

By equation (5.12), on the set [δ, 1], the densities involved (hkω, hω, h = dν/dm) are
uniformly bounded above and away from zero. Thus, ‖f in‖∞ = O(n−1).

Pick 0 < a < 1 such that β := ((1/γmax)− 1)a − 1 > 0.
For a given n, take i = in = na . By equation (7.1), for all ω, n, and i = na ,

|f in(ω)− fn(ω)| ≤ ‖hiω − hω‖L1(m)‖χn‖L∞(m) = O(n−(β+1)).

Then

|f in − f n| = O(n−(β+1))

and ∣∣∣∣ kn−1∑
r=0

[f in(σ
rω)− fn(σ

rω)]
∣∣∣∣ ≤ C�n−β .

Given ε, choose n large enough that for all 0 ≤ k ≤ �,{
ω ∈ � :

∣∣∣∣ kn−1∑
r=0

(fn(σ
rω)− f n)

∣∣∣∣ > ε

}
⊂

{
ω ∈ � :

∣∣∣∣ kn−1∑
r=0

(f in(σ
rω)− f

i

n)

∣∣∣∣ > ε

2

}
.

By Chebyshev,

P

( ∣∣∣∣ kn−1∑
r=0

(f in ◦ σ r − f
i

n)

∣∣∣∣ > ε

2

)
≤ 4
ε2

kn−1∑
r=0

EP

(
[f in ◦ σ r − f

i

n]2
)

+ 4
ε2

[
2
kn−1∑
r=0

kn−1∑
u=r+1

|EP[(f in ◦ σ r − f
i

n)(f
i
n ◦ σu − f

i

n)]|
]

.

We bound

kn−1∑
r=0

EP([f in − f
i

n]2) ≤ C

kn−1∑
r=0

‖f in‖2∞ ≤ C�

n

and note that if |r − u| > na , then by independence,

EP[(f in ◦ σ r − f
i

n)(fn ◦ σu − f
i

n)] = EP[f in ◦ σ r − f
i

n]EP[f in ◦ σu − f
i

n] = 0

and hence, we may bound

kn−1∑
r=0

kn−1∑
u=r+1

|EP[(f in ◦ σ r − f
i

n)(f
i
n ◦ σu − f

i

n)]| ≤ C�

n1−a .
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Thus, for n large enough,

P

({
ω ∈ � :

∣∣∣∣ kn−1∑
r=0

[fn(σ rω)− f n]
∣∣∣∣ > ε

})
≤ C�

n1−aε2 .

The rest of the argument proceeds as in the case of Lemma 7.1 using a speedup along a
sequence n = p1+η, where η > a/(1 − a), since ‖fn‖∞ = O(n−1) still holds.

7.2. Criteria for stable laws and functional limit laws. The next theorem shows that for
regularly varying observables, Poisson convergence and Condition U imply convergence
in the J1 topology if α ∈ (0, 1) and gives an additional condition to be verified in the case
α ∈ [1, 2).

Note that equation (7.2) is essentially the condition in equation (5.5) of Proposition 5.7.

THEOREM 7.3. Assume φ is regularly varying, Condition U holds, and that

Nω
n

d→ N(α)

for P-a.e. ω ∈ �.
If α ∈ [1, 2), assume furthermore that for all δ > 0 and P-a.e. ω ∈ �,

lim
ε→0

lim sup
n→∞

ν

(
max

1≤k≤n

∣∣∣∣ 1
bn

k−1∑
j=0

[φ ◦ T jω 1{|φ◦T jω |≤εbn} − E
νσ
j ω (φ1{|φ|≤εbn})]

∣∣∣∣ ≥ δ

)
= 0.

(7.2)

Then Xωn
d→ X(α) in D[0, ∞) under the probability measure νω for P-a.e. ω ∈ �.

Remark 7.4. From equation (5.8) and Theorem 5.1, it follows that the convergence of Xωn
also holds under the probability measure ν.

Proof of Theorem 7.3. When α ∈ (0, 1), we check the hypothesis of Proposition 5.4. Using
equation (5.8), we have∣∣∣∣ 1

bn

n�−1∑
j=0

E
νσ
j ω (|φ|1{|φ|≤εbn})

∣∣∣∣ ≤ C
n�

bn
Eν(|φ|1{|φ|≤εbn}).

Using Proposition 3.2, we see that the condition in equation (5.3) is satisfied since α < 1,
thus proving the theorem in this case.

When α ∈ [1, 2), we consider instead Proposition 5.7. First, we remark that the
condition in equation (5.5) is implied by equations (7.2) and (5.8). It remains to check
the condition in equation (5.4), which constitutes the rest of the proof.

If α ∈ (1, 2), we have∣∣∣∣ 1
bn

[ nt�−1∑
j=0

E
νσ
j ω (φ1{|φ|≤εbn})− t (cn − bncα(ε))

]∣∣∣∣ ≤ Aωn (t)+ Bωn,ε(t)+ Cωn,ε(t)

(7.3)
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with

Aωn (t) =
∣∣∣∣ 1
bn

[ nt�−1∑
j=0

E
νσ
j ω (φ)− tcn

]∣∣∣∣,
Bωn,ε(t) =

∣∣∣∣ 1
bn

[ nt�−1∑
j=0

E
νσ
j ω (φ1{|φ|>εbn})− ntEν(φ1{|φ|>εbn})

]∣∣∣∣,
and

Cωn,ε(t) =
∣∣∣∣ntbnEν(φ1{|φ|>εbn})− tcα(ε)

∣∣∣∣.
Since φ is regularity varying with index α > 1, it is integrable and the function

ω �→ Eνω(φ) is Hölder. Hence, it satisfies the law of the iterated logarithm, and we have
for P-a.e. ω ∈ �, ∣∣∣∣1

k

k−1∑
j=0

E
νσ
j ω (φ)− Eν(φ)

∣∣∣∣ = O
(√

log log k√
k

)
.

Thus, we have

sup
0≤t≤�

Aωn (t) = O
(√

n�
√

log log(n�)
bn

)
.

As a consequence, we can deduce that limn→∞ sup0≤t≤� Aωn (t) = 0 since bn = n
1
α L̃(n)

for a slowly varying function L̃, with α < 2.
By Proposition 3.2, we also have

lim
n→∞ nb−1

n Eν(φ1{|φ|>εbn}) = cα(ε).

In particular, we have

lim
n→∞ sup

0≤t≤�
Cωn,ε(t) = 0.

This also implies that Em(|χn|) = O(n−1) if we define χn = b−1
n φ1{|φ|>εbn}. From

Lemma 7.1, it follows that limn→∞ sup0≤t≤� Bωn,ε(t) = 0.
Putting all these estimates together concludes the proof when α ∈ (1, 2).
When α = 1, we estimate the right-hand side of equation (7.3) byAωn,ε(t)+ Bωn,ε(t)with

Aωn,ε(t) =
∣∣∣∣ 1
bn

[ nt�−1∑
j=0

E
νσ
j ω (φ1{|φ|≤εbn})− ntEν(φ1{|φ|≤εbn})

]∣∣∣∣
and

Bωn,ε(t) =
∣∣∣∣ntbnEν(φ1{εbn<|φ|≤bn})− tcα(ε)

∣∣∣∣.
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We define χn = b−1
n φ1{|φ|≤εbn}. By Proposition 3.2, we have Em(|χn|) = O(n−1L̃(n))

for some slowly varying function L̃, and so by Lemma 7.1,

lim
n→∞ sup

0≤t≤�
Aωn,ε(t) = 0.

However, by Proposition 3.2, we have

lim
n→∞ nb−1

n Eν(φ1{εbn<|φ|≤εbn}) = cα(ε)

and so limn→∞ sup0≤t≤� Bωn,ε(t) = 0 which completes the proof.

8. An exponential law
We denote by J the family of all finite unions of intervals of the form (x, y], where
−∞ ≤ x < y ≤ ∞ and 0 /∈ [x, y]. For J ∈ J , we will establish a quenched exponential
law for the sequence of sets An = (φx0)

−1(bnJ ). Similar results were obtained in [CF20,
FFV17, HRY20, RSV14, RT15].

Since φ is regularly varying, it is easy to verify that

lim
n→∞ nν(An) = �α(J ).

In particular, m(An) = O(n−1).

LEMMA 8.1. Assume Condition U and that φ is regularly varying with index α.
If An ⊂ [0, 1] is a sequence of measurable subsets such thatm(An) = O(n−1), then for

all 0 ≤ s < t ,

lim
n→∞

([ nt�∑
j=ns�+1

νσ
jω(An)

]
− n(t − s)ν(An)

)
= 0.

The same result holds in the setting of intermittent maps if An ⊂ [δ, 1] for some δ > 0
with m(An) = O(n−1). In particular, if An = φ−1

x0
(bnJ ) for J ∈ J and x0 �= 0, then for

all 0 ≤ s < t ,

lim
n→∞

nt�∑
j=ns�+1

νσ
jω(An) = (t − s)�α(J ).

Proof. For the first statement, it suffices to apply Lemma 7.1 or Lemma 7.2 with χn = 1An .
The second statement immediately follows since limn nν(An) = �α(J ).

COROLLARY 8.2. Assume the hypothesis of Lemma 8.1.
Let J ∈ J and set An = φ−1(bnJ ). Then for P-a.e. ω ∈ � and all 0 ≤ s < t ,

lim
n→∞

nt�∏
j=ns�+1

(1 − νσ
jω(An)) = e−(t−s)�α(J ).
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Proof. Since νω(An) is of order at most n−1 uniformly in ω ∈ �, it follows that

log
[ nt�∏
j=ns�+1

(1 − νσ
jω(An))

]
= −

( nt�∑
j=ns�+1

νσ
jω(An)

)
+ O(n−1).

By Lemma 8.1,

lim
n→∞

nt�−1∑
j=ns�

νσ
jω(An) = (t − s)�α(J ),

which yields the conclusion.

Definition 8.3. For a measurable subset U ⊂ Y = [0, 1], we define the hitting time of
(ω, x) ∈ �× Y to U by

RU(ω)(x) := inf{k ≥ 1 : T kω(x) ∈ U},
and the induced measure by ν on U by

νU (A) := ν(A ∩ U)
ν(U)

.

To establish our exponential law, we will first obtain a few estimates, based on the proof
of [HSV99, Theorem 2.1], to relate νω(RAn(ω) > nt�) to

∑nt�−1
j=0 νσ

jω(An) so that we
are able to invoke Corollary 8.2.

The next lemma is basically [RSV14, Lemma 6].

LEMMA 8.4. For every measurable set U ⊂ [0, 1], we have the bound∣∣∣∣νω(RU(ω) > k)−
k∏
j=1

(1 − νσ
jω(U))

∣∣∣∣
≤

k∑
j=1

νσ
jω(U) cσjω(k − j , U)

j−1∏
i=1

(1 − νσ
iω(U))

≤
k∑
j=1

νσ
jω(U) cσjω(U),

where

cω(k, U) := |νωU (RU(ω) > k)− νω(RU(ω) > k)|
and

cω(U) := sup
k≥0

cω(k, U).

Proof. Note that {RU(ω) > k} = [T 1
ω ]−1(Uc ∩ {RU(σω) > k − 1}) and so, using the

equivariance of {νω}ω∈�,

νω(RU(ω) > k) = νσω(Uc ∩ {RU(σω) > k − 1}).
Hence,

νω(RU(ω) > k) = νσω(RU(σω) > k − 1)− νσω(U ∩ {RU(σω) > k − 1}).
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We note that

νω(RU(ω) > k) = νσω(RU(σω) > k − 1)

− νσω(U)[νσω(RU(σω) > k − 1)+ cσω(k − 1, U)]

= (1 − νσω(U))νσω(RU(σω) > k − 1)− νσω(U)cσω(k − 1, U).

Iterating we obtain, using the fact that for P-a.e. ω, νω(RU(ω) ≥ 1) = 1,

νω(RU(ω) > k) =
k∏
j=1

(1 − νσ
jω(U))−

k∑
j=1

νσ
jω(U)cσjω(k − j , U)

j−1∏
i=1

(1 − νσ
iω(U)),

which yields the conclusion.

We will estimate now the coefficients cω(U).

LEMMA 8.5. For any measurable subset U ⊂ Y such that 1U ∈ BV, we have, for all N,

cω(U) ≤ νωU (RU(ω) ≤ N)+ νω(RU(ω) ≤ N)+ 1
νω(U)

‖PNω ([1U − νω(U)]hω)‖L1(m)

(8.1)

and

νωU (RU(ω) ≤ N) ≤ 1
νω(U)

νω(RU(ω) ≤ N), νω(RU(ω) ≤ N) ≤
N∑
i=1

νσ
iω(U). (8.2)

Proof. The estimates in equation (8.2) follow from

{RU(ω) ≤ N} =
N⋃
i=1

(T iω)
−1(U),

and therefore

νω(RU(ω) ≤ N) ≤
N∑
i=1

νσ
iω(U).

For equation (8.1), note that

cω(U) = |νωU (RU(ω) ≤ j)− νω(RU(ω) ≤ j)|.
If j ≤ N , then

cω(U) ≤ νωU (R(ω) ≤ N)+ νω(R(ω) ≤ N).

If j > N , we write

νωU (RU(ω) ≤ j)− νω(RU(ω) ≤ j)

= νωU (RU(ω) ≤ j)− νωU (T
−N
ω (RU(σ

Nω) ≤ j −N))

+ νωU (T
−N
ω (RU(σ

Nω) ≤ j −N))− νω(T −N
ω (RU(σ

Nω) ≤ j −N))

+ νω(T −N
ω (RU(σ

Nω) ≤ j −N))− νω(RU(ω) ≤ j)

= (a)+ (b)+ (c).
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To bound terms (a) and (c), note that

{RU(ω) ≤ j} = {RU(ω) ≤ N} ∪ T −N
ω ({RU(σNω) ≤ j −N)})

so

|νω(RU(ω) ≤ j)− νω(T −N
ω (RU(σ

Nω) ≤ j −N))| ≤ νω(RU(ω) ≤ N) (8.3)

and similarly for νωU .
To bound term (b), we use the decay of P kω . Setting V = {RU(σNω) ≤ j −N}, we have

|νωU (T −N
ω (V ))− νω(T −N

ω (V ))|
= 1
νω(U)

∣∣∣∣ ∫
Y

1U1V ◦ T Nω hω dm− νω(U)

∫
Y

1V ◦ T Nω hω dm
∣∣∣∣

= 1
νω(U)

∣∣∣∣ ∫
Y

1V PNω ([1U − νω(U)]hω) dm
∣∣∣∣

≤ 1
νω(U)

‖PNω ([1U − νω(U)]hω)‖L1(m).

8.1. Exponential law: proof of Theorem 6.1. We can now prove the exponential law for
An = φ−1(bnJ ), J ∈ J .

Proof of Theorem 6.1. Due to rounding errors when taking the integer parts, we have

|νσ ns�ω(RAn(σ
ns�ω) > n(t − s)�)− νσ

ns�ω(RAn(σ
ns�ω) > nt� − ns�)|

≤ νσ
nt�ω(An) ≤ Cm(An) → 0,

and it is thus enough to prove the convergence of νσ
ns�ω(RAn(σ

ns�ω) > nt� − ns�).
By Lemmas 8.4 and 8.5, for all N ≥ 1, we have∣∣∣∣νσ ns�ω(RAn(σ

ns�ω) > nt� − ns�)−
nt�∏

j=ns�+1

(1 − νσ
jω(An))

∣∣∣∣ ≤ (I)+ (II)+ (III),

(8.4)

with

(I) =
nt�∑

j=ns�+1

νσ
jω(An ∩ {RAn(σ jω) ≤ N}),

(II) =
nt�∑

j=ns�+1

νσ
jω(An)ν

σjω(RAn(σ
jω) ≤ N),

and

(III) =
nt�∑

j=ns�+1

‖PN
σjω

([1An − νσ
jω(An)]hσjω)‖L1(m).

To estimate (I), we choose ε > 0 such that J ⊂ {|x| > ε} and we introduce
Vn = {|φ| > εbn}. For a measurable subset V ⊂ Y , we also define the shortest return
to V by
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rω(V ) = inf
x∈V RV (ω)(x),

and we set

r(V ) = inf
ω∈� rω(V ).

We have

νσ
jω(An ∩ {RAn(σ jω) ≤ N}) ≤ νσ

jω(Vn ∩ {RVn(σ jω) ≤ N})

≤
N∑

i=r
σj ω

(Vn)

νσ
jω(Vn ∩ (T i

σ jω
)−1(Vn))

≤
N∑

i=r
σj ω

(Vn)

∫
Y

1VnP
i
σ jω

(1Vnhσjω) dm.

It follows from condition (Dec) that∣∣∣∣ ∫
Y

1VnP
i
σ jω

(1Vnhσjω) dm− νσ
jω(Vn)ν

σ i+j ω(Vn)

∣∣∣∣
≤ ‖1Vn‖L1

m
‖P i

σjω
([1Vn − νσ

jω(Vn)]hσjω)‖L∞
m

≤ Cθim(Vn)‖[1Vn − νσ
jω(Vn)]hσjω‖BV

≤ Cθim(Vn),

as BV is a Banach algebra, and both ‖1Vn‖BV and ‖hσjω‖BV are uniformly bounded.
(Recall that, from the definition of φ, it follows that Vn is an open interval, and thus 1Vn
has a uniformly bounded BV norm.)

Consequently,

(I) ≤
nt�∑

j=ns�+1

N∑
i=r

σj ω
(Vn)

[νσ
jω(Vn)ν

σ i+j ω(Vn)+ O(θ im(Vn))]

≤ C(m(Vn)
2nN +m(Vn)nθ

r(Vn)).

However, we have by equation (8.2),

(II) ≤
nt�∑

j=ns�+1

νσ
jω(An)

N∑
i=1

νσ
i+j ω(An)

≤ CnNm(An)
2,

and it follows from condition (Dec) that

(III) ≤ CθN
nt�∑

j=ns�+1

‖[1An − νσ
jω(An)]hσjω‖BV

≤ CnθN ,
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since {hω}ω∈� is a bounded family in BV, An is the union of at most two intervals, and
thus ‖1An‖BV is uniformly bounded. We can thus bound equation (8.4) by

C(m(Vn)
2nN +m(Vn)nθ

r(Vn) +m(An)
2nN + nθN) ≤ C(n−1N + θr(Vn) + nθN),

and, assuming for the moment that r(Vn) → +∞, we obtain the conclusion by choosing
N = N(n) = 2 log n and letting n → ∞.

It thus remains to show that r(Vn) → +∞. Recall that Vn is the ball of center x0

and radius b−1ε−αn−1. Let R ≥ 1 be a positive integer. Since x0 is assumed to be
non-recurrent, and that the collection of maps T jω for ω ∈ � and 0 ≤ j < R is finite, we
have that

δR := inf
ω∈� inf

0≤j<R |T jω (x0)− x0| > 0

is positive. Since all the maps T jω are continuous at x0 by assumption, there exists nR ≥ 1
such that for all n ≥ nR , j < R, and ω ∈ �,

x ∈ Vn �⇒ |T jω (x)− T jω (x0)| < δR

2
.

Increasing nR if necessary, we can assume that b−1ε−αn−1 < (δR/2) for all n ≥ nR .
Then, for all n ≥ nR , ω ∈ �, j < R, and x ∈ Vn, we have

|T jω (x)− x0| ≥ |T jω (x0)− x0| − |T jω (x)− T jω (x0)| > δR

2
> b−1ε−αn−1,

and thus T jω (x) /∈ Vn.
This implies that r(Vn) > R for all n ≥ nR , which concludes the proof as R is

arbitrary.

Remark 8.6. A quenched exponential law for random piecewise expanding maps of
the interval is proved in [HRY20, Theorem 7.1]. Our proof follows the same standard
approach. We are able to specify that Theorem 6.1 holds for non-recurrent x0, since our
assumptions imply decay of correlations against L1 observables, which is known to be
necessary for this purpose, see [AFV15, §3.1]. Our proof is shorter, as we consider the
simpler setting of finitely many maps, which are all uniformly expanding. In addition, we
use the exponential law in the intermittent case of [HRY20, Theorem 7.2] to establish the
short returns condition of Lemma 8.7 below.

8.2. Exponential law: proof of Theorem 6.2. To prove the exponential law in the
intermittent setting, Theorem 6.2, we need a genericity condition on the point x0 in the
definition (2.1) of φx0 .

LEMMA 8.7. If γmax <
1
3 , for m-a.e. x0 and for P-a.e. ω ∈ �,

lim
n→∞

tn�∑
j=sn�+1

m(Bcn−1(x0) ∩ {RσjωB
cn−1 (x0)

≤ n(log n)−1�}) = 0

for all c > 0 and all 0 ≤ s < t .
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Proof. Let N = n(log n)−1� an Vn = Bcn−1(x0). First, we remark that for m-a.e. x0 and
P-a.e. ω,

m(Vn ∩ {RVn(ω) ≤ N}) = o(n−1). (8.5)

This is a consequence of [HRY20, Theorem 7.2]. Their result is stated for two intermittent
LSV maps both with γ < 1

3 but generalizes immediately to a finite collection of maps with
a uniform bound of γmax <

1
3 . The exponential law for return times to nested balls implies

that for a fixed t, for m-a.e x0, and P-a.e. ω,

lim
n→∞

1
νω(Vn)

νω(Vn ∩ {RVn(ω) ≤ nt}) = 1 − e−t ,

which shows in particular, since {RVn(ω) ≤ N} ⊂ {RVn(ω) ≤ nt} for all n large enough,
that for all t > 0, m-a.e x0, and P-a.e. ω,

lim sup
n→∞

1
νω(Vn)

νω(Vn ∩ {RVn(ω) ≤ N}) ≤ 1 − e−t . (8.6)

Using equation (5.12), taking the limit t → 0 proves equation (8.5). Note that, even
though the set of full measure of x0 and ω such that equation (8.6) holds may depend on t,
it is enough to consider only a sequence tk → 0.

Now, for k ≥ 0 and n0 ≥ 1, we introduce the set

�
n0
k =

{
ω ∈ � : m(Vn ∩ {RVn(ω) ≤ N}) ≤ 2−k

n
for all n ≥ n0

}
.

According to equation (8.5), we have for all k ≥ 0,

lim
n0→∞ P(�

n0
k ) = P

( ⋃
n0≥1

�
n0
k

)
= 1.

By the Birkhoff ergodic theorem, for all k ≥ 0, n0 ≥ 1, and P-a.e. ω,

lim
n→∞

1
n

n−1∑
j=0

1
�
n0
k
(σ jω) = P(�

n0
k ),

which implies that for all 0 ≤ s < t ,

lim
n→∞

1
(nt� − ns�)

nt�∑
j=ns�+1

1
�
n0
k
(σ jω) = P(�

n0
k ).

Let n0 = n0(ω, k) such that P(�n0
k ) ≥ 1 − 2−k , and for all n ≥ n0,

1
(nt� − ns�)

nt�∑
j=ns�+1

1
�
n0
k
(σ jω) ≥ P(�

n0
k )− 2−k .

Then, for all n ≥ n0(ω, k), we have

1
(nt� − ns�)

nt�∑
j=ns�+1

1
(�

n0
k )

c (σ
jω) ≤ 2−(k−1).
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Consequently,

nt�∑
ns�+1

m(Vn ∩ {RVn(ω) ≤ N}) ≤ (nt� − ns�)2−k

n
+ (nt� − ns�)2−(k−1)m(Vn).

This proves that

lim sup
n→∞

nt�∑
ns�+1

m(Vn ∩ {RVn(ω) ≤ N}) ≤ C 2−k

and the result follows by taking the limit k → ∞.
Note that the set of x0 and ω for which the lemma holds depends a priori on c > 0, but

it is enough to consider a countable and dense set of c, since for c < c′,

{Bcn−1(x0) ∩ {RωB
cn−1 (x0)

≤ N}} ⊂ {Bc′n−1(x0) ∩ {RωB
c′n−1 (x0)

≤ N}}.

The exponential law for random intermittent maps follows from Lemma 8.7.

Proof of Theorem 6.2. We consider the three terms in equation (8.4) withN = n(log n)−1�.
Let Vn = {|φ| > εbn}, where ε > 0 is such that An ⊂ Vn for all n ≥ 1. Since Vn is a

ball of center x0 and radius b−1ε−αn−1, and since Vn ⊂ [δ, 1], the term

(I) =
nt�∑

j=ns�+1

νσ
jω(An ∩ {RAn(σ jω) ≤ N}) ≤ C

nt�∑
j=ns�+1

m(Vn ∩ {RVn(σ jω) ≤ N})

tends to zero by Lemma 8.7 for m-a.e x0.
The term

(II) =
nt�∑

j=ns�+1

νσ
jω(An)ν

σjω(RAn(σ
jω) ≤ N) ≤ CnNm(An)

2

also tends to zero since N = o(n). Lastly, we consider

(III) =
nt�∑

j=ns�+1

‖PN
σjω

([1An − νσ
jω(An)]hσjω)‖L1(m).

We approximate 1An by a C1 function g such that ‖g‖C1 ≤ nτ , g = 1An on An,
and ‖g − 1An‖L1 ≤ n−τ (recall An is two intervals of length roughly 1/n so a simple
smoothing at the endpoints of the intervals allows us to find such a function g). Later we
will specify τ > 1 as needed. By [NPT21, Lemma 3.4] with h = hω and ϕ = g −m(ghω),
for all ω,

‖PNω ([g −m(ghω)]hω)‖L1 ≤ CnτN1−1/γmax(log N)1/γmax

≤ Cnτ+1−1/γmax(log n)(2/γmax)−1.
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Using the decomposition 1An − νω(An) = (1An − g)− (νω(An)−m(ghω))+
(g −m(ghω)), we estimate, leaving out the log term,

(III) ≤ C[n1−τ + nτ+2−1/γmax],

where the value of C may change line to line. Taking γmax <
1
3 and 1 < τ < (1/γmax)− 2

suffices.

9. Point process results
We now proceed to the proof of the Poisson convergence. In §11, we will consider an
annealed version of our results.

9.1. Uniformly expanding maps: proof of Theorem 6.3. Recall Theorem 6.3: under
the conditions of §2.1, in particular conditions (LY), (Min), and (Dec), if x0 /∈ D is
non-recurrent, then for P-a.e. ω ∈ �,

Nω
n

d→ N(α)

under the probability measure νω.
Our proof of Theorem 6.3 uses the existence of a spectral gap for the associated transfer

operators Pnω , and breaks down in the setting of intermittent maps. The use of the spectral
gap is encapsulated in the following lemma.

LEMMA 9.1. Assume condition (LY). Then there exists C > 0 such that for all ω ∈ �, all
f , fn ∈ BV with

sup
j≥1

‖fj‖L∞(m) ≤ 1 and sup
j≥1

‖fj‖BV < ∞,

we have

sup
n≥0

∥∥∥∥Pnω(
f ·

n∏
j=1

fj ◦ T jω
)∥∥∥∥

BV
≤ C‖f ‖BV

(
sup
j≥1

‖fj‖BV

)
.

Proof. We proceed in four steps.
Step 1. We define

gnω =
n∏
j=0

fj ◦ T jω ,

where we have set f0 = 1. We observe that for all n ≥ 0, there exists Cn > 0 such that for
all ω ∈ �,

‖gnω‖L∞(m) ≤
(

sup
j≥1

‖fj‖L∞(m)
)n+1 ≤ 1 and ‖gnω‖BV ≤ Cn

(
sup
j≥1

‖fj‖BV

)
. (9.1)
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The first estimate is immediate, and the second follows, because

Var(gn+1
ω ) ≤ Var(gnω)‖fn+1 ◦ T n+1

ω ‖L∞(m) + ‖gnω‖L∞(m)Var(fn+1 ◦ T n+1
ω )

≤ Var(gnω)+ Var(fn+1 ◦ T n+1
ω )

= Var(gnω)+
∑

I∈An+1
ω

VarI (fn+1 ◦ T n+1
ω )

= Var(gnω)+
∑

I∈An+1
ω

Var
T n+1
ω (I)

(fn+1)

≤ Var(gnω)+ (#An+1
ω )Var(fn+1),

and so we can define by induction Cn+1 = Cn + supω∈� #An+1
ω which is finite, as there

are only finitely many maps in S.
Step 2. We first prove the lemma in the case where r = 1 in the condition (LY). Before,

we claim that for f ∈ BV and sequences (fj ) ⊂ BV as in the statement, we have

Var(P nω(fg
n
ω)) ≤

n∑
j=0

ρj‖Pn−jω (fgn−j−1
ω )‖L∞(m)‖fn−j‖BV

+D

n−1∑
j=0

ρj‖Pn−1−j
ω (fgn−1−j

ω )‖L1(m)‖fn−j‖L∞(m). (9.2)

This implies the lemma when r = 1, since

‖Pn−jω (fgn−j−1
ω )‖L∞(m) ≤ ‖gn−j−1

ω ‖L∞(m)‖Pn−jω |f |‖L∞(m) ≤ C‖f ‖BV

and

‖Pn−jω (fgn−jω )‖L1(m) ≤ ‖fgn−jω ‖L1(m) ≤ ‖f ‖L∞(m)‖gn−jω ‖L1(m) ≤ ‖f ‖BV.

We prove the claim by induction on n ≥ 0. It is immediate for n = 0, and for the
induction step, we have, using condition (LY),

Var(P n+1
ω (fgn+1

ω ))

= Var(P n+1
ω (fgnωfn+1 ◦ T n+1

ω )) = Var(P n+1
ω (fgnω)fn+1)

≤ Var(P n+1
ω (fgnω))‖fn+1‖L∞(m) + ‖Pn+1

ω (fgnω)‖L∞(m)Var(fn+1)

≤ (ρVar(P nω(fg
n
ω))+D‖Pnω(fgnω)‖L1(m))‖fn+1‖L∞(m)

+ ‖Pn+1
ω (fgnω)‖L∞(m)Var(fn+1)

≤ ρVar(P nω(fg
n
ω))+D‖Pnω(fgnω)‖L1(m)‖fn+1‖L∞(m)+‖Pn+1

ω (fgnω)‖L∞(m)‖fn+1‖BV,

which proves equation (9.2) for n+ 1, assuming it holds for n.
Step 3. Now, we consider the general case r ≥ 1 and we assume that n is of the particular

form n = pr , with p ≥ 0. We note that the random system defined with T = {T rω}ω∈�
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satisfies the condition (LY) with r = 1. Consequently, by the second step and equation
(9.1), we have

‖Pnω(fgnω)‖BV = ‖P r
σr−1ω

◦ · · · ◦ P rω
(
f

p∏
j=1

gr
σjrω

◦ T jrω
)

‖BV

≤ C‖f ‖BV

(
sup
j≥1

‖gr
σjrω

‖BV

)
≤ CCr‖f ‖BV

(
sup
j≥1

‖fj‖BV

)
.

Step 4. Finally, if n = pr + q, with p ≥ 0 and q ∈ {0, . . . , r − 1}, as an immediate
consequence of condition (LY), we obtain

‖Pnω(fgnω)‖BV = ‖PqσprωP prω (fgprω g
q
σprω ◦ T prω )‖BV

= ‖Pqσprω(P prω (fgprω )g
q
σprω)‖BV ≤ C‖Pprω (fgprω )g

q
σprω‖BV.

However, from Step 3, we have

‖Pprω (fgprω )g
q
σprω‖L1(m) ≤ ‖gqσprω‖L∞(m)‖Pprω (fgprω )‖L1(m)

≤ ‖Pprω (fgprω )‖L1(m) ≤ C‖f ‖BV

(
sup
j≥1

‖fj‖BV

)
,

and, using equation (9.1),

Var(P prω (fgprω )g
q
σprω) ≤ ‖Pprω (fgprω )‖L∞(m)Var(gqσprω)

+ Var(P prω (fgprω ))‖gqσprω‖L∞(m)

≤ [Cq‖gprω ‖L∞(m)‖Pprω |f |‖L∞(m) + C‖f ‖BV]
(

sup
j≥1

‖fj‖BV

)
≤ C

(
1 + max

q=0,...,r−1
Cq

)
‖f ‖BV

(
sup
j≥1

‖fj‖BV

)
,

which concludes the proof of the lemma.

Proof of Theorem 6.3. We denote by R the family of finite unions of rectangles R of the
form R = (s, t] × J with J ∈ J . By Kallenberg’s theorem, see [Kal76, Theorem 4.7] or

[Res87, Proposition 3.22], Nω
n

d→ N(α) if for any R ∈ R,

(a) lim
n→∞ νω(Nω

n (R) = 0) = P(N(α)(R) = 0)

and

(b) lim
n→∞ EνωN

ω
n (R) = EN(α)(R).

We first prove equation (b). We write

R =
k⋃
i=1

Ri ,

with Ri = (si , ti] × Ji disjoint.
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Then

EN(α)(R) =
k∑
i=1

(ti − si)�α(Ji)

and

EνωN
ω
n (R) =

k∑
i=1

EνωN
ω
n ((si , ti] × Ji) =

k∑
i=1

∑
nsi<j≤nti

Eνω(1φ−1
x0 (bnJi )

◦ T j−1
ω )

=
k∑
i=1

∑
nsi<j≤nti

νσ
j−1ω(φ−1

x0
(bnJi))

=
k∑
i=1

nti�−1∑
j=nsi�

νσ
jω(φ−1

x0
(bnJi)).

By Lemma 8.1, for P-a.e. ω ∈ �, we have

lim
n→∞

k∑
i=1

nti�−1∑
j=nsi�

νσ
jω(φ−1

x0
(bnJi)) = (ti − si)�α(Ji),

which proves equation (b).
We next establish equation (a). We will use induction on the number of ‘time’ intervals

(si , ti] ⊂ (0, ∞]. Let R = (s1, t1] × J1, where J1 ∈ J . Define

An = φ−1
x0
(bnJ1).

Since

{Nω
n (R) = 0} = {x : T jω (x) �∈ An, ns1 < j + 1 ≤ nt1}

= {1Acn ◦ T ns1�
ω · 1Acn ◦ T ns1�+1

ω · · · · · 1Acn ◦ T nt1�−1
ω �= 0}

=
{
x :

( nt1�−1−ns1�∏
j=0

1Acn ◦ T j
σ ns1�ω

)
◦ T ns1�

ω (x) �= 0
}

,

we have that

|νω(Nω
n (R) = 0)− νσ

ns1�ω(RAn(σ
ns1�ω) > n(t1 − s1)�)|

≤ νσ
ns1�ω(RAn(σ

ns1�ω) = 0) = νσ
ns1�ω(An) ≤ Cm(An) → 0, (9.3)

because, due to rounding when taking integer parts, nt1� − ns1� − 1 is either equal to
n(t1 − s1)� − 1 or to n(t1 − s1)�. By Theorem 6.1,

νσ
ns1�ω(RAn(σ

ns1�ω) > n(t1 − s1)�) → e−(t1−s1)�α(J )

as desired.
Now let R = ⋃k

j=1(si , ti] × Ji with 0 ≤ s1 < t1 < · · · < sk < tk and Ji ∈ J . Further-
more, define s′i = si − s1 and t ′i = ti − s1.
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Observe that, accounting for the rounding errors when taking integer parts as for
equation (9.3), we get

∣∣∣∣νω(
Nω
n

( k⋃
i=1

(si , ti] × Ji

)
= 0

)
− νσ

ns1�ω
(
Nσ ns1�ω
n

( k⋃
i=1

(s′i , t ′i ] × Ji

)
= 0

)∣∣∣∣
≤ 2C

k∑
i=1

m(φ−1
x0
(bnJi)) → 0 (9.4)

so, after replacing ω by σ ns1�ω, we can assume that s1 = 0. Let

R1 = (0, t1] × J1,

R2 =
k⋃
i=2

(si , ti] × Ji ,

R′
2 =

k⋃
i=2

(si − s2, ti − s2] × Ji .

Then, with An = φ−1
x0
(bnJ1),

|νη(Nη
n (R1 ∪ R2) = 0)− νη[{RAn(η) > nt1�} ∩ T −ns2�

η (Nσ ns2�η
n (R′

2) = 0)]| → 0
(9.5)

as n → ∞, uniformly in η ∈ �, as in equation (9.4). Moreover, as we check below,

|νη[{RAn(η) > nt1�} ∩ T −ns2�
η (Nσ ns2�η

n (R′
2) = 0)]

− νη(RAn(η) > nt1�) · νη(Nη
n (R2) = 0)| → 0 (9.6)

as n → ∞, uniformly in η ∈ �. Therefore, setting η = σ ns2�ω in equations (9.5) and
(9.6), we have, by Theorem 6.1,

lim
n→∞ |νσ ns2�ω(Nσ ns2�ω

n (R1 ∪ R2) = 0)− e−t1�α(J1)νσ
ns2�ω(Nσ ns2�ω

n (R2) = 0)| = 0,

which gives the induction step in the proof of equation (a).
We prove now equation (9.6). Our proof uses the spectral gap for Pnω and breaks down

for random intermittent maps.
Similarly to equation (9.4),

|νη(Nη
n (R2) = 0)− νη(T −ns2�

η (Nσ ns2�η
n (R′

2) = 0))| → 0 as n → ∞, uniformly in η.

We have, using the notation

U = {RAn(η) > nt1�}, V = {Nσ ns2�η
n (R′

2) = 0},
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that

|νη(U ∩ T −ns2�
η (V ))− νη(U)νη(T −ns2�

η (V ))|
=

∣∣∣∣ ∫
P ns2�
η ((1U − νη(U))hη)1V dm

∣∣∣∣
≤ C‖P ns2�

η ((1U − νη(U))hη)‖BV

= ‖P ns2�−nt1�
σ nt1�η P nt1�

η ((1U − νη(U))hη)‖BV

≤ Cθns2�−nt1�‖P nt1�
η ((1U − νη(U))hη)‖BV,

where the last inequality follows from the decay, uniform in η, of {P kη }k in BV (condition
(Dec)).

However,

sup
η

sup
n

‖P nt1�
η ((1{RAn(η)>nt1�} − νη(RAn(η) > nt1�))hη)‖BV < ∞, (9.7)

which proves equation (9.6). This follows from Lemma 9.1 applied to f = hη and
fj = 1Acn , because

1{RAn(η)>nt1�} =
nt1�∏
j=1

1Acn ◦ T jη ,

and both ‖hη‖BV and ‖1Acn‖BV are uniformly bounded. Note that for the stationary case,
the estimate in equation (9.7) is used in the proof of [TK10b, Theorem 4.4], which refers
to [ADSZ04, Proposition 4].

9.2. Intermittent maps: proof of Theorem 6.4. We prove a weaker form of convergence
in the setting of intermittent maps, which suffices to establish stable limit laws but not
functional limit laws.

In the setting of intermittent maps, we will show that for P-a.e. ω,

Nω
n ((0, 1] × ·) d→ N(α)((0, 1] × ·)

Proof of Theorem 6.4. We will show that for P-a.e. ω ∈ �, the assumptions of Kallen-
berg’s theorem [Kal76, Theorem 4.7] hold.

Recall that J denotes the set of all finite unions of intervals of the form (x, y], where
x < y and 0 �∈ [x, y].

By Kallenberg’s theorem [Kal76, Theorem 4.7], Nω
n [(0, 1] × ·) →d N(α)((0, 1] × ·) if

for all J ∈ J ,

(a) lim
n→∞ νω(Nω

n ((0, 1] × J ) = 0) = P(N(α)((0, 1] × J ) = 0)

and

(b) lim
n→∞ EνωN

ω
n ((0, 1] × J ) = E[N(α)((0, 1] × J )].
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We prove first equation (b) following [TK10b, p. 12]. Write

J =
k⋃
i=1

Ji

with Ji = (xi , yi] disjoint.
Then

EN(α)((0, 1] × J ) =
k∑
i=1

�α(Ji) = �α(J )

and

EνωN
ω
n ((0, 1] × J ) =

k∑
i=1

n∑
j=1

Eνω [1
(φ−1
x0 (bnJi ))

◦ T j−1
ω ] =

n∑
j=1

Eνω [1
(φ−1
x0 (bnJ ))

◦ T j−1
ω ].

We check that

lim
n→∞

n∑
j=1

Eνω(1{φ−1
x0 (bnJ )} ◦ T jω ) = �α(J )

for J = ⋃k
i=1 Ji .

Write An := φ−1
x0
(bnJ ). Then

Eνω [1
(φ−1
x0 (bnJ ))

◦ T jω ] = νσ
jω(An),

hence

lim
n→∞

n∑
j=1

Eνω [1
(φ−1
x0 (bnJi ))

◦ T jω (x)] = �α(J )

by Lemma 7.2.
Now we prove equation (a), that is,

lim
n→∞ νω(Nω

n ((0, 1] × J ) = 0) = P(N(α)((0, 1] × J ) = 0)

for all J ∈ J .
Let J ∈ J and denote as above An := φ−1

x0
(bnJ ) ⊂ X = [0, 1]. Then

{Nω
n ((0, 1] × J ) = 0} = {x : T jω (x) �∈ An, 0 < j + 1 ≤ n} = {RAn(ω) > n− 1} ∩ Acn.

Hence,

|νω(Nω
n ((0, 1] × J ) = 0)− νω(RAn(ω) > n)| ≤ Cm(An) → 0

and by Theorem 6.2, for m-a.e. x0

νω(RAn(ω) > n) → e−�α(J ).

This proves equation (a).
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10. Stable laws and functional limit laws
10.1. Uniformly expanding maps: proof of Theorem 2.4. In this section, we prove
Theorem 2.4, under the conditions given in §2.1, in particular, conditions (LY), (Dec),
and (Min).

For this purpose, we consider first some technical lemmas regarding short returns. For
ω ∈ �, n ≥ 1, and ε > 0, let

Eωn (ε) = {x ∈ [0, 1] : |T nω (x)− x| ≤ ε}.
LEMMA 10.1. There exists C > 0 such that for all ω ∈ �, n ≥ 1, and ε > 0,

m(Eωn (ε)) ≤ Cε.

Proof. We follow the proof of [HNT12, Lemma 3.4], conveniently adapted to our setting
of random non-Markov maps. Recall that An

ω is the partition of monotonicity associated
to the map T nω . Consider I ∈ An

ω. Since infI |(T nω )′| ≥ λn > 1, there exists at most one
solution x±

I ∈ I to the equation

T nω (x
±
I ) = x±

I ± ε, (10.1)

and since there is no sign change of (T nω )
′ on I, we have

Eωn (ε) ∩ I ⊂ [x−
I , x+

I ]. (10.2)

We have

T nω (x
+
I )− T nω (x

−
I ) = x+

I − x−
I + 2ε,

and by the mean value theorem,

|T nω (x+
I )− T nω (x

−
I )| = |(T nω )′(c)| |x+

I − x−
I | for some c ∈ I .

Consequently,

|x+
I − x−

I | ≤
(

sup
I

1
|(T nω )′|

)
[|x+

I − x−
I | + 2ε] ≤ λ−n|x+

I − x−
I | + 2ε sup

I

1
|(T nω )′|

.

(10.3)

Note that if there is no solutions to equation (10.1), then the estimate in equation (10.3)
is actually improved. Rearranging equation (10.3) and summing over I ∈ An

ω, we obtain,
thanks to equation (10.2),

m(Eωn (ε)) ≤
∑
I∈An

ω

|x+
I − x−

I | ≤ 2ε
1 − λ−n

∑
I∈An

ω

sup
I

1
|(T nω )′|

≤ Cε.

The fact that ∑
I∈An

ω

sup
I

1
|(T nω )′|

≤ C (10.4)

for a constantC > 0 independent fromω and n follows from a standard distortion argument
for one-dimensional maps that can be found in the proof of [ANV15, Lemma 8.5(3)] (see
also [AR16, Lemma 7]), where finitely many piecewise C2 uniformly expanding maps
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with finitely many discontinuities are also considered. Since it follows from condition (LY)
that ‖Pnωf ‖BV ≤ C‖f ‖BV for some uniform C > 0, we do not have to average equation
(10.4) over ω as in [ANV15], but instead, we can simply have an estimate that holds
uniformly in ω.

Recall that, for a measurable subset U, RωU(x) ≥ 1 is the hitting time of (ω, x) to U
defined by equation (6.1).

LEMMA 10.2. Let a > 0, 2
3 < ψ < 1, and 0 < κ < 3ψ − 2. Then there exist sequences

(γ1(n))n≥1 and (γ2(n))n≥1 with γ1(n) = O(n−κ) and γ2(n) = o(1), and for all ω ∈ �, a
sequence of measurable subsets (Aωn )n≥1 of [0, 1] with m(Aωn ) ≤ γ1(n) and such that for
all x0 /∈ Aωn ,

(log n)
n−1∑
i=0

m(Bn−ψ (x0) ∩ {RσiωB
n−ψ (x0)

≤ a log n�}) ≤ γ2(n).

Proof. Let

Eωn = {x ∈ [0, 1] : |T jω (x)− x| ≤ 2n−ψ for some 0 < j ≤ a log n�}.
Since Bn−ψ (x0) ∩ {RσiωB

n−ψ (x0)
≤ a log n�} ⊂ Bn−ψ (x0) ∩ Eσiωn , it is enough to con-

sider

(log n)
n−1∑
i=0

m(Bn−ψ (x0) ∩ Eσiωn ).

According to Lemma 10.1, we have

m(Eωn ) ≤
a log n�∑
j=1

m(Eωj (2n−ψ)) ≤ C
log n
nψ

.

We introduce the maximal function

Mω
n (x0) = sup

t>0

1
2t

∫ x0+t

x0−t

( n−1∑
i=0

1
Eσ

iω
n
(z)

)
dz = sup

t>0

1
2t

n−1∑
i=0

m(Bt(x0) ∩ Eσiωn ).

By [Rud87, Equation (5), p. 138], for all λ > 0, we have

m(Mω
n > λ) ≤ C

λ

∥∥∥∥ n−1∑
i=0

1
Eσ

iω
n

∥∥∥∥
L1
m

≤ C

λ

n−1∑
i=0

m(Eσ
iω

n ) ≤ C

λ

log n
nψ−1 . (10.5)

Let ρ > 0 and ξ > 0 to be determined later. We define

Fωn = {x0 ∈ [0, 1] : m(Bn−ψ (x0) ∩ Eωn ) ≥ 2n−ψ(1+ρ)},
so that we have

n−1∑
i=0

m(Bn−ψ (x0) ∩ Eσiωn ) ≥
( n−1∑
i=0

1
Fσ

iω
n
(x0)

)
2n−ψ(1+ρ).

https://doi.org/10.1017/etds.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.5


40 R. Aimino et al

By definition of the maximal function Mω
n , this implies that

Mω
n (x0) ≥ n−ψρ

( n−1∑
i=0

1
Fσ

iω
n
(x0)

)
,

from which it follows, by equation (10.5) with λ = (log n)nξ−ψρ ,

m(Aωn ) ≤ m(Mω
n > (log n)nξ−ψρ) ≤ Cn−(ξ+(1−ρ)ψ−1) =: γ1(n),

where

Aωn =
{( n−1∑

i=0

1
Fσ

iω
n

)
> (log n)nξ

}
.

If x0 /∈ Aωn , then

(log n)
n−1∑
i=0

m(Bn−ψ (x0) ∩ Eσiωn )

≤ (log n)
( n−1∑
i=0

1
Fσ

iω
n
(x0)

)
m(Bn−ψ (x0))+ 2(log n)n1−ψ(1+ρ)

≤ C(log n)((log n)n−(ψ−ξ) + n−(ψ(1+ρ)−1)) =: γ2(n).

Since 2
3 < ψ < 1 and 0 < κ < 3ψ − 2, it is possible to choose ρ > 0 and ξ > 0 such

that κ = ξ + (1 − ρ)ψ − 1, ψ > ξ , and ψ(1 + ρ) > 1 (for instance, take ξ = ψ − δ and
ρ = ψ−1 − 1 + δψ−1 with δ = (3ψ − 2 − κ)/2), which concludes the proof.

LEMMA 10.3. Suppose that a > 0 and 3
4 < ψ < 1. Then for m-a.e. x0 ∈ [0, 1] and P-a.e.

ω ∈ � and, we have

lim
n→∞(log n)

n−1∑
i=0

m(Bn−ψ (x0) ∩ {RσiωB
n−ψ (x0)

≤ a log n�}) = 0.

Proof. Let 0 < κ < 3ψ − 2 to be determined later. Consider the sets (Aωn )n≥1 given
by Lemma 10.2, with m(Aωn ) ≤ γ1(n) = O(n−κ). Since κ < 1, we need to consider
a subsequence (nk)k≥1 such that

∑
k≥1 γ1(nk) < ∞. For such a subsequence, by the

Borel–Cantelli lemma, for m-a.e. x0, there exists K = K(x0, ω) such that for all k ≥ K ,
x0 /∈ Aωnk . Since limk→∞ γ2(nk) = 0, this implies

lim
k→∞(log nk)

nk−1∑
i=0

m(B
n

−ψ
k

(x0) ∩ {RσiωB
n
−ψ
k

(x0)
≤ a log nk�}) = 0.

We take nk = kζ � for some ζ > 0 to be determined later. To have
∑
k≥1 γ1(nk) < ∞,

we need to require that κζ > 1. Set Uωn (x0) = Bn−ψ (x0) ∩ {RωB
n−ψ (x0)

≤ a log n�}. To
obtain the convergence to 0 of the whole sequence, we need to prove that

lim
k→∞ sup

nk≤n<nk+1

∣∣∣∣(log n)
n−1∑
i=0

m(Uσ
iω

n (x0))− (log nk)
nk−1∑
i=0

m(Uσ
iω

nk
(x0))

∣∣∣∣ = 0. (10.6)
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For this purpose, we estimate∣∣∣∣(log n)
n−1∑
i=0

m(Uσ
iω

n (x0))− (log nk)
nk−1∑
i=0

m(Uσ
iω

nk
(x0))

∣∣∣∣
≤ (I)+ (II)+ (III)+ (IV)+ (V),

where

(I) = | log n− log nk|
n−1∑
i=0

m(Uσ
iω

n (x0)), (II) = (log nk)
n−1∑
i=nk

m(Uσ
iω

n (x0)),

(III) = (log nk)
nk−1∑
i=0

|m(Bn−ψ (x0) ∩ {RσiωB
n−ψ (x0)

≤ a log n�})

−m(B
n

−ψ
k

(x0) ∩ {RσiωB
n−ψ (x0)

≤ a log n�})|,

(IV) = (log nk)
nk−1∑
i=0

|m(B
n

−ψ
k

(x0) ∩ {RσiωB
n−ψ (x0)

≤ a log n�})

−m(B
n

−ψ
k

(x0) ∩ {RσiωB
n
−ψ
k

(x0)
≤ a log n�})|,

(V) = (log nk)
nk−1∑
i=0

|m(B
n

−ψ
k

(x0) ∩ {RσiωB
n
−ψ
k

(x0)
≤ a log n�})

−m(B
n

−ψ
k

(x0) ∩ {RσiωB
n
−ψ
k

(x0)
≤ a log nk�})|.

Before proceeding to estimate each term, we note that |nk+1 − nk| = O(k−(1−ζ )),
|n−ψ
k+1 − n

−ψ
k | = O(k−(1+ζψ)), | log nk+1 − log nk| = O(k−1) and m(Uωn (x0)) ≤

m(Bn−ψ (x0)) = O(k−ζψ).
From these observations, it follows

(I) ≤ C| log nk+1 − log nk|nk+1k
−ζψ ≤ Ck−(1−(1−ψ)ζ ),

(II) ≤ C(log nk)|nk+1 − nk|k−ζψ ≤ C(log k)k−(1−(1−ψ)ζ ),

(III) ≤ C(log nk)nkm(Bn−ψ
k

(x0) \ Bn−ψ (x0))

≤ C(log nk)nk|n−ψ
k+1 − n

−ψ
k | ≤ C(log k)k−(1−(1−ψ)ζ ),

(IV) ≤ C(log nk)
nk−1∑
i=0

m(B
n

−ψ
k

(x0) ∩ {RσiωB
n
−ψ
k

(x0)\Bn−ψ (x0)
≤ a log n�})

≤ C(log nk)
nk−1∑
i=0

a(log n)m(B
n

−ψ
k

(x0) \ Bn−ψ (x0))

≤ C(log k)2k−(1−(1−ψ)ζ ),
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and

(V) ≤ C(log nk)
nk−1∑
i=0

m(B
n

−ψ
k

(x0) ∩ {a log nk� < Rσ
iω

B
n
−ψ
k

(x0)
≤ a log n�})

≤ C(log nk)
nk−1∑
i=0

a| log nk+1 − log nk|m(Bn−ψ
k

(x0))

≤ C(log k)k−(1−(1−ψ)ζ ).

To obtain equation (10.6), it is thus sufficient to choose κ > 0 and ζ > 0 such that
κ < 3ψ − 2, κζ > 1, and (1 − ψ)ζ < 1, which is possible if ψ > 3

4 .

We can now prove the functional convergence to a Lévy stable process for i.i.d.
uniformly expanding maps.

Proof of Theorem 2.4. We apply Theorem 7.3. By Theorem 6.3, we have Nω
n

d→ N(α)

under the probability νω for P-a.e. ω ∈ �. It thus remains to check that equation (7.2)
holds for m-a.e. x0 when α ∈ [1, 2) to complete the proof. For this purpose, we will use a
reverse martingale argument from [NTV18] (see also [AR16, Proposition 13]). Because of
equation (5.8), it is enough to work on the probability space ([0, 1], νω) for P-a.e. ω ∈ �.
Let B denote the σ -algebra of Borel sets on [0, 1] and

Bω,k = (T kω )
−1(B).

To simplify notation a bit, let

fω,j ,n(x) = φx0(x)1{|φx0 |≤εbn}(x)− E
νσ
j ω (φx0 1{|φx0 |≤εbn}).

From equation (5.8), it follows that Em(|fω,j ,n|) ≤ Cεbn, and from the explicit definition
of φ, we can estimate the total variation of fω,j ,n and obtain the existence of C > 0,
independent of ω, ε, n, and j, such that

‖fω,j ,n‖BV ≤ Cεbn. (10.7)

We define

Sω,k,n :=
k−1∑
j=0

fω,j ,n ◦ T jω

and

Hω,k,n ◦ T nω := Eνω(Sω,k,n|Bω,k). (10.8)

Hence, Hω,1,n = 0 and an explicit formula for Hω,k,n is

Hω,k,n = 1
hσkω

k−1∑
j=0

P
k−j
σ jω

(fω,j ,nhσjω).

From the explicit formula, the exponential decay in the BV norm of Pn−j
σ jω

from condition
(Dec), equations (5.8) and (10.7), we see that ‖Hω,k,n‖BV ≤ Cεbn, where the constant C
may be taken as constant over ω ∈ �. If we define
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Mω,k,n = Sω,k,n −Hω,k,n ◦ T kω ,

then the sequence {Mω,k,n}k≥1 is a reverse martingale difference for the decreasing
filtration Bω,k = (T nω )

−1(B) as

Eνω(Mω,k,n|Bω,k) = 0.

The martingale reverse differences are

Mω,k+1,n −Mω,k,n = ψω,k,n ◦ T kω ,

where

ψω,k,n := fω,k,n +Hω,k,n −Hω,k+1,n ◦ Tσk+1ω.

We see from the L∞ bounds on ‖Hω,k,n‖∞ ≤ Cbnε and the telescoping sum that∣∣∣∣ k−1∑
j=0

ψω,j ,n ◦ T jω −
k−1∑
j=0

fω,j ,n ◦ T jω
∣∣∣∣ ≤ Cεbn. (10.9)

By Doob’s martingale maximal inequality,

νω
{

max
1≤k≤n

∣∣∣∣ k−1∑
j=0

ψω,j ,n ◦ T jω
∣∣∣∣ ≥ bnδ

}
≤ 1
b2
nδ

2Eν
ω

∣∣∣∣ n−1∑
j=0

ψω,j ,n ◦ T jω
∣∣∣∣2

.

Note that

n−1∑
j=0

Eνω [ψ2
ω,j ,n ◦ T jω ] = Eνω

[ n−1∑
j=0

ψω,j ,n ◦ T jω
]2

by pairwise orthogonality of martingale reverse differences.
As in [HNTV17, Lemma 6],

Eνω [(Sω,n,n)
2] =

n−1∑
j=0

Eνω [ψ2
ω,j ,n ◦ T jω ] + Eνω [H 2

ω,1,n] − Eνω [H 2
ω,n,n ◦ T nω ].

So we see that

νω
{

max
1≤k≤n

∣∣∣∣ k−1∑
j=0

ψω,j ,n ◦ T jω
∣∣∣∣ ≥ bnδ

}
≤ 1
b2
nδ

2Eν
ω [(Sω,n,n)

2] + 2
C2ε2

δ2 , (10.10)

where we have used ‖H 2
ω,j ,n‖∞ ≤ C2b2

nε
2.

Now we estimate

Eνω [(Sω,n,n)
2] ≤

n−1∑
j=0

Eνω [f 2
ω,j ,n ◦ T jω ] + 2

n−1∑
i=0

∑
i<j

Eνω [fω,j ,n ◦ T jω · fω,i,n ◦ T iω].

(10.11)
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Using the equivariance of the measures {νω}ω∈� and equation (5.8), we have
n−1∑
j=0

Eνω [f 2
ω,j ,n ◦ T jω ] ≤ CnEν(φ

2
x0

1{|φx0 |≤εbn}) ∼ Cε2−αb2
n, (10.12)

by Proposition 3.2 and that

lim
n→∞ n ν(|φx0 | > λbn) = λ−α for λ > 0,

since φx0 is regularly varying.
However, we are going to show that for m-a.e. x0,

lim
ε→0

lim sup
n→∞

1
b2
n

n−1∑
i=0

∑
i<j

Eνω [fω,j ,n ◦ T jω · fω,i,n ◦ T iω] = 0. (10.13)

The first observation is that, due to condition (Dec),

Eνω [fω,j ,n ◦ T jω · fω,i,n ◦ T iω] ≤ Cθj−i‖fω,i,n‖BV‖fω,j ,n‖L1
m

≤ Cε2b2
nθ
j−i ,

where θ < 1. Hence, there exists a > 0 independently of n and ε such that∑
j−i>a log n�

Eνω [fω,j ,n ◦ T jω · fω,i,n ◦ T iω] ≤ Cε2n−2b2
n

and it is enough to prove that for ε > 0,
n−1∑
i=0

i+a log n�∑
j=i+1

Eνω [fω,j ,n ◦ T jω · fω,i,n ◦ T iω] = o(b2
n) = o(n2/α).

By construction, the term Eνω [fω,i,n ◦ T iω · fω,j ,n ◦ T jω ] is a covariance, and since φ
is positive, we can bound this quantity by Eνω [f ◦ T iω · f ◦ T jω ] = E

νσ
iω [fn · fn ◦ T j−i

σ iω
],

where fn = φx01{|φx0 |≤εbn}. Then, since the densities are uniformly bounded by equation
(5.8), we are left to estimate

n−1∑
i=0

i+a log n�∑
j=i+1

Em[fn · fn ◦ T j−i
σ iω

]. (10.14)

Let 3
4 < ψ < 1 and Un = Bn−ψ (x0). We bound equation (10.14) by (I)+ (II)+ (III),

where

(I) =
n−1∑
i=0

i+a log n�∑
j=i+1

∫
Un∩(T j−i

σ iω
)−1(Un)

fn · fn ◦ T j−i
σ iω

dm,

(II) =
n−1∑
i=0

i+a log n�∑
j=i+1

∫
Un∩(T j−i

σ iω
)−1(Ucn)

fn · fn ◦ T j−i
σ iω

dm,

and

(III) =
n−1∑
i=0

i+a log n�∑
j=i+1

∫
Ucn

fn · fn ◦ T j−i
σ iω

dm.
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Since ‖fn‖∞ ≤ εbn, it follows that

(I) ≤ ε2b2
n

n−1∑
i=0

i+a log n�∑
j=i+1

m(Un ∩ (T j−i
σ iω

)−1(Un))

≤ aε2b2
n(log n)

n−1∑
i=0

m(Un ∩ {RσiωUn
≤ a log n}),

which by Lemma 10.3 is a o(b2
n) as n → ∞ for m-a.e. x0.

To estimate terms (II) and (III), we will use Hölder’s inequality. We first observe by a
direct computation that ∫

Ucn

φ2
x0
dm = O(nψ(2/α−1)). (10.15)

We consider term (III) first. Let A = Ucn . We have∫
Ucn

fn · fn ◦ T j−i
σ iω

dm ≤
∫
A

φx0 · fn ◦ T j−i
σ iω

dm

≤
( ∫

A

φ2
x0
dm

)1/2( ∫
f 2
n ◦ T j−i

σ iω
dm

)1/2

(10.16)

≤ C

( ∫
A

φ2
x0
dm

)1/2( ∫
f 2
n dm

)1/2

. (10.17)

By equation (10.15), (
∫
A
φ2
x0
dm)1/2 ≤ Cnψ/2(2/α−1) and by Proposition 3.2,

(
∫
f 2
n dm)

1/2 ≤ Cn1/α−1/2. Hence, we may bound equation (10.16) by Cn(1+ψ)(1/α−1/2).
To bound term (II), let B = Un ∩ (T j−i

σ iω
)−1(Ucn). Then,∫

Un∩(T j−i
σ iω

)−1(Ucn)
fn · fn ◦ T j−i

σ iω
dm ≤

∫
B

fn · φx0 ◦ T j−i
σ iω

dm

≤
( ∫

f 2
n dm

)1/2( ∫
B

φ2
x0

◦ T j−i
σ iω

dm

)1/2

.

(10.18)

As before, (
∫
f 2
n dm)

1/2 ≤ Cn1/α−1/2 and( ∫
B

φ2
x0

◦ T j−i
σ iω

dm

)1/2

≤
( ∫

φ2
x0

◦ T j−i
σ iω

1
(T
j−i
σ iω

)−1(Ucn)
dm

)1/2

≤ C

( ∫
Ucn

φ2
x0
dm

)1/2

≤ Cnψ/2(2/α−1)

by equation (10.15), and so equation (10.18) is bounded by Cn(1+ψ)(1/α−1/2).
It follows that (II)+ (III) ≤ C(log n)n1+(1+ψ)(1/α−1/2) = o(n2/α), since ψ < 1. This

proves that equation (10.14) is o(b2
n) and concludes the proof of equation (10.13).
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Finally, from equations (10.11), (10.12), and (10.13), we obtain

lim
ε→0

lim sup
n→∞

1
b2
n

Eνω [(Sω,n,n)
2] = 0, (10.19)

which gives the result by taking the limit first in n and then in ε in equation (10.10).

10.2. Intermittent maps: proof of Theorem 2.6. We prove convergence to a stable law in
the setting of intermittent maps when α ∈ (0, 1).

Proof of Theorem 2.6. We apply Proposition 5.8. By Theorem 6.4, it remains to prove
equation (5.7), since α ∈ (0, 1). We will need an estimate for Eνω(|φx0 |1{φx0≤εbn}) which
is independent of ω. For this purpose, we introduce the absolutely continuous probability
measure νmax whose density is given by hmax(x) = κx−γmax . Since all densities hω belong
to the cone L, we have that hω ≤ (a/κ)hmax for all ω. Thus,

1
bn

n−1∑
j=0

E
νσ
j ω (φx0 1{|φx0 |≤εbn}) ≤ n

bn

a

κ
Eνmax(φx01{|φx0 |≤εbn}).

We can easily verify that φx0 is regularly varying of index α with respect to νmax, with
scaling sequence equal to (bn)n≥1 up to a multiplicative constant factor. Consequently, by
Proposition 3.2, we have that, for some constant c > 0,

Eνmax(φx0 1{|φx0 |≤εbn}) ∼ cε1−αn1/α−1,

which implies equation (5.7).

11. The annealed case
In this section, we consider the annealed counterparts of our results. Even though the
annealed versions do not seem to follow immediately from the quenched version, it is
easy to obtain them from our proofs in the quenched case. We take φx0(x) = d(x, x0)

−1/α

as before we consider the convergence on the measure space �× [0, 1] with respect to
ν(dω, dx) = P(dω)νω(dx). We give precise annealed results in the case of Theorems 2.4
and 2.6, where we consider

Xan(ω, x)(t) := 1
bn

[ nt�−1∑
j=0

φx0(T
j
ω x)− tcn

]
, t ≥ 0,

viewed as a random process defined on the probability space (�× [0, 1], ν).

THEOREM 11.1. Under the same assumptions as Theorem 2.4, the random process Xan(t)
converges in the J1 topology to the Lévy α-stable process X(α)(t) under the probability
measure ν.

Proof. We apply [TK10b, Theorem 1.2] to the skew-product system (�× [0, 1], F , ν)
and the observable φx0 naturally extended to �× [0, 1]. Recall that ν is given by the
disintegration ν(dω, dx) = P(dω)νω(dx).
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We have to prove that:

(a) Nn
d→ N(α);

(b) if α ∈ [1, 2), for all δ > 0,

lim
ε→0

lim sup
n→∞

ν((ω, x) : max
1≤k≤n

∣∣∣∣ 1
bn

k−1∑
j=0

[φx0(T
j
ω x)1{|φx0◦T jω |≤εbn}(x)

− Eν(φx01{|φx0 |≤εbn})]
∣∣∣∣ ≥ δ) = 0,

where

Nn(ω, x)(B) := Nω
n (x)(B) = #

{
j ≥ 1 :

(
j

n
,
φx0(T

j−1
ω (x))

bn

)
∈ B

}
, n ≥ 1.

To prove item (a), we take f ∈ C+
K((0, ∞)× (R \ {0})) arbitrary. Then, by

Theorem 6.3, we have for P-a.e. ω,

lim
n→∞ Eνω(e

−Nωn (f )) = E(e−N(f )).

Integrating with respect to P and using the dominated convergence theorem yields

lim
n→∞ Eν(e

−Nn(f )) = E(e−N(f )),

which proves item (a).
To prove item (b), we simply have to integrate with respect to P in the estimates in

the proof of Theorem 2.4, which hold uniformly in ω ∈ �, and then to take the limits as
n → ∞ and ε → 0.

Similarly, we have the following theorem.

THEOREM 11.2. Under the same assumptions as Theorem 2.6, Xan(1)
d→ X(α)(1) under

the probability measure ν.

Proof. We can proceed as for Theorem 11.1 to check the assumptions of [TK10b, Theorem
1.3] for the skew-product system (�× [0, 1], F , ν) and the observable φx0 .
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A. Appendix
The observation that our distributional limit theorems hold for any measures μ � νω

follows from Zweimüller’s work [Zwe07, Theorem 1, Corollary 1, and Corollary 3].
Let

Sn(x) = 1
bn

[ n−1∑
j=0

φ ◦ T jω (x)− an

]
and suppose

Sn →νω Y ,

where Y is a Lévy random variable.
We consider first the set-up of intermittent maps. We will show that for any measure ν

with density h that is dν = h dm in the cone L, in particular Lebesgue measure m with
h = 1,

Sn →ν Y .

We focus on m. According to [Zwe07, Theorem 1], it is enough to show that∫
ψ(Sn) dνω −

∫
ψ(Sn) dm → 0

for any ψ : R → R which is bounded and uniformly Lipschitz.
Fix such a ψ and consider∫

ψ

(
1
bn

[ n−1∑
j=0

φ ◦ T jω (x)− an

])
(hω − 1) dm

≤
∫
ψ

(
1
bn

[ n−1∑
j=0

φ ◦ T j
σkω

(x)− an

])
P kω(hω − 1) dm

≤ ‖ψ‖∞‖P kω(hω − 1)‖L1(m).

Since ‖P kω(hω − 1)‖L1
m

→ 0 in case of Example 2.2 and maps satisfying conditions
(LY), (Dec), and (Min), the assertion is proved. By [Zwe07, Corollary 3], the proof for
continuous time distributional limits follows immediately.
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