COMPLETELY REDUCIBLE NEAR-RINGS

by A. OSWALD
(Received 11th March 1975)

To establish our notation N will always denote a (left) near-ring without any type of multiplicative identity (unless the contrary is stated) satisfying $0 n=0$ for each $n \in N$ where 0 is the additive identity of N. A group M, written additively, which admits N as a set of right multipliers is a (right) N-module if $a \in M, \quad n_{1}, \quad n_{2} \in N$ implies $a\left(n_{1}+n_{2}\right)=a n_{1}+a n_{2}$ and $a\left(n_{1} n_{2}\right)=\left(a n_{1}\right) n_{2}$. When N has a two-sided identity, 1 , we suppose that $a 1=a$ for each $a \in M$. A subgroup X of M is an N-subgroup of M if it is an N-module; X is a submodule of M if it is a normal subgroup of M and $a \in M, x \in X, n \in N$ implies $(a+x) n-a n \in X$. We denote by $S L(M)$ the set of N-subgroups and by $L(M)$ the set of submodules of M. Since N may be regarded as an N-module we can talk about N-subgroups and submodules of N although we usually call the submodules of N right ideals of N. Other definitions can be found in (6).

An N-subgroup A of M is semicomplemented if there exists $B \in L(M)$ with $A \cap B=(0), A+B=M ; B$ is called a semicomplement of A. If each $A \in S L(M)$ is semicomplemented then $S L(M)$ is said to be semicomplemented. An N-subgroup A of M is module-essential if whenever B is a non-zero submodule of M then $A \cap B \neq(0)$.

A submodule A of M is minimal if it contains no N-subgroups other than (0) and A. If M is a direct sum of minimal submodules then M is completely reducible. The near-ring N is completely reducible if it is completely reducible as an N-module.

In (7; Theorem 3) we proved
Theorem 1. For an N-module M the following are equivalent:-
(i) M is completely reducible;
(ii) M has no proper module-essential N-subgroups;
(iii) $S L(M)$ is semicomplemented.

Proposition 1. If N has a left identity the following are equivalent:-
(i) N is completely reducible;
(ii) each maximal N-subgroup of N is semicomplemented;
(iii) each proper N-subgroup of N is contained in a semicomplemented proper N-subgroup of N.

Proof. Clearly (i) \Rightarrow (ii) \Rightarrow (iii). Suppose (iii) and let A be a proper
module-essential N-subgroup of N. Then A is contained in a proper N-subgroup of N which is semicomplemented. This contradiction and Theorem 1 establishes that (iii) \Rightarrow (i).

Completely reducible near-rings with left identity clearly have the minimum condition on N-subgroups. Retaining the chain condition but not the left identity we can prove

Proposition 2. If N has the minimum condition on N-subgroups the following are equivalent:-
(i) N is completely reducible;
(ii) each non-zero N-subgroup of N contains a non-zero semicomplemented N-subgroup of N.
Proof. That (i) \Rightarrow (ii) is trivial. Suppose (ii) and let X be an N-subgroup of N which is not semicomplemented. Let $T \subset X$ be a non-zero N-subgroup of N semicomplemented by $A \in L(N)$. Then $X=T+X_{1}$ where $X_{1}=A \cap X$ and $T \cap X_{1}=(0)$. If X_{1} is semicomplemented by $Y \in L(N)$ and if $u \in X \cap(A \cap Y)$ then $u \in\left(T+X_{1}\right) \cap A \cap Y$ so that

$$
u=t+x_{1}=a \quad\left(t \in T, x_{1} \in X_{1}, a \in A \cap Y\right)
$$

Thus $t=a-x_{1} \in T \cap A=(0) \quad$ and $\quad u=x_{1} \in X_{1} \cap A \cap Y=(0)$. Then $X \cap(A \cap Y)=(0)$. Now let $z \in N=T+A$ so that $z=t+a(t \in T, a \in A)$. Since $N=X_{1}+Y, a=x_{1}+y\left(x_{1} \in X_{1}, y \in Y\right)$ and

$$
z=t+x_{1}+y \in\left(T+X_{1}\right)+(A \cap Y)=X+A \cap Y
$$

It follows that X is semicomplemented if X_{1} is semicomplemented. If X_{1} is not semicomplemented we can apply the same construction to X_{1} to obtain X_{2} and then X_{3} etc with $\ldots \subset_{\neq} X_{n} \subset \ldots \subset_{\neq} X_{1}$ contrary to the minimum condition for N-subgroups. It follows that (ii) \Rightarrow (i).

In (7; Theorem 4) we gave a proof of
Proposition 3. If N is a near-ring with left identity the following are equivalent:-
(i) N is completely reducible;
(ii) N has no nilpotent N-subgroups and has the minimum condition on N-subgroups.

Later we will give an alternative proof of this result. A near-ring N is regular if for each $r \in N$ there exists $s \in N$ with $r=r s r$. It is easy to see

Lemma 1. If N is a near-ring with identity the following are equivalent:-
(i) N is regular;
(ii) for each $a \in N$ there is a non-zero idempotent $e \in N$ with $a N=e N$;
(iii) for each $a \in N$ there is a right ideal B of N with $a N \cap B=(0)$ and $a N+B=N$.

We observe that (i) \Rightarrow (ii) \Rightarrow (iii) irrespective of whether N has an identity. Furthermore if we assume that N has minimum condition on N subgroups we can use Proposition 2 to prove

Corollary 1. If N has minimum condition on N-subgroups and if N is regular then N is completely reducible.

Later we will consider the converse of this. For the present we observe
Proposition 4. If N is a near-ring with identity the following are equivalent:-
(i) N is completely reducible;
(ii) N has the minimum condition on N-subgroups and is regular.

If R is a ring then R is completely reducible if and only if every R-module is completely reducible. We are unable to prove this for near-rings. However, calling an N-module M monogenic if $M=m N$ for some $m \in M$ we have

Proposition 5. If N is a near-ring with left identity then N is completely reducible if and only if every monogenic \boldsymbol{N}-module is completely reducible.

Proof. Clearly if every monogenic N-module is completely reducible so is N. For the converse let $M=m N$ with $m \in M$. For $I \in S L(M), T=$ $\{n \in N: m n \in I\} \in S L(N)$ and $I=m T$. Let $P \in L(N)$ with $T \cap P=(0)$, $T+P=N$. Then $M=m T+m P=I+m P, I \cap m P=(0), m P \in L(M)$.

An N-subgroup A of a module M is essential if $A \cap B \neq(0)$ whenever B is a non-zero N-subgroup of M. Then

Corollary 2. If N has an identity and is completely reducible and if M is an N-module then M has no essential N-subgroups.

Proof. Let $A \in S L(M)$ be essential and $x \in M$ with $x \neq 0$. From Proposition $5, x N$ is completely reducible. Let $K \in L(x N)$ with $x N \cap A \cap K=$ (0), $x N \cap A+K=x N$. But $x N \cap K=K$ so $A \cap K=(0)$ and $K \in S L(M)$ so $K=(0)$. Thus $x N \cap A=x N$ and $x \in A$. But then $M \subseteq A$.

Let M be a completely reducible N-module with $M=\oplus_{\lambda} M_{\lambda}$ where M_{λ} is a minimal submodule of M and P be any minimal N-subgroup of M. Denote by $\left\{\Pi_{\alpha}: M \rightarrow M_{\alpha}\right\}$ the family of natural projections and by θ_{α} the restriction of Π_{α} to P. Clearly $\theta_{\alpha}=0$ or θ_{α} is an N-isomorphism. For each minimal N-subgroup P of M let $H(P)$ denote the sum of all those submodules of M which are isomorphic as N-modules to $P . H(P)$ is the homogeneous component of P and clearly

Proposition 6. If M is completely reducible then $M=\oplus H(P)$ where P ranges over all the minimal N-subgroups of M.

We notice that we can define homogeneous components for general modules in just the same way. If P is a minimal N-subgroup of M then
$P \subset H(P)$ if M is completely reducible. However this need not be so if M is not completely reducible; for example the symmetric group S_{3} on 3 elements is a ($Z, 1$)-module (notation in Fröhlich (5)), where Z is the set of integers, in which the subset $P=\{e, \alpha\}$ with $\alpha^{2}=e$ is a minimal $(Z, 1)$ subgroup for which $H(P)=(0)$.

Lemma 2. If F is a homogeneous component in a completely reducible near-ring N then F is an ideal.

Proof. Clearly $\alpha \in \operatorname{Hom}_{N}(N, N)$ implies $\alpha F \subseteq F$ in a completely reducible near-ring. For $x \in N$ define $\alpha_{x} \in \operatorname{Hom}_{N}(N, N)$ by $\alpha_{x}(n)=x n$.

For an N-module M we denote by $\operatorname{Soc}(M)$ the sum of all the minimal submodules of M. As before it is not necessary for $\operatorname{Soc}(M)$ to contain all the minimal N-subgroups of M. Trivially $\operatorname{Soc}(M)=M$ if and only if M is completely reducible. If M is not completely reducible denote by T the intersection of all the module essential N-subgroups of M.

We shall, on several occasions, use
Lemma 3. If M is an N-module and $A \in S L(M)$ there exists $B \in L(M)$ with $A \cap B=(0)$ and $A+B$ module-essential in M.

Proof. The family of submodules of M having trivial intersection with A is non-empty since it contains (0). For any chain $B_{1} \subseteq B_{2} \subseteq \cdots$ of submodules of M with $A \cap B_{i}=(0)$ for each i we see that $A \cap\left(\cup B_{i}\right)=(0)$. Hence by Zorn's Lemma there is a maximal submodule B of M with $A \cap B=(0)$. Clearly if $X \in L(M)$ with $(A+B) \cap X=(0)$ then

$$
A \cap(B+X)=(0)
$$

and since $B+X \in L(M)$ this contradicts the maximality of B.
Proposition 7. T is completely reducible as an N-module.
Proof. If $X \in S L(T)$ then $X \in S L(M)$ and by Lemma 3 we can choose $Q \in L(M)$ maximal subject to $X \cap Q=(0)$. Then $X+Q$ is module essential so $T \subseteq X+Q$ and $T=X+T \cap Q$ where $T \cap Q \in L(T)$.

For P a minimal submodule of M we have $P=T \cap P$ so $\operatorname{Soc}(M) \subseteq T$.
Proposition 8. If T is a submodule of M then $\operatorname{Soc}(M)=T$.
Proof. Let $p \in T \backslash \operatorname{Soc}(M)$ and $Q \in L(M)$ be maximal subject to the two conditions $\operatorname{Soc}(M) \subseteq Q$ and $p \notin Q . Q_{1}=Q \cap T \in L(M)$. Using Lemma 3 let $A \in L(M)$ with $Q_{1} \cap A=(0), Q_{1}+A$ module essential in M. Then $T=Q_{1}+A_{1}$ where $A_{1}=A \cap T$. If $X \neq(0)$ and $X \in S L\left(A_{1}\right)$ then $X \in S L(M)$ so there exists $B \in L(M)$ with $X \cap B=(0), \quad X+B \cap A_{1}=A_{1} . \quad A_{1}$, $B \in L(M)$ so $B \cap A_{1}=B_{1} \in L(M)$. If $X \neq A_{1}$ then $B_{1} \neq(0)$ so for some $C_{1} \in L(M), B_{1} \cap C_{1}=(0), B_{1}+C_{1}=A_{1}$. Now $X \neq(0)$ implies $B_{1} \neq(0) \neq C_{1}$. Clearly $B_{1} \cap Q=C_{1} \cap Q=(0)$ and $p \in\left(Q+B_{1}\right) \cap\left(Q+C_{1}\right)$. Writing $p=$ $q_{1}+b=q_{2}+c$ then $-q_{2}+q_{1} \in\left(B_{1}+C_{1}\right) \cap Q=A_{1} \cap Q=(0)$ and $b=c=0$
contrary to $p \notin Q$. Hence $X=A_{1}$ and A_{1} is a minimal submodule of M from which $A_{1} \subseteq \operatorname{Soc}(M) \subseteq Q$ and $A_{1}=(0)$ since $Q \cap A_{1}=(0)$. Then $T=$ $Q_{1}=T \cap Q$ so $T \subset Q$ contrary to $p \notin Q$. It follows that $T=\operatorname{Soc}(M)$.

Whether T is always a submodule of M is unknown.
Proposition 9. If T is not a submodule of M then $\operatorname{Soc}(M)$ is the largest submodule of M contained in T.

Proof. Let $Q \in L(M)$ with $\operatorname{Soc}(M) \subset Q \subseteq T$ and $q \in Q \backslash \operatorname{Soc}(M)$. If $A \in L(M)$ is maximal subject to the two conditions $q \notin A$ and $\operatorname{Soc}(M) \subseteq A$ then $A_{1}=A \cap Q \in L(M)$. Let $B \in L(M)$ with $A_{1} \cap B=(0), A_{1}+B$ module essential in M. Then $B_{1}=B \cap Q \in L(M)$. As in the proof of Proposition 8 we can show that B_{1} is minimal leading to $B_{1}=(0)$ and $Q=\operatorname{Soc}(M)$.

In Proposition 3 we have seen that if N has a left identity then the property of being completely reducible is equivalent to having minimum condition on N-subgroups and no nilpotent N-subgroups. To drop the requirements of a left identity and minimum condition we recall some results on radicals for near-rings.

If Γ is a near-ring module then Γ is
type 2: if Γ has no proper N-subgroups and $\Gamma N \neq(0)$;
type 1: if Γ has no proper submodules, $\Gamma N \neq(0)$ and $\gamma \in \Gamma$ implies $\gamma N=$ (0) or $\gamma N=\Gamma$.
type 0: if Γ has no proper submodules and $\gamma N=\Gamma$ for some $\gamma \in \Gamma$.
We define

$$
J_{i}(N)=\bigcap\left\{r_{N}(\Gamma): \Gamma \text { is a type } i N \text {-module }\right\}
$$

where $r_{N}(\Gamma)=\left\{n \in N: \Gamma_{n}=(0)\right\}$. If Γ has no type $i N$-modules we put $J_{i}(N)=N$. A right ideal I of N is modular if there exists $a \in N$ with x-ax $\in I$ whenever $x \in N . D(N)$ is the intersection of all the modular maximal right ideals of N with $D(N)=N$ if N has no modular maximal right ideals. It is known that $J_{0}(N) \subseteq D(N) \subseteq J_{1}(N) \subseteq J_{2}(N)$. Furthermore $J_{0}(N)$ contains all the nilpotent ideals of $N, J_{2}(N)$ all the nilpotent N-subgroups.

If A is a minimal non-nilpotent N-subgroup of N then $A=e N$ for some idempotent $e \in A$. Let $A \in S L(N)$ be non-nilpotent and $A \subseteq J_{2}(N)$. $N=e N+r(e)$ and $n-e n \in r(e)$ for each $n \in N$. Thus $r(e)$ is modular and $N / r(e) \cong e N$. Since $e N$ is type 2 we say that $r(e)$ is 2-primitive. Betsch (1; Satz 3.2) proved that $J_{2}(N)$ is the intersection of the 2-primitive right ideals of N so $J_{2}(N) \subseteq r(e)$ contrary to $e^{2} N \neq(0)$.

Theorem 2. If N is completely reducible then $J_{2}(N)$ is the sum of all the nilpotent right ideals of N and $J_{2}(N)^{2}=(0)$.

Proof. $J_{2}(N)$ is the sum of all the minimal right ideals of N which it contains and we have seen that each of these is nilpotent. Clearly if A is a nilpotent minimal right ideal then $A^{2}=(0)$. Let A_{1}, A_{2} be nilpotent minimal
right ideals of N. If $A_{1} \not \equiv A_{2}$ then $H\left(A_{1}\right) \cap H\left(A_{2}\right)=(0)$ and so $H\left(A_{1}\right) H\left(A_{2}\right)=(0)$ and $A_{1} A_{2}=(0)$. If $A_{1} \cong A_{2}$ let ϕ be the isomorphism and $a_{1} \in A_{1}, a_{2} \in A_{2}, a_{2}^{*} \in A_{2}$ with $\phi\left(a_{2}^{*}\right)=a_{1}$. Then $a_{1} a_{2}=\phi\left(a_{2}^{*}\right) a_{2}=\phi\left(a_{2}^{*} a_{2}\right)=$ $\phi(0)=0$. It follows that $A_{1} A_{2}=(0)$ and $J_{2}(N)^{2}=(0)$.

Corollary 3. If N is completely reducible then $J_{0}(N)=D(N)=J_{1}(N)=$ $J_{2}(N)$.

Proof. $J_{2}(N)$ is a nilpotent ideal so $J_{2}(N) \subseteq J_{0}(N)$.
As a second corollary to this we will obtain a proof of Proposition 3 different from that in (7). An element $x \in N$ is right quasi-regular (rqr) if and only if the minimal right ideal of N containing all elements of the form $n-x n$ for each $n \in N$ also contains x. If we denote by L_{x} the right ideal of N generated by $\{n-x n: n \in N\}$ then x is rqr if and only if $x \in L_{x}$.

Lemma 4. x is rqr if and only if $L_{x}=N$.
Proof. If $L_{x}=N$ then $x \in L_{x}$. Conversely if x is rqr then $x \in L_{x}$ so for $s \in N, s=(s-x s)+x s \in L_{x}$ and $N=L_{x}$.

A right ideal of N is quasi-regular in case each of its elements is rqr. By Ramakotoiah $(8 ; 2.2) D(N)$ is quasi-regular and contains all the quasi-regular right ideals of N. A right ideal, A, of N is small if and only if whenever $B \in L(N)$ with $A+B=N$ then $B=N$.

Lemma 5. If I is a right ideal of N and N has a left identity e then I is small if and only if $I \subseteq D(N)$.

Proof. Let $I \subseteq D(N)$ and $B \in L(N)$ with $B+I=N$. Then $e=b+i$. Now $D(N)$ is quasi-regular, so i is rqr; so by Lemma 4, $L_{i}=N$. But $r \in N$ implies $r-i r=(b+i) r-i r \in B$. Thus $L_{i} \subseteq B$ and $B=N$ as required. Conversely, if I is a small right ideal let $x \in I$. Then $e-x e \in L_{x}$ so $e=(e-x e)+x e \in L_{x}+I$. Hence $L_{x}=N$ and $I \subseteq D(N)$.

This gives an alternative characterisation of $D(N)$.
Corollary 4. If N has a left identity then $D(N)$ is a small right ideal of N and is the sum of all the small right ideals of N.

Corollary 5. For a near-ring N with left identity the following are equivalent
(i) N is completely reducible;
(ii) N has no nilpotent N-subgroups and satisfies the minimum conon N-subgroups.

Proof. (ii) implies (i) is due to Blackett (3). Suppose (i). Then $D(N)=$ (0) so that $J_{2}(N)=(0)$ and N has no nilpotent N-subgroups. The minimum condition follows immediately from N having a left identity.

Let us now turn to the case where $J_{2}(N)=(0)$.

Theorem 3. If N is completely reducible and $J_{2}(N)=(0)$ then each homogeneous component is a simple near-ring.

Proof. Let $N=\oplus F_{\lambda}$ where each F_{λ} is a homogeneous component. For distinct F_{1}, F_{2} we have $F_{1} F_{2}=(0)$ so if X is an ideal of F_{1} then X is a right ideal (in fact an ideal) of N. If $X \neq F_{1}$ let A be a minimal right ideal of N in F_{1} with $X \cap A=(0)$. Since $J_{2}(N)=(0), A=e N$ for some non-zero idempotent $e \in A$. If $X \neq(0)$ let $f N$ be a minimal right ideal of N in X with $f=f^{2} \neq 0$. Then $A X \subseteq A \cap X=(0)$ so $X \subseteq r(A)$. The minimal right ideals of N in F_{1} are isomorphic and thus $f N \cong e N$. If ϕ is the isomorphism let $\phi(f)=e n$. Then $0=e n f=\phi(f) f=\phi(f)$ which is not true. Thus $X=F_{1}$ or $X=(0)$ and F_{1} is a simple near-ring.

Corollary 6. If N is completely reducible with $J_{2}(N)=(0)$ and if A is a two-sided N-subgroup of N there is a two-sided ideal X of N with $A \cap X=(0)$ and $A+X=N$.

Proof. Let X be an ideal of N maximal subject to $A \cap X=(0)$. Write $N=\oplus F_{\lambda}$ where each F_{λ} is a homogeneous component and thus an ideal of N and simple as a near-ring. Clearly $(A+X) \cap F_{\lambda} \neq(0)$ for each λ. If B is a minimal N-subgroup of N contained in F_{λ} and $B(A+X)=(0)$ then $(A+$ $X) \cap F_{\lambda} \subseteq r(B) \cap F_{\lambda}$. Now F_{λ} is simple and thus has no proper two-sided ideals so $r(B) \cap F_{\lambda}=(0)$ or F_{λ}. Since $(A+X) \cap F_{\lambda} \neq(0)$ we must have $r(B) \cap F_{\lambda}=F_{\lambda}$ and so $B \subseteq r(B) \cap F_{\lambda}$. But then $B^{2}=(0)$ contrary to $J_{2}(N)=$ (0). Since $(A+X) \cap B=(0)$ implies $B(A+X)=(0)$ it follows that $B \subseteq A+$ X for each minimal right ideal of N and thus $A+X=N$ as required.

Theorem 4. If $J_{2}(N)=(0)$ and $N=\oplus \mathrm{N}_{\lambda}$, where each N_{λ} is an ideal of N, is simple as a near-ring and contains a minimal right ideal then N is completely reducible.

Proof. If A is the minimal right ideal of N_{λ} and B is isomorphic to A as an N-module then $B \subseteq N_{\lambda}$ since $J_{2}(N)=(0)$. Apply Zorn's Lemma to the family of all sums of right ideals of N_{λ} which are isomorphic to A to obtain a maximal such sum T. Then T is an ideal of N_{λ} so $T=N_{\lambda}$ and N is completely reducible.

We now obtain the structure of two-sided N-subgroups of a completely reducible near-ring with identity.

Lemma 6. If N has no nilpotent N-subgroups and A is an N-subgroup of N, B a two-sided N-subgroup of N, then $A B=(0)$ if and only if $A \cap B=(0)$.

Proposition 10. If N is completely reducible with identity 1 and A is a two-sided N-subgroup of N then $A=e N$ where e is a central idempotent.

Proof. From Theorem 2 and Corollary 5 we get $J_{2}(N)=(0)$. From 20/3-B

Corollary 6 there is an ideal X of N with $A \cap X=(0), A+X=N$. Write $1=e+x(e \in A, x \in X)$. Then $e-e^{2}=(e+x) e-e^{2} \in A \cap X=(0)$. Clearly $A=e N$ and e is central.

So far we have not distinguished between rings and near-rings. We now wish to investigate near-rings which are not rings. These we call nonrings. An extremely important result (due to Wielandt and reported by Betsch (2; 2.12)) is

Lemma 7. Let N be a near-ring and Γ a faithful N-module with $\Gamma=\gamma N$ for some $\gamma \in \Gamma$. If $B, C \in L(N)$ satisfy

$$
B+r_{N}(\gamma)=N=C+r_{N}(\gamma) ; \quad B \cap C \subseteq r_{N}(\gamma)
$$

then N is a ring.
Lemma 8. Let Γ be a type $2 N$-module and $\gamma \in \Gamma$ with $\gamma N \neq(0)$. If $I \in S L(N)$ with $r_{N}(\gamma) \subsetneq I$ then $I=N$.

Proof. Since $r_{N}(\gamma) \subset I$ we have $\gamma I=\Gamma$. If $n \in N$, then for some $t \in I$, $\gamma n=\gamma t$ so $n-t \in r_{N}(\gamma) \subset I$ and thus $n \in I$ and $N=I$.

By a standard argument one can show that if A is a non-nilpotent minimal N-subgroup of a near-ring N then $A=e N$ for some idempotent $e \in A$.

Lemma 9. If N is a completely reducible nonring, without proper 2-sided ideals, with $J_{2}(N)=(0)$ and if $e N$ is a minimal right ideal of N and X a right ideal of N with $e N \cap X=(0)$ then $X \subseteq r(e)$.

Proof. If $x \in X$ with $e x \neq 0$ then $r(e)+X=N=r(e)+e N$, and $e N \cap X=(0) \subseteq r(e)$ contrary to N being a nonring.

Theorem 5. If N is a completely reducible nonring, without proper 2-sided ideals, with $J_{2}(N)=(0)$ then the lattice of right ideals of N has unique complements.

Proof. Let $X \in L(N)$ with $A, B \in L(N)$ such that $X \cap A=(0)=$ $X \cap B, X+A=N=X+B$. If $e N$ is a minimal right ideal of N with $e N \cap A=(0)$ then $A \subseteq r(e)$. Since $r(e) \neq N$ we cannot have $X \subseteq r(e)$ and so $X \cap e N \neq(0)$ and $e N \subseteq X$. It follows that A is the sum of all those minimal right ideals of N not in X. Similarly B is also their sum and $A=B$.

Corollary 7. If N is a completely reducible nonring, without proper 2-sided ideals, with $J_{2}(N)=(0)$ then the lattice $L(N)$ is distributive.

The proof of Theorem 5 contains the proofs of the following
Lemma 10. If N is a completely reducible nonring, without proper 2-sided ideals, with $J_{2}(N)=(0)$ and $A \in L(N)$ then A is the sum of the minimal right ideals of N which are contained in it.

Lemma 11. If N is a completely reducible nonring without proper 2-sided ideals and $N=\oplus A_{\lambda}$ where each A_{λ} is a minimal non-nilpotent right ideal of N then each minimal right ideal of N is one of these A_{λ}.

A near-ring N is v-primitive ($v=0,1,2$) if it has a faithful type v N-module. A simple nonring without nilpotent N-subgroups and with a minimal N-subgroup will be 2 -primitive and hence 1 -primitive. For 1 primitive nonrings Ramakotaiah proved a density theorem which we wish to use.

Let N be a 1 -primitive nonring and Γ be a faithful type $1 N$-module. If $x, y \in N$ we define $x \sim y$ if and only if $r_{N}(x)=r_{N}(y)$. Clearly \sim is an equivalence relation and C_{0}, the equivalence class containing 0 , consists precisely of those $x \in \Gamma$ with $x N=(0)$. Ramakotaiah (9; Theorem 4) proved

Lemma 12. Let N be a 1-primitive nonring and Γ be a faithful type 1 N-module. Let $w_{1}, w_{2}, \ldots, w_{n} \in \Gamma \backslash C_{0}$ with $w_{i} \nsim w_{j}$ if $i \neq j$. For each set $m_{1}, m_{2}, \ldots, m_{n} \in \Gamma$ there is an element $b \in N$ with $w_{i} b=m_{i}(1 \leqslant i \leqslant n)$.

Lemma 13. Let N be a completely reducible nonring, without proper two-sided ideals, in which $J_{2}(N)=(0)$. Then N has a system of idempotents $\left\{e_{\lambda}\right\}$ such that $e_{\lambda} e_{\mu}=0$ if $\lambda \neq \mu$.

Proof. Writing $N=\oplus_{\lambda} e_{\lambda} N$ where each $e_{\lambda} N$ is a minimal right ideal of N and $e_{\lambda}^{2}=e_{\lambda}$ we know that $e_{\lambda} N \cap r_{N}\left(e_{\lambda}\right)=(0)$ and $e_{\lambda} N \oplus r_{N}\left(e_{\lambda}\right)=N$. If $\lambda \neq \mu$ then $e_{\mu} N \cap e_{\lambda} N=(0)$ and so, from Lemma $9, e_{\mu} N \subseteq r_{N}\left(e_{\lambda}\right)$ and $e_{\lambda} e_{\mu}=0$ as required.

Now suppose that N is a completely reducible nonring with $J_{2}(N)=(0)$ in which $x t=y t$ for each $t \in N$ implies $x=y$. Writing $N=\oplus N_{\lambda}$ where each N_{λ} is a homogeneous component of N we see that each N_{λ} has these properties and in addition has no two-sided proper ideals. Those N_{λ} which are simple rings are regular by Blair (4). Thus we need only consider those N_{λ} which are completely reducible nonrings with $J_{2}\left(N_{\lambda}\right)=(0)$, which have no two-sided proper ideals and in which $x, y \in N$ with $x t=y t$ for each $t \in N$ implies $x=y$.

Theorem 6. If N is a completely reducible nonring, without proper two-sided ideals, such that $J_{2}(N)=(0)$ and whenever $x, y \in N$ with $x t=y t$ for each $t \in N$ then $z=y$ then N is regular in the sense that to each $a \in N$ there corresponds $b \in N$ with $a=a b a$.

Proof. Let $a \in N$. Choose non-nilpotent minimal right ideals $e_{1} N, \ldots, e_{k} N$ with $a \in e_{1} N \oplus \ldots \oplus e_{k} N$, and k minimal, where $e_{i}^{2}=e_{i}$ for each i. Then as N-modules, $e_{i} N$ is isomorphic to $e_{i} N$ for $1 \leqslant i, j \leqslant k$. Let ϕ_{i} : $e_{j} N \rightarrow e_{1} N$ be an isomorphism and write $\gamma_{j}=\phi_{i}\left(e_{j}\right)$. Clearly $\gamma_{i} \sim \gamma_{j}$ if and only if $i=j$. From Lemma 13 we observe that if $N=\oplus e_{\lambda} N$ where each $e_{\lambda} N$ is a non-nilpotent minimal right ideal of N then $e_{\lambda} a=0$ if
$\lambda \neq 1,2, \ldots, k$ and, since k is minimal, $e_{i} a \neq 0$ for $1 \leqslant i \leqslant k$. Hence $\gamma_{i} a \neq 0$ for $1 \leqslant i \leqslant k$. Let $\gamma_{1} a, \gamma_{2} a, \ldots, \gamma_{q} a$ be those $\gamma_{i} a$ in different equivalence classes under ~. Clearly $e_{1} N x=0$ implies $x=0$ so N is a 2-primitive near-ring and thus 1 -primitive. Appealing to Lemma 12 we can choose $b \in N$ with $\gamma_{i} a b=\gamma_{i}$ for $1 \leqslant i \leqslant q$. Now consider $\gamma_{j} a$ where $q<j \leqslant k$. For some i, $\gamma_{j} a \sim \gamma_{i} a$, so $r\left(\gamma_{j} a\right)=r\left(\gamma_{i} a\right)$. Now $\gamma_{i} a b a t=\gamma_{i} a t$ for each $t \in N$; so $b a t-t \in$ $r\left(\gamma_{i} a\right)$. It follows that bat $-t \in r\left(\gamma_{j} a\right)$ for each $t \in N$. Hence $1 \leqslant s \leqslant k$ and $t \in N$ implies $\gamma_{s} a b a t=\gamma_{s} a t$. By assumption we have $\gamma_{s} a b a=\gamma_{s} a$. Hence $a b a-a \in r\left(\gamma_{s}\right)=r\left(e_{s}\right)$; so

$$
a b a-a \in e_{1} N \oplus \cdots \oplus e_{k} N \cap r\left(e_{1}\right) \cap \cdots \cap r\left(e_{k}\right)=(0)
$$

or $a b a=a$ as required.
Corollary 8. If N is a completely reducible nonring with $J_{2}(N)=(0)$ and if $x, y \in N$ with $x t=y t$ for each $t \in N$ implies $x=y$ then N is regular.

Proof. A direct sum of regular near-rings each of which is an ideal in the sum is regular so we simply apply Blair's result to those direct summands which are rings and Theorem 6 to the nonrings.

Observe that if R is a ring with $J_{2}(R)=(0)$ then $x R=(0)$ if and only if $x=0$. Whether this is true for a general near-ring is unknown. However, when N is distributively generated we have

Lemma 14. If N is distributively generated and has no nilpotent N subgroups then $x N x=(0)$ implies $x=0$.

Proof. Let N be distributively generated by S (i.e. $a, b \in N, s \in S$ implies $(a+b) s=a s+b s$ and $a \in N$ implies $a=\sigma_{1}+\sigma_{2}+\cdots+\sigma_{n}$ where for $1 \leqslant i \leqslant n$ either $\sigma_{i} \in S$ or $-\sigma_{i} \in S$). From $x N x=(0)$ we get $(x N)^{2}=(0)$ and hence $x N=(0)$. Let B be the N-subgroup of N generated by x. If $b \in B$ then $b=n . x, n$ an integer, in the obvious notation, since $x N=0$. Then $(n . x)(m \cdot x)=m .((n . x) \cdot x)$. Now $x=\Sigma_{j} \sigma_{j}$, where either $\sigma_{i} \in S$ or $-\sigma_{j} \in S$. Then $(n . x)\left(\Sigma_{i} \sigma_{j}\right)=\Sigma \pm\left(n\left(\pm x \sigma_{j}\right)\right)$, taking the positive signs when $\sigma_{j} \in S$ and the negative signs when $-\sigma_{j} \in S$, but $\sigma_{j} \notin S$. As $x \sigma_{j} \in x N=0$, so $(n \cdot x) x=0$ and $(n \cdot x)(m . x)=0$. Thus $B^{2}=(0)$ and so $B=(0)$.

Corollary 9. If N is distributively generated by S and has no nilpotent N-subgroups then $x, y \in N$ with $x t=y t$ for each $t \in N$ implies $x=y$.

Proof. In particular $x s=y s$ for $s \in S$ and so $(x-y) s=0$. It follows that $S \subseteq r(x-y)$ and hence $N \subseteq r(x-y)$. Then $(x-y) N=(0)$ so $x-y=0$ and $x=y$.

Combining this with Corollary 8 we obtain
Theorem 7. If N is a distributively generated, completely reducible near-ring and $J_{2}(N)=(0)$ then N is regular.

I should like to take this opportunity of thanking the referee for his many helpful comments on an earlier version of this paper.

REFERENCES

(1) G. Betsch, Ein Radikal für Fastringe, Math. Z. 78 (1962), 86-90.
(2) G. Betsch, Primitive Near-rings, Math. Z. 130 (1973), 351-361.
(3) D. W. Blackett, Simple and Semi-simple Near-rings, Proc. Amer. Math. Soc. 4 (1953), 772-785.
(4) R. L. Blair, Ideal Lattices and the Structure of Rings, Trans. Amer. Math. Soc. 75 (1953), 136-153.
(5) A. Fröhlich, Distributively Generated Near-rings (I Ideal Theory), Proc. London Math. Soc. (3) 8 (1958), 76-94.
(6) A. Oswald, Near-rings in which every N-subgroup is Principal, Proc. London Math. Soc. (3) 28 (1974), 67-88.
(7) A. Oswald, Semisimple Near-rings have the Maximum Condition on N-subgroups, J. London Math. Soc. 11 (1975), 408-412.
(8) D. Ramakotaiah, Radicals for Near-rings, Math. Z. 97 (1967), 45-56.
(9) D. Ramakotaiah, Structure of 1-primitive Near-rings, Math. Z. 110 (1969), 15-26.

Department of Mathematics
Teesside Polytechnic
Middlesbrough
Cleveland
TS 1 3BA

