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Abstract

Serosurveillance is an important epidemiologic tool for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), used to estimate infection rates and the degree of population
immunity. There is no general agreement on which antibody biomarker(s) should be used,
especially with the rollout of vaccines globally. Here, we used random forest models to
demonstrate that a single spike or receptor-binding domain (RBD) antibody was adequate
for classifying prior infection, while a combination of two antibody biomarkers performed
better than any single marker for estimating time-since-infection. Nucleocapsid antibodies
performed worse than spike or RBD antibodies for classification, but can be useful for estimat-
ing time-since-infection, and in distinguishing infection-induced from vaccine-induced
responses. Our analysis has the potential to inform the design of serosurveys for SARS-
CoV-2, including decisions regarding a number of antibody biomarkers measured.

Introduction

Increasingly, cross-sectional serosurveillance is being used to estimate the fraction of the
population previously infected with severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Representative seroepidemiological studies reveal the immune landscape of the
population, and compared to the use of data based on viral detection, they can provide
more accurate insights into the infection fatality rate, the amplitude of transmission in differ-
ent populations, and highlight disparities in infection rates without typical health-seeking
behaviour biases [1]. Further, such population-level surveys, when coupled with statistical
and/or mechanistic models, could be used to estimate the probability and timing of future
waves of disease, measure the impact of interventions such as physical distancing or vaccin-
ation, and in later stages, confirm the absence of transmission [2]. However, current knowl-
edge of the kinetics of antibody responses to SARS-CoV-2 infection is insufficient to fully
realise the array of use-cases for data from population-level seroepidemiological studies. For
those designing serosurveys, the choice of antibody assays can be daunting given the number
of available tests that target different antigens and isotypes. The aim of this study was to
provide new evidence to highlight the best types of antibody biomarkers for estimation of sero-
prevalence and time-since-SARS-CoV-2 infection, and whether a combination of antibody
biomarkers could improve such estimations.

Methods
Data sources

We identified studies in the literature or on preprint servers that measured multiple (>3) anti-
body responses at varying time points greater than a median of 50 days after PCR-confirmed
SARS-CoV-2 infection [3-7]. We used no inclusion/exclusion criteria based on case symptoms
nor C; values. We chose this cut off to optimise the capture of data during the period of anti-
body decay post-infection, considering the potential range of post-infection time points in
population-based serosurveys. Data that were not publicly available were obtained on request
from study authors. Antibody responses examined included IgG, IgM and IgA responses
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against spike (S), receptor-binding domain (RBD) and nucleocap-
sid (N) antigens as determined by ELISA or multiplex bead
assays. For each serologic measurement, we extracted the time
between the date of serologic sample collection and either date
of symptom onset or the date of PCR confirmation (preferred if
available), which was termed ‘time since infection.” For subjects
with antibody response measurements at more than one time
point, only the last time point was used. Given the lack of a
gold standard for specific antibody responses, we do not explicitly
account for test performance in antibody detection. We assume
that all immunoassays have 100% specificity for detecting recent
infection and their decay over time since infections are reflected
through decreased sensitivity.

Outcomes and predictor variables

We explored how individual, and combinations of, antibody mea-
surements could identify those who were infected with
SARS-CoV-2 and, if infected, their time since the last infection.
Using antibody biomarkers measured at different time points
post-infection and those collected before the SARS-CoV-2 pan-
demic, we evaluated the importance and performance of IgG,
IgM and IgA antibody isotypes against the nucleocapsid (N),
the spike surface protein (S) and RBD antigens in (1) identifying
previously infected individuals and (2) their time since infection.
We only used binding antibody biomarkers and excluded neutra-
lising antibody results due to the complexity of the assay and
variability in methodology.

Model development

We used random forest models to both determine the order of
importance of biomarkers and to make our final predictions
(1000 random trees, 3 biomarkers per split). Due to the highly
correlated nature of the biomarkers, we measured importance
using the conditional permutation importance algorithm [8],
which measures the importance of each biomarker conditioned
on other associated biomarkers in the model. We used this order
of importance to train and test various sized sets of antibody
response predictors. We fit the models for each study separately,
using the cforest and party packages, and measured importance
using the permimp package, in RBD [8, 9].

Model comparison

In order to assess the predictive performance of each model, we
used repeated 5-fold cross-validation (CV) with 100 iterations,
where each iteration contained screening (variable importance)
and model-fitting steps. Within the cross-validation, we consid-
ered predictor sets of sizes 1, 2 or 3 variables. We developed
reduced compact models with a maximum of three predictor anti-
body responses to make our models more applicable to public
health practice. We also investigated the performance of the full
model in all datasets with available biomarker variables to under-
stand the upper limit. Using this process, we developed two
independent models: (1) a model to identify PCR-confirmed
infections using biomarkers and (2) a model to estimate time
since infection among those previously infected. For the first
model, we used PCR confirmed cases and pre-pandemic controls
to train a random forest model and assessed performance using
the cross-validated area under the curve (cvAUC) [10]. Within
each iteration of cross-validation, we compared model ROC
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curves using a permutation test with the function roc.test. We
then summarised the P-values across iterations to compare
model performance [11]. For the second model, we used only
confirmed cases to train a random forest model for estimating
time-since infection and assessed performance using cross-
validated mean absolute error (MAE), the mean of the absolute
differences of the predictions from the true time since infection.

Results

We extracted and analysed data on PCR-confirmed SARS-CoV-2
infections from five separate studies, with a total of 834 subjects
(Table 1). Of the five studies, four of them used enzyme immu-
noassays, while three of them used Luminex bead array methods.
Except for one study (Peluso et al.), all assays were laboratory-
developed and not commercial assays. Among a total of 834 sub-
jects, the median time from infection to serologic sampling was 76
(IQR 51-98) days, the median age was 49 (IQR 33-60) years, and
the proportion of males was 46.4%. Among the 5 studies, the pro-
portion of patients with severe disease or those who were hospi-
talised ranged from 7% to 24%.

A single antibody biomarker sufficiently identifies the previous
infection

We first explored the classification performance of single antibody
and isotype thresholds in identifying infection using four of the
five datasets with pre-pandemic control data available. We show
that across all studies, a single RBD or spike IgG biomarker per-
forms similarly to the combination of the best two biomarkers in
identifying prior infection (Spike/RBD IgG vs. Best Two biomar-
kers, mean P-value: 0.19-0.62; the proportion of iterations with
P-value <0.05: 0 to 0.48; Table 1). The addition of a third bio-
marker did not increase discriminatory performance (Best Two
vs. Best Three biomarkers, mean P-value 0.16-0.30; the propor-
tion of iterations with P-value <0.05: 0.11-0.48) in any of the
studies examined and further addition of biomarkers resulted in
no additional performance benefit (P> 0.05 for all studies).

Two antibody biomarkers are better than one for prediction of
time-since-infection

Next, we explored the performance of single vs. multiple bio-
marker thresholds in predicting time-since-infection. In all five
datasets, combining two antibody biomarkers performed better
than the best single IgG for estimation of time-since-infection
(Table 2). We found that in the four datasets where multiple anti-
body isotypes are measured, the best two antibody biomarkers
included a combination of an IgG and an IgM (or IgA in the
one dataset where IgM was not measured, Fig. 1). Addition of
the third marker results in a marginal (within s.p.) increase in pre-
diction performance in three of the five datasets (Table 2).

Nucleocapsid antibody biomarkers are suboptimal for
classification of the previous infection, but adequate for
estimating time-since-infection

Given that all vaccines approved for use in the USA/EU at the
time of writing induce only spike or RBD antibody responses,
we examined the performance of nucleocapsid-only combinations
of antibodies. For identification of the previous infection, nucleo-
capsid IgG performed statistically significantly worse than RBD/
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Table 1. Summary of the characteristics of datasets used in this analysis, with cross-validated AUC (95% ClI) from classifying the previous infection on four of the published datasets

Dan et al. [3] Peluso et al. [6] Whitcombe et al. [7] Markmann et al. [5] Isho et al. [4]
No. of patients 101 122 112 156 343
Age, Median (IQR) 38 (29.5-46.5) 48 (19-85) 48 (31-57) 46.5 (32-60) 36 (21-44)
Sex (male, %) 45 54.9 43.7 44.0 52.1
% patients with severe disease (hospitalised) 7 24.2 13.7 17.7 n/a
Median time since infection (IQR) 62 (47.5-87) 115 (95-124) 109 (94.7-190.5) 57 (49-79) 72 (51-86)
Antibody isotypes measured IgA, 18G 1gG IgA, IgG, IgM IgA, 1gG, IgM IgA, 1gG, IgM
Immunoassay platform ELISA ELISA/Luminex Luminex ELISA/Luminex ELISA
Cross validated AUC (95% Cl)
RBD IgG n/a 97.8 (97.2-98.5) 99.7 (99.4-99.9) 98.7 (97.9-99.5) 96.9 (96.6-97.3)
Spike 1gG n/a 98.8 (98.3-99.2) 99.7 (99.5-99.9) n/a 99.1 (98.8-99.3)
Nucleocapsid 1gG n/a 97.9 (97.4-98.4) 93.9 (93.2-94.5) 98.9 (98.2-99.5) 94.4 (93.9-94.9)
Nucleocapsid IgG vs. best of spike/RBD IgG. Mean (s.0.) P-value, n/a 0.27 (0.27), 0.24 0.38 (0.28), 0.11 0.36 (0.30), 0.15 0.40 (0.28), 0.1
proportion of iterations with P-value <0.05
Best two biomarkers n/a 98.8 (98.4-99.2) 99.9 (99.9-99.9) 99.2 (98.6-99.8) 99.4 (99.2-99.5)
Spike/RBD 1gG vs. best two biomarkers. Mean (s.o.) P-value, 0.62 (0.31), 0 0.28 (0.28), 0.22 0.23 (0.29), 0.28 0.19 (0.26), 0.48
proportion of iterations with P-value <0.05
Best Three biomarkers n/a 99.0 (98.7-99.4) 99.9 (99.9-99.9) n/a 99.2 (99.1-99.4)
Best two vs. best three biomarkers. Mean (s.0.) P-value, proportion n/a 0.30 (0.31), 0.11 0.35 (0.29), 0.14 n/a 0.16 (0.25), 0.48
of iterations with P-value <0.05
Best two nucleocapsid biomarkers n/a n/a 95.0 (94.5-95.5) n/a 95.9 (95.5-96.2)
Full/saturated model n/a 99.0 (98.8-99.3) 99.9 (99.9-99.9) n/a 99.4 (99.3-99.5)

The rows with row-name starting with ‘Best’ include a screening step in which the biomarkers are ordered by importance for classification (ever-infected) using the random forest conditional permutation algorithm and only the top biomarkers from

that iteration are used when training the model.
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Table 2. Mean (standard deviation) of MAE from predicting time since infection from repeated cross-validation on five published datasets

Dan et al. [3] Peluso et al. [6] Whitcombe et al. [7] Markmann et al. [5] Isho et al. [4]
Antibody isotypes measured IgA, 18G 18G IgA, 1gG, IgM IgA, IgG, IgM IgA, 1gG, IgM
Best RBD IgG 18.7 (1.7) 29.2 (3.7) 59.8 (5.4) 214 (5.7) 17.3 (1.1)
Best Spike IgG 19.6 (1.9) 26.6 (3.6) 61.1 (6.9) n/a 17.5 (1.3)
Nucleocapsid IgG 18.8 (2.0) 23.9 (4.0) 55.9 (7.4) 21.2 (6.3) 18.3 (1.4)
Best Two biomarkers 17.1 (1.9) 22.6 (4.4) 53.1 (5.1) 20.9 (5.3) 15.7 (1.4)
Best Three biomarkers 17.1 (1.9) 22.4 (4.0) 52.5 (5.3) n/a 15.3 (1.4)
Best two Nucleocapsid biomarkers n/a 24.7 (3.9) 51.3 (7.1) n/a 17.5 (1.1)
Full/saturated model 17.8 (1.9) 22.2 (3.8) 51.5 (6.3) 20.6 (5.9) 15.1 (1.1)

The rows with row-name starting with ‘Best’ include a screening step in which the biomarkers are ordered by importance for time-since-infection using the random forest conditional
permutation algorithm and only the top biomarkers from that iteration are used when training the model (low MAE indicates better performance).

spike IgG in two of four studies examined. In the two studies
where data were available, the combination of the two top nucleo-
capsid markers (IgG plus either IgM or IgA) improved discrimin-
atory performance (Table 1). On the other hand, for predicting
time-since-infection (Fig. 1), a combination of the two top
nucleocapsid markers performed similar to, or better than, RBD
or spike IgG alone (Table 2).

Discussion

The current COVID-19 pandemic is a major public health concern
worldwide, and assessment of infection burden in populations is
crucial towards efforts to mitigate its spread and inform policy
and decision-making. Population-level serosurveillance has emerged
to be a useful method to provide accurate estimates of disease bur-
den, as when done under a representative sampling framework, is
not subject to biases related to health-seeking behaviour or testing
availability. However, there are limited studies to inform the choice
and numbers of antibody biomarkers for SARS-CoV-2 serosurveil-
lance. Here, we leverage antibody decay and differing time-varying
sensitivity of various assays to build models using serologic data
from five studies of individuals with confirmed SARS-CoV-2 infec-
tion, to examine which biomarker(s) are best for identifying prior
infection and prediction of time-since-infection. Our results show
that while Spike/RBD IgG alone are adequate for discrimination/
classification of those who have been infected, combinations of anti-
body markers may be best for estimation of time-since-infection.
An important consideration in the design of serosurveys is the
selection of the biomarker(s), with a goal of minimising cost
while capturing enough information about infection, transmission
or immunity. Population-level serosurveys are able to not only pro-
vide estimates for seroprevalence (proportion with circulating
anti-SARS-CoV-2 antibodies), they also have the potential to pro-
vide data towards estimating the time-since-infection, which could
help with accurate incidence estimation and tracking transmission
changes on a population level. Our analysis, using MAE as a per-
formance measure, suggests that a combination of antibodies are
the best predictors of time-since-infection. For the majority of stud-
ies examined, we found using that using three or more biomarkers
only performed slightly better than the use of only two biomarkers.
In addition, we show that clinical-demographic factors such as age
(and less so severity) were potentially important predictors that
should be considered in model-building. Further studies are needed
to assess the combined performance of both stages of this model by
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recreating the epidemic curve through estimation and comparing it
to a known epidemic curve.

As COVID-19 vaccines are increasingly made available world-
wide, a distinction of vaccine-induced immune responses from
that elicited by natural infection is important in the design of seroe-
pidemiologic studies. Identifying infections in vaccinated populations
will help estimate the rate of spread. Unfortunately, the most widely
used antibody markers for SARS-CoV-2 serosurveillance are the IgG
to S or RBD, which is also the target of all currently approved vac-
cines in the US/EU. Thus, future serosurveillance efforts aimed at
assessing infection attack rates may increasingly depend on the
nucleocapsid antibody. Our analysis suggests that while nucleocapsid
specific IgG alone is inferior to spike and RBD for classification of
infection, combinations of N antibodies may improve performance.
Notably, for estimation of time-since-infection, the best two N
antibodies performed similarly or better than any single S or RBD
antibody. Thus, monitoring nucleocapsid specific antibodies may
be of utility in distinguishing infection-related antibodies from
vaccine-induced antibody response.

A number of research questions and goals remain for
SARS-CoV-2 seroepidemiology. First, our conclusions regarding
the use of biomarkers for SARS-CoV-2 serosurveillance are based
on internal cross-validation of models built using datasets featuring
antibody responses for up to 200 days from the time of symptoms
onset or diagnosis. Detailed characterisation of the kinetics of
serologic responses through longitudinal cohort studies of infected
persons of varying severity will enable the development of more
tailored and precise statistical models of recent infection. Second,
in addition to commercial platforms, standardisation of serosurvey
reagents, such as through publicly available monoclonal antibody
standards, and/or reference positive sera, will enable a broader
application and validation of seroepidemiological analytical mod-
els. Third, the development of point-of-care antibody testing will
enable serosurveillance to be better performed in more austere
environments. The use of dried blood spots from finger pricks in
low resources settings could reduce cost while obviating the need
for cold-chain storage [7]. Fourth, high-throughput multiplex
platforms such as Luminex technology [12] could enable the meas-
urement of numerous SARS-CoV-2 serological markers alongside
markers against other infectious pathogens of interest.

There were a number of limitations in this analysis. The lack of
longitudinal immune responses and lack of detailed time-since-
infection data may have led to larger error predicting
time-since-infection. Our analysis was limited to studies of adults
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Fig. 1. Conditional permutation variable importance from random forest regression measured by mean decrease in accuracy. Negative importance indicates that the
variables inclusion has decreased mean accuracy, probably due to overfitting or random error. Each column represents the order of importance of biomarkers in five
datasets. In Peluso et al. dataset, S_Ortho_Ig and S_Ortho_IgG indicate total Ig and S IgG by Ortho Clinical Diagnostics VITROS kits; N_abbott indicate Abbot ARCHITECT
(IgG); S_DiaSorin is Spike 1gG by DiaSorin LIASON(IgG); Neu_Monogram is Monogram PhenoSense (neutralising antibodies); RBD_LIPS, S_LIPS, N_LIPS is IgG by
Luciferase Immunoprecipitation System (LIPS); RBD_Split_Luc, N_Split_Lum, S_Lum, N.full_Lum, N.frag_Lum indicate IgG to respective antigens by Luminex assay.

in high-income countries, and thus our results cannot be general-
ised to low- and middle-income countries, or to paediatric popu-
lations, and underscore the need for a better understanding of the
kinetics of SARS-CoV-2 antibody responses across diverse popu-
lations. Despite this, our findings contribute towards informing
the choice of antibody responses for seroepidemiological investi-
gations of SARS-CoV-2.
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