COMPLETELY REDUCIBLE NEAR-RINGS

by A. OSWALD

(Received 11th March 1975)

To establish our notation N will always denote a (left) near-ring without any type of multiplicative identity (unless the contrary is stated) satisfying 0n = 0 for each $n \in N$ where 0 is the additive identity of N. A group M, written additively, which admits N as a set of right multipliers is a (right) N-module if $a \in M$, n_1 , $n_2 \in N$ implies $a(n_1 + n_2) = an_1 + an_2$ and $a(n_1n_2) = (an_1)n_2$. When N has a two-sided identity, 1, we suppose that a1 = a for each $a \in M$. A subgroup X of M is an N-subgroup of M if it is an N-module; X is a submodule of M if it is a normal subgroup of M and $a \in M, x \in X, n \in N$ implies $(a + x)n - an \in X$. We denote by SL(M) the set of N-subgroups and by L(M) the set of submodules of M. Since N may be regarded as an N-module we can talk about N-subgroups and submodules of N although we usually call the submodules of N right ideals of N. Other definitions can be found in (6).

An N-subgroup A of M is semicomplemented if there exists $B \in L(M)$ with $A \cap B = (0)$, A + B = M; B is called a semicomplement of A. If each $A \in SL(M)$ is semicomplemented then SL(M) is said to be semicomplemented. An N-subgroup A of M is module-essential if whenever B is a non-zero submodule of M then $A \cap B \neq (0)$.

A submodule A of M is minimal if it contains no N-subgroups other than (0) and A. If M is a direct sum of minimal submodules then M is completely reducible. The near-ring N is completely reducible if it is completely reducible as an N-module.

In (7; Theorem 3) we proved

Theorem 1. For an N-module M the following are equivalent:-

- (i) M is completely reducible;
- (ii) M has no proper module-essential N-subgroups;
- (iii) SL(M) is semicomplemented.

Proposition 1. If N has a left identity the following are equivalent:-(i) N is completely reducible;

- (ii) each maximal N-subgroup of N is semicomplemented;
- (iii) each proper N-subgroup of N is contained in a semicomplemented proper N-subgroup of N.

Proof. Clearly (i) \Rightarrow (ii) \Rightarrow (iii). Suppose (iii) and let A be a proper

module-essential N-subgroup of N. Then A is contained in a proper N-subgroup of N which is semicomplemented. This contradiction and Theorem 1 establishes that (iii) \Rightarrow (i).

Completely reducible near-rings with left identity clearly have the minimum condition on N-subgroups. Retaining the chain condition but not the left identity we can prove

Proposition 2. If N has the minimum condition on N-subgroups the following are equivalent:-

- (i) N is completely reducible;
- (ii) each non-zero N-subgroup of N contains a non-zero semicomplemented N-subgroup of N.

Proof. That (i) \Rightarrow (ii) is trivial. Suppose (ii) and let X be an N-subgroup of N which is not semicomplemented. Let $T \subset X$ be a non-zero N-subgroup of N semicomplemented by $A \in L(N)$. Then $X = T + X_1$ where $X_1 = A \cap X$ and $T \cap X_1 = (0)$. If X_1 is semicomplemented by $Y \in L(N)$ and if $u \in X \cap (A \cap Y)$ then $u \in (T + X_1) \cap A \cap Y$ so that

$$u = t + x_1 = a$$
 $(t \in T, x_1 \in X_1, a \in A \cap Y).$

Thus $t = a - x_1 \in T \cap A = (0)$ and $u = x_1 \in X_1 \cap A \cap Y = (0)$. Then $X \cap (A \cap Y) = (0)$. Now let $z \in N = T + A$ so that z = t + a ($t \in T$, $a \in A$). Since $N = X_1 + Y$, $a = x_1 + y$ ($x_1 \in X_1$, $y \in Y$) and

$$z = t + x_1 + y \in (T + X_1) + (A \cap Y) = X + A \cap Y.$$

It follows that X is semicomplemented if X_1 is semicomplemented. If X_1 is not semicomplemented we can apply the same construction to X_1 to obtain X_2 and then X_3 etc with $\ldots \subseteq X_n \subseteq \ldots \subseteq X_1$ contrary to the minimum condition for N-subgroups. It follows that (ii) \Rightarrow (i).

In (7; Theorem 4) we gave a proof of

Proposition 3. If N is a near-ring with left identity the following are equivalent:-

- (i) N is completely reducible;
- (ii) N has no nilpotent N-subgroups and has the minimum condition on N-subgroups.

Later we will give an alternative proof of this result. A near-ring N is regular if for each $r \in N$ there exists $s \in N$ with r = rsr. It is easy to see

Lemma 1. If N is a near-ring with identity the following are equivalent:-

- (i) N is regular;
- (ii) for each $a \in N$ there is a non-zero idempotent $e \in N$ with aN = eN;
- (iii) for each $a \in N$ there is a right ideal B of N with $aN \cap B = (0)$ and aN + B = N.

We observe that $(i) \Rightarrow (ii) \Rightarrow (iii)$ irrespective of whether N has an identity. Furthermore if we assume that N has minimum condition on N-subgroups we can use Proposition 2 to prove

Corollary 1. If N has minimum condition on N-subgroups and if N is regular then N is completely reducible.

Later we will consider the converse of this. For the present we observe

Proposition 4. If N is a near-ring with identity the following are equivalent:-

(i) N is completely reducible;

(ii) N has the minimum condition on N-subgroups and is regular.

If R is a ring then R is completely reducible if and only if every R-module is completely reducible. We are unable to prove this for near-rings. However, calling an N-module M monogenic if M = mN for some $m \in M$ we have

Proposition 5. If N is a near-ring with left identity then N is completely reducible if and only if every monogenic N-module is completely reducible.

Proof. Clearly if every monogenic N-module is completely reducible so is N. For the converse let M = mN with $m \in M$. For $I \in SL(M)$, $T = \{n \in N : mn \in I\} \in SL(N)$ and I = mT. Let $P \in L(N)$ with $T \cap P = (0)$, T + P = N. Then M = mT + mP = I + mP, $I \cap mP = (0)$, $mP \in L(M)$.

An N-subgroup A of a module M is essential if $A \cap B \neq (0)$ whenever B is a non-zero N-subgroup of M. Then

Corollary 2. If N has an identity and is completely reducible and if M is an N-module then M has no essential N-subgroups.

Proof. Let $A \in SL(M)$ be essential and $x \in M$ with $x \neq 0$. From Proposition 5, xN is completely reducible. Let $K \in L(xN)$ with $xN \cap A \cap K = (0)$, $xN \cap A + K = xN$. But $xN \cap K = K$ so $A \cap K = (0)$ and $K \in SL(M)$ so K = (0). Thus $xN \cap A = xN$ and $x \in A$. But then $M \subseteq A$.

Let *M* be a completely reducible *N*-module with $M = \bigoplus_{\Lambda} M_{\lambda}$ where M_{λ} is a minimal submodule of *M* and *P* be any minimal *N*-subgroup of *M*. Denote by $\{\prod_{\alpha} : M \to M_{\alpha}\}$ the family of natural projections and by θ_{α} the restriction of \prod_{α} to *P*. Clearly $\theta_{\alpha} = 0$ or θ_{α} is an *N*-isomorphism. For each minimal *N*-subgroup *P* of *M* let H(P) denote the sum of all those submodules of *M* which are isomorphic as *N*-modules to *P*. H(P) is the homogeneous component of *P* and clearly

Proposition 6. If M is completely reducible then $M = \bigoplus H(P)$ where P ranges over all the minimal N-subgroups of M.

We notice that we can define homogeneous components for general modules in just the same way. If P is a minimal N-subgroup of M then

 $P \subset H(P)$ if M is completely reducible. However this need not be so if M is not completely reducible; for example the symmetric group S_3 on 3 elements is a (Z, 1)-module (notation in Fröhlich (5)), where Z is the set of integers, in which the subset $P = \{e, \alpha\}$ with $\alpha^2 = e$ is a minimal (Z, 1)-subgroup for which H(P) = (0).

Lemma 2. If F is a homogeneous component in a completely reducible near-ring N then F is an ideal.

Proof. Clearly $\alpha \in \text{Hom}_N(N, N)$ implies $\alpha F \subseteq F$ in a completely reducible near-ring. For $x \in N$ define $\alpha_x \in \text{Hom}_N(N, N)$ by $\alpha_x(n) = xn$.

For an N-module M we denote by Soc (M) the sum of all the minimal submodules of M. As before it is not necessary for Soc (M) to contain all the minimal N-subgroups of M. Trivially Soc (M) = M if and only if M is completely reducible. If M is not completely reducible denote by T the intersection of all the module essential N-subgroups of M.

We shall, on several occasions, use

Lemma 3. If M is an N-module and $A \in SL(M)$ there exists $B \in L(M)$ with $A \cap B = (0)$ and A + B module-essential in M.

Proof. The family of submodules of M having trivial intersection with A is non-empty since it contains (0). For any chain $B_1 \subseteq B_2 \subseteq \cdots$ of submodules of M with $A \cap B_i = (0)$ for each i we see that $A \cap (\bigcup B_i) = (0)$. Hence by Zorn's Lemma there is a maximal submodule B of M with $A \cap B = (0)$. Clearly if $X \in L(M)$ with $(A + B) \cap X = (0)$ then

$$A \cap (\boldsymbol{B} + X) = (0)$$

and since $B + X \in L(M)$ this contradicts the maximality of B.

Proposition 7. T is completely reducible as an N-module.

Proof. If $X \in SL(T)$ then $X \in SL(M)$ and by Lemma 3 we can choose $Q \in L(M)$ maximal subject to $X \cap Q = (0)$. Then X + Q is module essential so $T \subseteq X + Q$ and $T = X + T \cap Q$ where $T \cap Q \in L(T)$.

For P a minimal submodule of M we have $P = T \cap P$ so Soc $(M) \subseteq T$.

Proposition 8. If T is a submodule of M then Soc(M) = T.

Proof. Let $p \in T \setminus Soc(M)$ and $Q \in L(M)$ be maximal subject to the two conditions $Soc(M) \subseteq Q$ and $p \notin Q$. $Q_1 = Q \cap T \in L(M)$. Using Lemma 3 let $A \in L(M)$ with $Q_1 \cap A = (0)$, $Q_1 + A$ module essential in M. Then $T = Q_1 + A_1$ where $A_1 = A \cap T$. If $X \neq (0)$ and $X \in SL(A_1)$ then $X \in SL(M)$ so there exists $B \in L(M)$ with $X \cap B = (0)$, $X + B \cap A_1 = A_1$. A_1 , $B \in L(M)$ so $B \cap A_1 = B_1 \in L(M)$. If $X \neq A_1$ then $B_1 \neq (0)$ so for some $C_1 \in L(M)$, $B_1 \cap C_1 = (0)$, $B_1 + C_1 = A_1$. Now $X \neq (0)$ implies $B_1 \neq (0) \neq C_1$. Clearly $B_1 \cap Q = C_1 \cap Q = (0)$ and $p \in (Q + B_1) \cap (Q + C_1)$. Writing $p = q_1 + b = q_2 + c$ then $-q_2 + q_1 \in (B_1 + C_1) \cap Q = A_1 \cap Q = (0)$ and b = c = 0

190

contrary to $p \notin Q$. Hence $X = A_1$ and A_1 is a minimal submodule of Mfrom which $A_1 \subseteq \text{Soc}(M) \subseteq Q$ and $A_1 = (0)$ since $Q \cap A_1 = (0)$. Then $T = Q_1 = T \cap Q$ so $T \subset Q$ contrary to $p \notin Q$. It follows that T = Soc(M).

Whether T is always a submodule of M is unknown.

Proposition 9. If T is not a submodule of M then Soc(M) is the largest submodule of M contained in T.

Proof. Let $Q \in L(M)$ with $\operatorname{Soc}(M) \subseteq Q \subseteq T$ and $q \in Q \setminus \operatorname{Soc}(M)$. If $A \in L(M)$ is maximal subject to the two conditions $q \notin A$ and $\operatorname{Soc}(M) \subseteq A$ then $A_1 = A \cap Q \in L(M)$. Let $B \in L(M)$ with $A_1 \cap B = (0)$, $A_1 + B$ module essential in M. Then $B_1 = B \cap Q \in L(M)$. As in the proof of Proposition 8 we can show that B_1 is minimal leading to $B_1 = (0)$ and $Q = \operatorname{Soc}(M)$.

In Proposition 3 we have seen that if N has a left identity then the property of being completely reducible is equivalent to having minimum condition on N-subgroups and no nilpotent N-subgroups. To drop the requirements of a left identity and minimum condition we recall some results on radicals for near-rings.

If Γ is a near-ring module then Γ is

type 2: if Γ has no proper N-subgroups and $\Gamma N \neq (0)$;

type 1: if Γ has no proper submodules, $\Gamma N \neq (0)$ and $\gamma \in \Gamma$ implies $\gamma N = (0)$ or $\gamma N = \Gamma$.

type 0: if Γ has no proper submodules and $\gamma N = \Gamma$ for some $\gamma \in \Gamma$.

We define

$$J_i(N) = \bigcap \{r_N(\Gamma): \Gamma \text{ is a type } i \text{ } N \text{-module}\}$$

where $r_N(\Gamma) = \{n \in N : \Gamma_n = (0)\}$. If Γ has no type *i* N-modules we put $J_i(N) = N$. A right ideal I of N is modular if there exists $a \in N$ with $x - ax \in I$ whenever $x \in N$. D(N) is the intersection of all the modular maximal right ideals of N with D(N) = N if N has no modular maximal right ideals. It is known that $J_0(N) \subseteq D(N) \subseteq J_1(N) \subseteq J_2(N)$. Furthermore $J_0(N)$ contains all the nilpotent ideals of N, $J_2(N)$ all the nilpotent N-subgroups.

If A is a minimal non-nilpotent N-subgroup of N then A = eN for some idempotent $e \in A$. Let $A \in SL(N)$ be non-nilpotent and $A \subseteq J_2(N)$. N = eN + r(e) and $n - en \in r(e)$ for each $n \in N$. Thus r(e) is modular and $N/r(e) \cong eN$. Since eN is type 2 we say that r(e) is 2-primitive. Betsch (1; Satz 3.2) proved that $J_2(N)$ is the intersection of the 2-primitive right ideals of N so $J_2(N) \subseteq r(e)$ contrary to $e^2N \neq (0)$.

Theorem 2. If N is completely reducible then $J_2(N)$ is the sum of all the nilpotent right ideals of N and $J_2(N)^2 = (0)$.

Proof. $J_2(N)$ is the sum of all the minimal right ideals of N which it contains and we have seen that each of these is nilpotent. Clearly if A is a nilpotent minimal right ideal then $A^2 = (0)$. Let A_1 , A_2 be nilpotent minimal

right ideals of N. If $A_1 \not\cong A_2$ then $H(A_1) \cap H(A_2) = (0)$ and so $H(A_1)H(A_2) = (0)$ and $A_1A_2 = (0)$. If $A_1 \cong A_2$ let ϕ be the isomorphism and $a_1 \in A_1, a_2 \in A_2, a_2^* \in A_2$ with $\phi(a_2^*) = a_1$. Then $a_1a_2 = \phi(a_2^*)a_2 = \phi(a_2^*a_2) = \phi(0) = 0$. It follows that $A_1A_2 = (0)$ and $J_2(N)^2 = (0)$.

Corollary 3. If N is completely reducible then $J_0(N) = D(N) = J_1(N) = J_2(N)$.

Proof. $J_2(N)$ is a nilpotent ideal so $J_2(N) \subseteq J_0(N)$.

As a second corollary to this we will obtain a proof of Proposition 3 different from that in (7). An element $x \in N$ is right quasi-regular (rqr) if and only if the minimal right ideal of N containing all elements of the form n - xn for each $n \in N$ also contains x. If we denote by L_x the right ideal of N generated by $\{n - xn : n \in N\}$ then x is rqr if and only if $x \in L_x$.

Lemma 4. x is rqr if and only if $L_x = N$.

Proof. If $L_x = N$ then $x \in L_x$. Conversely if x is rqr then $x \in L_x$ so for $s \in N$, $s = (s - xs) + xs \in L_x$ and $N = L_x$.

A right ideal of N is quasi-regular in case each of its elements is rqr. By Ramakotoiah (8; 2.2) D(N) is quasi-regular and contains all the quasi-regular right ideals of N. A right ideal, A, of N is small if and only if whenever $B \in L(N)$ with A + B = N then B = N.

Lemma 5. If I is a right ideal of N and N has a left identity e then I is small if and only if $I \subseteq D(N)$.

Proof. Let $I \subseteq D(N)$ and $B \in L(N)$ with B + I = N. Then e = b + i. Now D(N) is quasi-regular, so *i* is rqr; so by Lemma 4, $L_i = N$. But $r \in N$ implies $r - ir = (b + i)r - ir \in B$. Thus $L_i \subseteq B$ and B = N as required. Conversely, if *I* is a small right ideal let $x \in I$. Then $e - xe \in L_x$ so $e = (e - xe) + xe \in L_x + I$. Hence $L_x = N$ and $I \subseteq D(N)$.

This gives an alternative characterisation of D(N).

Corollary 4. If N has a left identity then D(N) is a small right ideal of N and is the sum of all the small right ideals of N.

Corollary 5. For a near-ring N with left identity the following are equivalent

- (i) N is completely reducible;
- (ii) N has no nilpotent N-subgroups and satisfies the minimum conon N-subgroups.

Proof. (ii) implies (i) is due to Blackett (3). Suppose (i). Then D(N) = (0) so that $J_2(N) =$ (0) and N has no nilpotent N-subgroups. The minimum condition follows immediately from N having a left identity.

Let us now turn to the case where $J_2(N) = (0)$.

192

Theorem 3. If N is completely reducible and $J_2(N) = (0)$ then each homogeneous component is a simple near-ring.

Proof. Let $N = \bigoplus F_{\lambda}$ where each F_{λ} is a homogeneous component. For distinct F_1 , F_2 we have $F_1F_2 = (0)$ so if X is an ideal of F_1 then X is a right ideal (in fact an ideal) of N. If $X \neq F_1$ let A be a minimal right ideal of N in F_1 with $X \cap A = (0)$. Since $J_2(N) = (0)$, A = eN for some non-zero idempotent $e \in A$. If $X \neq (0)$ let fN be a minimal right ideal of N in X with $f = f^2 \neq 0$. Then $AX \subseteq A \cap X = (0)$ so $X \subseteq r(A)$. The minimal right ideals of N in F_1 are isomorphic and thus $fN \cong eN$. If ϕ is the isomorphism let $\phi(f) = en$. Then $0 = enf = \phi(f)f = \phi(f)$ which is not true. Thus $X = F_1$ or X = (0) and F_1 is a simple near-ring.

Corollary 6. If N is completely reducible with $J_2(N) = (0)$ and if A is a two-sided N-subgroup of N there is a two-sided ideal X of N with $A \cap X = (0)$ and A + X = N.

Proof. Let X be an ideal of N maximal subject to $A \cap X = (0)$. Write $N = \bigoplus F_{\lambda}$ where each F_{λ} is a homogeneous component and thus an ideal of N and simple as a near-ring. Clearly $(A + X) \cap F_{\lambda} \neq (0)$ for each λ . If B is a minimal N-subgroup of N contained in F_{λ} and B(A + X) = (0) then $(A + X) \cap F_{\lambda} \subseteq r(B) \cap F_{\lambda}$. Now F_{λ} is simple and thus has no proper two-sided ideals so $r(B) \cap F_{\lambda} = (0)$ or F_{λ} . Since $(A + X) \cap F_{\lambda} \neq (0)$ we must have $r(B) \cap F_{\lambda} = F_{\lambda}$ and so $B \subseteq r(B) \cap F_{\lambda}$. But then $B^2 = (0)$ contrary to $J_2(N) = (0)$. Since $(A + X) \cap B = (0)$ implies B(A + X) = (0) it follows that $B \subseteq A + X$ for each minimal right ideal of N and thus A + X = N as required.

Theorem 4. If $J_2(N) = (0)$ and $N = \bigoplus N_{\lambda}$, where each N_{λ} is an ideal of N, is simple as a near-ring and contains a minimal right ideal then N is completely reducible.

Proof. If A is the minimal right ideal of N_{λ} and B is isomorphic to A as an N-module then $B \subseteq N_{\lambda}$ since $J_2(N) = (0)$. Apply Zorn's Lemma to the family of all sums of right ideals of N_{λ} which are isomorphic to A to obtain a maximal such sum T. Then T is an ideal of N_{λ} so $T = N_{\lambda}$ and N is completely reducible.

We now obtain the structure of two-sided N-subgroups of a completely reducible near-ring with identity.

Lemma 6. If N has no nilpotent N-subgroups and A is an N-subgroup of N, B a two-sided N-subgroup of N, then AB = (0) if and only if $A \cap B = (0)$.

Proposition 10. If N is completely reducible with identity 1 and A is a two-sided N-subgroup of N then A = eN where e is a central idempotent.

Proof. From Theorem 2 and Corollary 5 we get $J_2(N) = (0)$. From 20/3--B

193

Corollary 6 there is an ideal X of N with $A \cap X = (0)$, A + X = N. Write 1 = e + x ($e \in A$, $x \in X$). Then $e - e^2 = (e + x)e - e^2 \in A \cap X = (0)$. Clearly A = eN and e is central.

So far we have not distinguished between rings and near-rings. We now wish to investigate near-rings which are not rings. These we call *nonrings*. An extremely important result (due to Wielandt and reported by Betsch (2; 2.12)) is

Lemma 7. Let N be a near-ring and Γ a faithful N-module with $\Gamma = \gamma N$ for some $\gamma \in \Gamma$. If B, $C \in L(N)$ satisfy

$$B + r_N(\gamma) = N = C + r_N(\gamma); \quad B \cap C \subseteq r_N(\gamma).$$

then N is a ring.

Lemma 8. Let Γ be a type 2 N-module and $\gamma \in \Gamma$ with $\gamma N \neq (0)$. If $I \in SL(N)$ with $r_N(\gamma) \subset I$ then I = N.

Proof. Since $r_N(\gamma) \subset I$ we have $\gamma I = \Gamma$. If $n \in N$, then for some $t \in I$, $\gamma n = \gamma t$ so $n - t \in r_N(\gamma) \subset I$ and thus $n \in I$ and N = I.

By a standard argument one can show that if A is a non-nilpotent minimal N-subgroup of a near-ring N then A = eN for some idempotent $e \in A$.

Lemma 9. If N is a completely reducible nonring, without proper 2-sided ideals, with $J_2(N) = (0)$ and if eN is a minimal right ideal of N and X a right ideal of N with $eN \cap X = (0)$ then $X \subseteq r(e)$.

Proof. If $x \in X$ with $ex \neq 0$ then r(e) + X = N = r(e) + eN, and $eN \cap X = (0) \subseteq r(e)$ contrary to N being a nonring.

Theorem 5. If N is a completely reducible nonring, without proper 2-sided ideals, with $J_2(N) = (0)$ then the lattice of right ideals of N has unique complements.

Proof. Let $X \in L(N)$ with A, $B \in L(N)$ such that $X \cap A = (0) = X \cap B$, X + A = N = X + B. If eN is a minimal right ideal of N with $eN \cap A = (0)$ then $A \subseteq r(e)$. Since $r(e) \neq N$ we cannot have $X \subseteq r(e)$ and so $X \cap eN \neq (0)$ and $eN \subseteq X$. It follows that A is the sum of all those minimal right ideals of N not in X. Similarly B is also their sum and A = B.

Corollary 7. If N is a completely reducible nonring, without proper 2-sided ideals, with $J_2(N) = (0)$ then the lattice L(N) is distributive.

The proof of Theorem 5 contains the proofs of the following

Lemma 10. If N is a completely reducible nonring, without proper 2-sided ideals, with $J_2(N) = (0)$ and $A \in L(N)$ then A is the sum of the minimal right ideals of N which are contained in it.

Lemma 11. If N is a completely reducible nonring without proper 2-sided ideals and $N = \bigoplus A_{\lambda}$ where each A_{λ} is a minimal non-nilpotent right ideal of N then each minimal right ideal of N is one of these A_{λ} .

A near-ring N is v-primitive (v = 0, 1, 2) if it has a faithful type v N-module. A simple nonring without nilpotent N-subgroups and with a minimal N-subgroup will be 2-primitive and hence 1-primitive. For 1primitive nonrings Ramakotaiah proved a density theorem which we wish to use.

Let N be a 1-primitive nonring and Γ be a faithful type 1 N-module. If x, $y \in N$ we define $x \sim y$ if and only if $r_N(x) = r_N(y)$. Clearly \sim is an equivalence relation and C_0 , the equivalence class containing 0, consists precisely of those $x \in \Gamma$ with xN = (0). Ramakotaiah (9; Theorem 4) proved

Lemma 12. Let N be a 1-primitive nonring and Γ be a faithful type 1 N-module. Let $w_1, w_2, \ldots, w_n \in \Gamma \setminus C_0$ with $w_i \not\sim w_j$ if $i \neq j$. For each set $m_1, m_2, \ldots, m_n \in \Gamma$ there is an element $b \in N$ with $w_i b = m_i$ $(1 \le i \le n)$.

Lemma 13. Let N be a completely reducible nonring, without proper two-sided ideals, in which $J_2(N) = (0)$. Then N has a system of idempotents $\{e_{\lambda}\}$ such that $e_{\lambda}e_{\mu} = 0$ if $\lambda \neq \mu$.

Proof. Writing $N = \bigoplus_{\lambda} e_{\lambda} N$ where each $e_{\lambda} N$ is a minimal right ideal of N and $e_{\lambda}^2 = e_{\lambda}$ we know that $e_{\lambda} N \cap r_N(e_{\lambda}) = (0)$ and $e_{\lambda} N \oplus r_N(e_{\lambda}) = N$. If $\lambda \neq \mu$ then $e_{\mu} N \cap e_{\lambda} N = (0)$ and so, from Lemma 9, $e_{\mu} N \subseteq r_N(e_{\lambda})$ and $e_{\lambda} e_{\mu} = 0$ as required.

Now suppose that N is a completely reducible nonring with $J_2(N) = (0)$ in which xt = yt for each $t \in N$ implies x = y. Writing $N = \bigoplus N_{\lambda}$ where each N_{λ} is a homogeneous component of N we see that each N_{λ} has these properties and in addition has no two-sided proper ideals. Those N_{λ} which are simple rings are regular by Blair (4). Thus we need only consider those N_{λ} which are completely reducible nonrings with $J_2(N_{\lambda}) = (0)$, which have no two-sided proper ideals and in which x, $y \in N$ with xt = yt for each $t \in N$ implies x = y.

Theorem 6. If N is a completely reducible nonring, without proper two-sided ideals, such that $J_2(N) = (0)$ and whenever $x, y \in N$ with xt = ytfor each $t \in N$ then z = y then N is regular in the sense that to each $a \in N$ there corresponds $b \in N$ with a = aba.

Proof. Let $a \in N$. Choose non-nilpotent minimal right ideals e_1N, \ldots, e_kN with $a \in e_1N \oplus \ldots \oplus e_kN$, and k minimal, where $e_i^2 = e_i$ for each *i*. Then as N-modules, e_iN is isomorphic to e_jN for $1 \le i, j \le k$. Let ϕ_j : $e_jN \to e_1N$ be an isomorphism and write $\gamma_j = \phi_j(e_j)$. Clearly $\gamma_i \sim \gamma_j$ if and only if i = j. From Lemma 13 we observe that if $N = \bigoplus e_\lambda N$ where each $e_\lambda N$ is a non-nilpotent minimal right ideal of N then $e_\lambda a = 0$ if

 $\lambda \neq 1, 2, ..., k$ and, since k is minimal, $e_i a \neq 0$ for $1 \leq i \leq k$. Hence $\gamma_i a \neq 0$ for $1 \leq i \leq k$. Let $\gamma_1 a, \gamma_2 a, ..., \gamma_q a$ be those $\gamma_i a$ in different equivalence classes under \sim . Clearly $e_1 Nx = 0$ implies x = 0 so N is a 2-primitive near-ring and thus 1-primitive. Appealing to Lemma 12 we can choose $b \in N$ with $\gamma_i ab = \gamma_i$ for $1 \leq i \leq q$. Now consider $\gamma_j a$ where $q < j \leq k$. For some i, $\gamma_j a \sim \gamma_i a$, so $r(\gamma_i a) = r(\gamma_i a)$. Now $\gamma_i ab at = \gamma_i at$ for each $t \in N$; so $b at - t \in r(\gamma_i a)$. It follows that $b at - t \in r(\gamma_j a)$ for each $t \in N$. Hence $1 \leq s \leq k$ and $t \in N$ implies $\gamma_s ab at = \gamma_s at$. By assumption we have $\gamma_s ab a = \gamma_s a$. Hence $aba - a \in r(\gamma_s) = r(e_s)$; so

$$aba - a \in e_1 N \oplus \cdots \oplus e_k N \cap r(e_1) \cap \cdots \cap r(e_k) = (0),$$

or aba = a as required.

Corollary 8. If N is a completely reducible nonring with $J_2(N) = (0)$ and if x, $y \in N$ with xt = yt for each $t \in N$ implies x = y then N is regular.

Proof. A direct sum of regular near-rings each of which is an ideal in the sum is regular so we simply apply Blair's result to those direct summands which are rings and Theorem 6 to the nonrings.

Observe that if R is a ring with $J_2(R) = (0)$ then xR = (0) if and only if x = 0. Whether this is true for a general near-ring is unknown. However, when N is distributively generated we have

Lemma 14. If N is distributively generated and has no nilpotent N-subgroups then xNx = (0) implies x = 0.

Proof. Let N be distributively generated by S (i.e. $a, b \in N, s \in S$ implies (a + b)s = as + bs and $a \in N$ implies $a = \sigma_1 + \sigma_2 + \cdots + \sigma_n$ where for $1 \leq i \leq n$ either $\sigma_i \in S$ or $-\sigma_i \in S$). From xNx = (0) we get $(xN)^2 = (0)$ and hence xN = (0). Let B be the N-subgroup of N generated by x. If $b \in B$ then b = n.x, n an integer, in the obvious notation, since xN = 0. Then (n.x)(m.x) = m.((n.x).x). Now $x = \sum_i \sigma_i$, where either $\sigma_i \in S$ or $-\sigma_i \in S$. Then $(n.x)(\sum_i \sigma_i) = \sum \pm (n(\pm x\sigma_i))$, taking the positive signs when $\sigma_i \in S$ and the negative signs when $-\sigma_i \in S$, but $\sigma_i \notin S$. As $x\sigma_i \in xN = 0$, so (n.x)x = 0 and (n.x)(m.x) = 0. Thus $B^2 = (0)$ and so B = (0).

Corollary 9. If N is distributively generated by S and has no nilpotent N-subgroups then $x, y \in N$ with xt = yt for each $t \in N$ implies x = y.

Proof. In particular xs = ys for $s \in S$ and so (x - y)s = 0. It follows that $S \subseteq r(x - y)$ and hence $N \subseteq r(x - y)$. Then (x - y)N = (0) so x - y = 0 and x = y.

Combining this with Corollary 8 we obtain

Theorem 7. If N is a distributively generated, completely reducible near-ring and $J_2(N) = (0)$ then N is regular.

I should like to take this opportunity of thanking the referee for his many helpful comments on an earlier version of this paper.

REFERENCES

(1) G. BETSCH, Ein Radikal für Fastringe, Math. Z. 78 (1962), 86-90.

(2) G. BETSCH, Primitive Near-rings, Math. Z. 130 (1973), 351-361.

(3) D. W. BLACKETT, Simple and Semi-simple Near-rings, Proc. Amer. Math. Soc. 4 (1953), 772-785.

(4) R. L. BLAIR, Ideal Lattices and the Structure of Rings, Trans. Amer. Math. Soc. 75 (1953), 136-153.

(5) A. FRÖHLICH, Distributively Generated Near-rings (I Ideal Theory), Proc. London Math. Soc. (3) 8 (1958), 76–94.

(6) A. OSWALD, Near-rings in which every N-subgroup is Principal, Proc. London Math. Soc. (3) 28 (1974), 67-88.

(7) A. OSWALD, Semisimple Near-rings have the Maximum Condition on N-subgroups, J. London Math. Soc. 11 (1975), 408-412.

(8) D. RAMAKOTAIAH, Radicals for Near-rings, Math. Z. 97 (1967), 45-56.

(9) D. RAMAKOTAIAH, Structure of 1-primitive Near-rings, Math. Z. 110 (1969), 15-26.

DEPARTMENT OF MATHEMATICS TEESSIDE POLYTECHNIC MIDDLESBROUGH CLEVELAND TS1 3BA