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BLASCHKE-TYPE MAPS AND HARMONIC MAJORATION
ON RIEMANN SURFACES

SHINJI YAMASHITA

An analytic map % of type BZ from a Riemann surface R into
another S , both having Green's functions, behaves well near the
"boundary" of R . ILet X stand for a family of holomorphic
functions, and let f be holomorphic on S . We shall show, for
several X's, the following:

(1) f € X(S) # foh € X(R);

(ii) N fonll = If0.
Use is made of harmonic majoration of subharmonic functions on R

and on S.

1. Introduction

A Riemann surface K 1is called hyperbolic if R admits a Green's

function (z2,w) with pole w € R . In the present paper, R and S

9r
denote hyperbolic Riemann surfaces. Let h: R >+ S be a nonconstant
analytic map of type B in the sense of Heins (3, p. 440], namely, for
each fixed w € S the superharmonic function gs(h(z),w) in R does not
majorize any strictly positive and bounded harmonic function on KR . Here,

we say that a function fi majorizes another fé on R if fi > fi on

R . Let X(R) be a family of holomorphic functions on R . A motivation

of the present paper arises from the following.

PROPOSITION X. Let h: R+ S be as above and suppose that f 1is
holomorphic on S . Then, [ € X(S) <if and only if foh € X(R) , and

in this case, the "norm" is invariant; symbolically, Ifonl = If1,
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To prove that Proposition X is valid for some X's , we need our main
theorem. If a subharmonic function % on R is majorized by an harmonic

function on R , then the least harmonic majorant ul} of u , the smallest

among all harmonic functions majorizing u , exists.

THEOREM 1. Let h: R > S be a nonconstant map of type BL , and let
u be a subharmonic function on 8 majorizing a harmonic function on S .
Then,

(1) u‘;

then ué,oh = (uoh)}} on R ;

exists 1f and only if (uoh)]’% exists; if this is the case,

(II) furthermore,

~

S u)(z).

(1.1) sup[(uOh)}} - uch) (2) = sup(u
Z€R ZES

Note that if h: R+ S 1is an arbitrary analytic map, and if u:s;

exists, then (uoh)l’% exists with (u°h)1’% < uéoh .

THEOREM 2. Proposition X is true for

X =N, N, B, BMOA, HI; and BMOA_ (0 <p < =).

Detailed explanations of "norms" for X's in Theorem 2 will be
postponed. The class N(R) consists of f such that
log+lf| = max(log|f],0) is majorized by a harmonic function on R, Heins [4,
Theorems 11.1 and 11.2, p. 440] shows that if f is meromorphic on § ,
then f 4is Lindeldfian on S if and only if foh is Lindel&fian. As a
consequence, f € N(S) if and only if foh € N(R) . We shall give
anothexr proof of this. Theorem 2 for X = N asserts much more about the

"norm".

The other X's are:

N+

the Smirnov class [10];
i : the Hardy class [7], [81;

BMOA : the family of holomorphic functions of bounded mean

oscillation [6];

the hyperbolic Hardy class [12]1, (13];

%

BMOAO: the family of holomorphic functions of hyperbolically bounded

mean oscillation [17].
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2. Proof of Theorem 1

The core of the proof is to establish (I) for the case
R=25=4a = {|z] <1}.

LEMMA 2.1. Let wu be subharmonic in A and majorize a harmonic
function there. Let h: A - A be of type BL, or, equivalently, a
nonconstant inner function (1, p. 241, [3, p. 454]. Then u& exists 1f
and only if (uoh)g exists; 1if this is the case, then

(2.1) u&o;z = (uoh)g .

Proof. For simplicity we write v~ = v& . We may assume that u = 0

and u 1is nonconstant. Actually, let w be harmonic in A with w < u .
Then
w-w)" +w=u" and ((u~w) oh) ™ + woh = (uoh)” ,
whence (2.1) holds if and only if
(u-w) “oh = ((u-w)oh)" .

First of all, if u~ exists, then (uoh)”~ exists because uoh < u’oh.
Thus, we must show that if (uoh)” exists, then u" exists and (2.1)
holds. Furthermore, it suffices to show that if (uoh)” exists, then
(2.2) u~oh(0) = (uech)~(0) .

For arbitrary w € A we set Ib(z) = (z+w)/(l+wz) . Then,
(uoh)~ = (uohoTboT_w)“ < (u°hoTb)"oT_w

< (u°h)“°Tw0T_w = (uoh)"

so that

it

(uoh)“oTw (uohoTw)“ .

Since hoTb is inner and hOTb(O) h(w) , it follows that
(ueh) ~(w) = (uo(hoTw))“(O) = u“o(hoTb)(O) = u"oh(w)

For the proof of (2.2) we may assume that kh(0) = 0. 1In fact,
H = T—h(O)oh is inner and H(0) = 0. Since

uoh = uoTh H,

©0)°
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and since uoTh(O) is subharmonic in A , and since (uoTh(o)oH)‘

it follows that

uoh(0) = uAOTh(O)OH(O) = (uOTh(o))AOH(O)
(uoTh(O)oﬂ)‘(O) = (uoh) ~(0)
set 4, = {lz] <2}, 0D<r<1, and set
ur = u& in Ar ,
r
=u on |z]=r.

If the inequality

(2.3) (upoh)(O) < (uoh) ~(0)

exists,

is true for all r , 0 < » <1, and for h(0) = 0 , then letting r + 1

we obtain, since uAO) = (uroh)(o) , that

u”(0) < (uoh)"(0) ,
which, together with the obvious relation,
(ueh) ~(0) < u"eh(0) = u"(0) ,
yields (2.2).
For the proof of (2.3) we fix r and we set

M = max u(z)
z|=r

Then M > 0 and

< € A
(2.4) ur(z) M for all =z Ar .

Now, for a.e. 7 € 3A , the limit exists,

h(z) = 1lim A(tg) , and |h(g)] =1 .
t+1-0

By Egorov's theorem, for each € > 0 , there exists an open set E Z F(g)

on 9A , and ¢ , 0 <t <1 , such that the linear Lebesgue measure

m(E) < ¢/M and

(2.5) |h(tg)| > r for all ¢ € A\ E .

let G, be the component of the open set h-l(Ar) N At , which

t
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contains O . Then, for 2 € At n BGt R

(2.6) uroh(Z) - (uoh) "(2) = uoh(z) - (uoh)"(z) <0
because |h(2)] = r . On the other hand, since |h(z)| < r for
z2 € A= BAt n aGt , (2.4) yields

(2.7) uroh(z) <M for =z€A.

Furthermore, by (2.5) we have 2/t € E for 2z € A , whence
(2.8) m(4) < tm(E) < /M .

let w Dbe the harmonic measure of A4 in At , that is, the harmonic

function in At , which is continuously equal to 1 on A4 and 0O on

aAt \ 4 . Then,

(2.9) w(0) = m(4) < e/M

by (2.8). Note that w(z) >0 for 2z € At N BGt . Now, the maximum

principle applied to the harmonic function
ur°h = (uoh)”™ - Mw

in Gt , together with (2.6) and (2.7), shows that this function is

nonpositive on the whole Gt because © = 0 . In particular, the

evaluation at 0 vyields

uroh(o) < (uoh)~(0) + €

by (2.9). Since € > 0 1is arbitrary we obtain (2.3).

LEMMA 2.2. Let 1 be a wniversal covering map from A& onto R,

and let u be subharmonic on R . Then ul exists if and only if (uem?

R A
exists. In this case uéon = (uon)£ in A and
(2.10) sup[(uon)g - Uom] (W) = sup(uﬁ—u)(z)
weA 2€R

We do not assume that # majorizes a harmonic function.

Proof. since 2z = wm(w) ranges over all R as w ranges over all

A, (2.10) is apparent if uéon = (uom)” 1is established. We use again
(Uom) "~ = (uon)£ , etc. Obviously, (uem)}” exists if u& exists; in this
case (uom)” < u&on . Suppose that (uem)” exists. Since (uom)”™ is
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automorphic with respect to the cover transformation group consisting of
MSbius transformations of A onto A , v = (uon)“on-l is well defined

~

on R . Since (uew)” 2 uom we obtain v 2 u , whence u. exists and

R

v = u& . Thus, (uew)” = uéon .

Proof of Theorem 1. 1Iet o A >R and Mg A + S be universal

covering maps, and apply Lemma 2.2 to #o# on R . Then (uohonR)‘

exists if and only if (u°h)§ exists and

(2.11) (uoh)}'%oTTR= (uchonR)" .

A single-valued branch of nélohonR in A , which we denote by
H = ﬂ;l°h°ﬂR ,
p. 472]. Then

is locally of type B , whence of type B£ by [3, Corollary,

(2.12) (uohomw

R)A = (uomyoH)" ’

S

so that, ILemma 2.1, applied to the subharmonic function uow in A , and

S
to the inner function H , asserts the existence of (uoﬂS)“ and
(2.13) (womg) “oH = (uemgoH) " = (uoh)l‘?on}?

by (2.11) and (2.12). Summing up these arguments, we know that (uoh)é

exists if and only if (uons)“ exists; (2.13) holds in this case. On the

other hand, by lLemma 2.2, again, (uons)” exists if and only if ué
exists, and in this case, u§°ﬂs = (uonS)” , whence, by (2.13),
(u0h)R°nR = uSOHSoH = uSOhonR on A .

Consequently, the equality (uOh)é u§0h on R 1is established.
To prove (1.1) in (II) we first obsexrve that

K = sup[(uoh)é-—uoh](z) = sup[(uohew,) " -u°h°nR](w)

2€R weA B
by (2.10) for ueh on R . Since uOhonR = u°nS°H , and since
(uOhonR)“ = (MOHS)"°H by (2.12) and (2.13), it follows that
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(2.14) K = sup[(uons)“ -uonS]oH(m) = sup v(2)
weA 2€H (A)

where v = (uons)“ - uonS in A . Now, by the theorem of 0. Frostman
(2, p. 1111, A\ H(A) 1is of capacity zero, whence H(A) is dense in A .
For each 2z € A , we then choose a sequence {zn} with 3, € H(A) and

zn >3 . Since vV 1is lower-semicontinuous, it follows that

K 2 1lim inf v(z ) 2 v(2)
n-r«o n

We thus have

K< sup v(z) €K,
2EA

whence

K = sup[(uom,) " - uewgl(z) ,
ZEA s S

which, together with (2.10) for uonS on A , yields

K = sup(ué-—u)(z)
2€S

3. Proof of Theorem 2

(i) X =N . This is a consequence of Theorem 1 for u = log+|f| .

The "norm" of f € N(R) is
+ "
Ilf‘llw,N(R) = (log | f])pw)

where w € R is a fixed point. Then, for f € N(S) ,

Vfed ey = "hw),ns)

(1) X = N' . The Smirnov class N’ (R) (= S(R) in [10]1) consists
of all f € N(S) such that log+|f| is majorized by a quasibounded
harmonic function in the sense of Parreau [7] on R , or, equivalently,
(log+|f[)‘ is quasibounded, that is, the limiting function of a
nondecreasing sequence of nonnegative and bounded harmonic functions on R .
Note that N'(a) = N in [7, p. 26]. Some observations must be added.
We claim that if » 2 0 is harmonic on S and if veh 1is quasibounded

on R , then v is quasibounded on S . For the proof of this, we let
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v = vb + v, be the Parreau decomposition of v , where vb 20 is

quasibounded, and v, = 0 is singular; see [7], (3], [10]. According to
[3, Theorem 20.1, p. 468], v,oh is singular on R . Since uwoh = v oh ,
and since the singular part (veh), of the decomposition of veh on R
is zero, 0 = (voh), 2 vyoh , so that v oh = 0 , whence v, =0

+
Now, Theorem 2 for X =N . let f be holomorphic on S . 1If

(log+|f|)§ is quasibounded, then [(log+|f|)oh]§ = (1og+|f|)§oh is

quasibounded on R . The converse is true by the observation in the
preceding paragraph. Thus, f € N+(S) if and only if foh € N+(R) . As

+
” n E N .
the "norm" of F € N (R) we use "F"w,N(R) as in (i).
(iii) X = P . The Hardy class H'(R) (0 < p < @) consists of f

holomorphic on R such that (|fﬂp)“ exists. The "norm" with the

reference point w € R 1is

N 1/p

Il £l p

Aywpa = LA

see [7, p. 1371, [8, p. 50]; this is actually a norm in case p=1
Theorem 1 with u = !f|p establishes the present case. The norm identity
is

Ufenrl, oy = "My .apis) -

(iv) X = Hg . The class Hﬁ(R) (0 < p < ®) consists of f

holomorphic and bounded, |f| <1 ,on R such that the subharmonic

function
a(AHP = (tann | FHP
admits an harmonic majorant on R . The "norm" with the reference point
w€R is
(3.1 Lo (AP) w1 P .

It is now easy to establish this case with the aid of Theorem 1 with

u = c(jﬁp . It is known that Hﬁ(R) is a complete metric space with
metric relating to (3.1); see []13].

(v) A subharmonic function % on KA is said to be of bounded mean

-~

oscillation on R, u € BMOS(R) in notation, if up

exists and
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Il = sup(up-u) (8) < = .
BMOS (R) 2€R R

This means that the potential p in the Riesz decomposition u = ué - P,

is bounded on R . Let u be a subharmonic function on S majorizing a
harmonic function there. Then u € BMOS(S) if and only if wuoh € BMOS(R),

and further, in this case,
"uoh"BMOS(R) = "u"BMUS(S)

This is a consequence of Theorem 1 with the emphasis on (1.1).

(vi) X = BMOA . The terminology in (v) is justified by the following
observations. According to Metzger [6] a holomorphic function f on R

is said to be of bounded mean oscillation, f € BMOA(R) , if

T e 2"-1” gp(z.0) | £1(2) |2dxdy < = .
R

1 £
BMOA(R) T 2P

In {l1] we find the relation for f holomorphic on R:
- 2
(3.2) dfPr e - 1712w = 20 l” gp(z ) | £ (@) |*dudy
R
Thus, f € BMOA(R) if and only if |f|®> € BMOS(R) ; in this case,

2 —_—
£l “BMOS (Ry i f"BMOA (R)

Theorem 2 for X = BMOA now follows from (v) above. The quantity

"fﬂBMDA(R) is called BMOA pseudo-norm of f € BMOA(R)
(vii) X = BMOA0 . The situation is the same on replacing
2 2.2 2
#7712 by I£'12/0-1£1%% ana [£1® by M = -log-[f|*) for f

holomorphic and bounded, [f| <1, on R. Thus, fE€ BMOAO(R) if

nmeMUAO(R) = "A(f)uBMDS(R) < ® . The equality follows from the analogue
of (3.2),
N _ -1 B 2 2.2
AMA W) - X(H) (w) = 27 ” gR(z,w)If ()7 - | fz)|“) dxedy ;
R
see [11]. Again (v) proves the case X = BM’OA0 .

Remark. 1et L(R) be the family of meromorphic and Lindel&fian

functions on R . It should be noted that Theorem 2 for X = N vyields
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the following result of Heins cited in the introduction. For f
meromorphic on S , we have f € L(5) ¢ foh € L(R) . For the proof we
may suppose that f is nonconstant. Let FE be the set of all the poles

of f on S . Then SE =S8\ E and Ré =R\ h_l(E) both are hyperbolic

Riemann surfaces. It then follows from {3, Theorem 16.1, p. 466] that the
restriction of % , that is, #: Rb + SE is again of type BL . On the

other hand, it follows from Parreau's theorem [7, Théoréme 20, p. 182}

(this theorem is valid for o = 0 ) that
fFEL =< fGNﬁﬁ;
feh € L(R) ¢ foh € N (Rg)

Therefore, f € L(S) ¢ foh € L(R)
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