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Gromov–Witten theory and

Donaldson–Thomas theory, II
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Abstract

We discuss the Gromov–Witten/Donaldson–Thomas correspondence for 3-folds in both
the absolute and relative cases. Descendents in Gromov–Witten theory are conjectured to
be equivalent to Chern characters of the universal sheaf in Donaldson–Thomas theory.
Relative constraints in Gromov–Witten theory are conjectured to correspond in
Donaldson–Thomas theory to cohomology classes of the Hilbert scheme of points of the
relative divisor. Independent of the conjectural framework, we prove degree 0 formulas for
the absolute and relative Donaldson–Thomas theories of toric varieties.

1. Introduction

1.1 Overview

The Gromov–Witten (GW) theory of a 3-fold X is defined via integrals over the moduli space of
stable maps. The Donaldson–Thomas (DT) theory of X is defined via integrals over the moduli
space of ideal sheaves. In [MNOP06], a GW/DT correspondence equating the two theories was
proposed, and the Calabi–Yau case was presented. We discuss here the GW/DT correspondence for
general 3-folds.

Let X be a nonsingular, projective 3-fold. Insertions in the Gromov–Witten theory of X are
determined by primary and descendent fields. Insertions in the Donaldson–Thomas theory of X
are naturally obtained from the Chern classes of universal sheaves. We conjecture a GW/DT
correspondence for 3-folds relating these two sets of insertions.

Let S ⊂ X be a nonsingular surface. The Gromov–Witten theory of X relative to S has been
defined in [EGH00, IP03, LR01, Li02]. The relative constraints are determined by partitions weighted
by cohomology classes of S. A relative Donaldson–Thomas theory has been defined by Li
(private communication). The relative constraints are determined by cohomology classes of the
Hilbert scheme of points of S. We propose a GW/DT correspondence in the relative case relating
the Gromov–Witten constraints to the Donaldson–Thomas constraints via Nakajima’s basis of the
cohomology of the Hilbert scheme of points.

In the last section of the paper, independent of the conjectural framework, we study the
Donaldson–Thomas theory in degree 0 using localization and relative geometry. We derive a formula
for the equivariant vertex measure in the degree 0 case and prove Conjecture 1′ of [MNOP06] in
the toric case. A degree 0 relative formula is also proven.
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2. The Gromov–Witten/Donaldson–Thomas correspondence for 3-folds

2.1 Gromov–Witten theory
Gromov–Witten theory is defined via integration over the moduli space of stable maps. Let X be
a nonsingular, projective 3-fold. Let Mg,r(X,β) denote the moduli space of r-pointed stable maps
from connected, genus g curves to X representing the class β ∈ H2(X,Z). Let

evi : Mg,r(X,β) → X,

Li →Mg,r(X,β)

denote the evaluation maps and cotangent line bundles associated to the marked points.
Let γ1, . . . , γm be a basis of H∗(X,Q), and let

ψi = c1(Li) ∈Mg,n(X,β).

The descendent fields, denoted by τk(γi), correspond to the classes ψk
i ev∗i (γj) on the moduli space

of maps. Let

〈τk1(γl1) · · · τkr(γlr)〉g,β =
∫

[Mg,r(X,β)]vir

r∏
i=1

ψki
i ev∗i (γli)

denote the descendent Gromov–Witten invariants. Foundational aspects of the theory are treated,
for example, in [Beh97, BF97, LT98].

Let C be a possibly disconnected curve with at worst nodal singularities. The genus of C is
defined by 1− χ(OC). Let M ′

g,r(X,β) denote the moduli space of maps with possibly disconnected
domain curves C of genus g with no collapsed connected components. The latter condition requires
each connected component of C to represent a nontrivial class in H2(X,Z). In particular, C must
represent a nonzero class β.

The descendent invariants are defined in the disconnected case by

〈τk1(γl1) · · · τkr(γlr)〉′g,β =
∫

[M
′
g,r(X,β)]vir

r∏
i=1

ψki
i ev∗i (γli).

We define the following generating function:

Z′
GW

(
X;u

∣∣∣∣
r∏

i=1

τki
(γli)

)
β

=
∑
g∈Z

〈 r∏
i=1

τki
(γli)

〉′

g,β

u2g−2. (1)

Since the domain components must map nontrivially, an elementary argument shows the genus g
in the sum (1) is bounded from below. The descendent insertions in (1) should match the (genus
independent) virtual dimension,

dim[M ′
g,r(X,β)]vir =

∫
β
c1(TX) + r.

Following the terminology of [MNOP06], we view (1) as a reduced partition function.

2.2 Donaldson–Thomas theory
Donaldson–Thomas theory is defined via integration over the moduli space of ideal sheaves. Let X
be a nonsingular, projective 3-fold. An ideal sheaf is a torsion-free sheaf of rank 1 with trivial
determinant. Each ideal sheaf I injects into its double dual,

0 → I → I∨∨.

As I∨∨ is reflexive of rank 1 with trivial determinant,

I∨∨ ∼= OX
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(see [OSS80]). Each ideal sheaf I determines a subscheme Y ⊂ X,

0 → I → OX → OY → 0.

We will consider only ideal sheaves of subschemes Y with components of dimension at most 1.
The dimension 1 components of Y (weighted by their intrinsic multiplicities) determine an element

[Y ] ∈ H∗(X,Z).

Let In(X,β) denote the moduli space of ideal sheaves I satisfying

χ(OY ) = n

and
[Y ] = β ∈ H2(X,Z).

Here, χ denotes the holomorphic Euler characteristic.
The Donaldson–Thomas invariant is defined via integration against virtual class,

[In(X,β)]vir.

Foundational aspects of the theory are treated in [MP06, Tho00].

Lemma 1. The virtual dimension of In(X,β) equals
∫
β c1(TX).

Proof. The virtual dimension, obtained from the obstruction theory, is

χ(OX ,OX) − χ(I,I),

where

χ(A,B) =
3∑

i=0

(−1)i dim Exti(A,B).

Since X is a nonsingular 3-fold, there exists a finite resolution of I by locally free sheaves,

0 → F3 → F2 → F1 → F0 → I → 0.

Let xij denote the Chern roots of Fi. Since the determinant of I is trivial,
3∑

i=0

∑
j

(−1)ixij = 0.

Since the fundamental class of Y is β,

−ch2(I) = ch2(OY ) = β.

We will calculate the virtual dimension in terms of the Chern roots via the Hirzebruch–Riemann–
Roch theorem. The first term is

χ(OX ,OX) =
∫

X
Td(X). (2)

Next,

−χ(I,I) = −
∫

X

( 3∑
i=0

∑
j

(−1)ie−xij

)
·
( 3∑

ı̂=0

∑
̂

(−1)ı̂exı̂̂

)
· Td(X).

Since the Chern root expression in the integrand is even, only the components in degrees 0 and 2
need be considered. The degree 0 component is equal to 1, the square of the rank of I. The integral
of the degree 0 component against Td(X) cancels the first term (2). The degree 2 component is

3∑
i,̂ı=0

∑
j,̂

(−1)i+ı̂

(
x2

ij

2
− xijxı̂̂ +

x2
ı̂̂

2

)
= 2ch2(I) −

3∑
i,̂ı=0

∑
j,̂

(−1)i+ı̂xijxı̂̂.
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The second term on the right-hand side equals the square of the determinant of I and hence vanishes.
We conclude that the virtual dimension equals

−
∫

X
2 ch2(I) · Td(X) =

∫
β
c1(X)

since the degree 1 term of Td(X) is c1(X)/2.

The moduli space In(X,β) is canonically isomorphic to the Hilbert scheme [MP06]. As the
Hilbert scheme is a fine moduli space, universal structures are well defined. Let π1 and π2 denote
the projections to the respective factors of In(X,β) ×X. Consider the universal ideal sheaf I,

I → In(X,β) ×X.

Since I is π1-flat and X is nonsingular, a finite resolution of I by locally free sheaves on In(X,β)×X
exists. Hence, the Chern classes of I are well defined.

For γ ∈ H l(X,Z), let chk+2(γ) denote the following operation on the homology of In(X,β):

chk+2(γ) : H∗(In(X,β),Q) → H∗−2k+2−l(In(X,β),Q),
chk+2(γ)(ξ) = π1∗(chk+2(I) · π∗2(γ) ∩ π∗1(ξ)).

Since π1 is flat, the homological pull-back π∗1 is well defined [DV76].
We define descendent fields in Donaldson–Thomas theory, denoted by τ̃k(γ), to correspond to

the operations (−1)k+1chk+2(γ). The descendent invariants are defined by

〈τ̃k1(γl1) · · · τ̃kr(γlr)〉n,β =
∫

[In(X,β)]vir

r∏
i=1

(−1)ki+1chki+2(γli),

where the latter integral is the push-forward to a point of the class

(−1)k1+1chk1+2(γl1) ◦ · · · ◦ (−1)kr+1chkr+2(γlr)([In(X,β)]vir).

A similar slant product construction can be found in the Donaldson theory of 4-manifolds.
Since the Chern character contains denominators, the descendent invariants in Donaldson–Thomas
theory are rational numbers.

We define the Donaldson–Thomas partition function with descendent insertions by

ZDT

(
X; q

∣∣∣∣
r∏

i=1

τ̃ki
(γli)

)
β

=
∑
n∈Z

〈 r∏
i=1

τ̃ki
(γli)

〉
n,β

qn. (3)

An elementary argument shows that the charge n in the sum (3) is bounded from below. As before,
the descendent insertions in (3) should match the virtual dimension.

The reduced partition function is obtained by formally removing the degree 0 contributions,

Z′
DT

(
X; q

∣∣∣∣
r∏

i=1

τ̃ki
(γli)

)
β

=
ZDT(X; q | ∏r

i=1 τ̃ki
(γli))β

ZDT(X; q)0
.

The degree 0 partition function is determined by a conjecture of [MNOP06]. For the conjectural
framework, we assume that the cohomology of X is of Hodge type (p, p). We conjecture the series
Z′

DT to be a rational function of q if no descendent of 1 ∈ H∗(X,Z) occurs.
Conjecture 1. The degree 0 Donaldson–Thomas partition function for a 3-fold X is determined by

ZDT(X; q)0 = M(−q)
∫

X
c3(TX⊗KX),

where
M(q) =

∏
n�1

1
(1 − qn)n

is the McMahon function.
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Conjecture 2. The reduced series Z′
DT(X; q | ∏r

i=1 τ̃ki
(γli))β is a rational function of q if

codim(γi) > 0 for each i.

Descendents of 1 play a special role. The series Z′
DT with τ̃k(1) insertions lie in a strictly larger

algebra of functions. The topic will be pursued in a forthcoming paper.

2.3 Primary fields

The GW/DT correspondence is easiest to state for the primary fields τ0(γ) and τ̃0(γ).

Conjecture 3. After the change of variables eiu = −q, we have

(−iu)dZ′
GW

(
X;u

∣∣∣∣
r∏

i=1

τ0(γli)
)

β

= (−q)−d/2Z′
DT

(
X; q

∣∣∣∣
r∏

i=1

τ̃0(γli)
)

β

,

where d =
∫
β c1(TX).

Conjecture 3 is consistent with the calculation of degenerate contributions in [Pan99]. Let C
be a nonsingular, genus g curve in X which rigidly intersects cycles dual to the classes γl1, . . . , γlr .
The local Gromov–Witten series is determined in [Pan99],

Z′
GW

(
X;u

∣∣∣∣
r∏

i=1

τ0(γli)
)

[C]

=
(

sin(u/2)
u/2

)2g−2+d

u2g−2.

The local Donaldson–Thomas series is then predicted by Conjecture 3,

Z′
DT

(
X; q

∣∣∣∣
r∏

i=1

τ̃0(γli)
)

[C]

= (−iu)d(−q)d/2

(
eiu/2 − e−iu/2

iu

)2g−2+d

u2g−2 = q1−g(1 + q)2g−2+d.

The normalizations and signs in Conjecture 3 are fixed by the requirement that the reduced partition
function Z′

DT has initial term q1−g corresponding to the ideal of C.

If the cohomology classes γi are integral, the Donaldson–Thomas invariants for primary fields
are integer valued. The integrality constraints for Gromov–Witten theory obtained via the GW/DT
correspondence for primary fields were conjectured previously in [Pan99, Pan02].

2.4 Descendent fields

For fixed curve class β, consider the full set of (normalized) reduced partition functions,

Z′
GW,β =

{
(−iu)d−

∑
kiZ′

GW

(
X;u

∣∣∣∣
∏

τki
(γli)

)
β

}
,

where d =
∫
β c1(TX) and codim(γli) > 0. Here, Z′

GW,β consists of the finite set of descendent series
with insertions of the correct dimension. The set Z′

GW,β is partially ordered by
∑
ki, the descendent

partial ordering. Similarly, let

Z′
DT,β =

{
(−q)−d/2Z′

DT

(
X; q

∣∣∣∣
∏

τ̃ki
(γli)

)
β

}
.

Conjecture 4. After the change of variables eiu = −q:
(i) the sets of functions Z′

GW,β and Z′
DT,β have the same linear spans;

(ii) there exists a canonical matrix expressing the functions Z′
GW,β as linear combinations of the

functions Z′
DT,β such that
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(a) the matrix coefficients depend only upon the classical cohomology of X and universal series,
(b) the matrix is unipotent and upper triangular with respect to the descendent partial order-

ing.

By Conjecture 4, each element of Z′
GW,β is a canonical linear combination,

(−iu)d−
∑

kiZ′
GW

(∏
τki

(γli)
)
β

= (−q)−d/2Z′
DT

(∏
τ̃ki

(γli)
)
β

+ · · · , (4)

where the omitted terms are strictly lower in the partial ordering.

We do not yet have a complete formula for the canonical matrix of Conjecture 4. However, for
the descendents of the point class [P ] ∈ H6(X,Z), we can formulate a precise conjecture.

Conjecture 4
′
. After the change of variables eiu = −q, we have

(−iu)d−
∑

kjZ′
GW

( ∏
τ0(γli)

∏
τkj

(P )
)
β

= (−q)−d/2Z′
DT

( ∏
τ̃0(γli)

∏
τ̃kj

(P )
)
β
,

if codim(γli) > 0 for each i.

An example of Conjecture 4′ is given in § 2.6 below.

2.5 Reactions

We believe the upper triangular matrix of Conjecture 4 is determined by two types of reactions:

τa(γl) → Aj
a(γl)τa−j(cj(TX) ∪ γl),

τa(γl)τa′(γl′) → Aa,a′(γl, γl′)τa+a′−1(γl ∪ γ′l).
The linear combination (4) should be generated by applying the two reactions to the Gromov–Witten
insertions ∏

τki
(γli)

to exhaustion and then interpreting the output in Donaldson–Thomas theory. For example,

(−iu)d−kZ′
GW(τk(γl))β = (−q)−d/2

k∑
j=0

( j∏
i=1

Ak−i+1(c1(TX)i−1 ∪ γl)
)

Z′
DT(τ̃k−j(c1(TX)j ∪ γl)),

if c2(TX) = c3(TX) = 0.

The reaction matrix will be upper triangular with respect to the reaction partial ordering,
a refinement of the descendent partial ordering. We further speculate that the reaction amplitudes,

Aj
a(γl), Aa,a′(γl, γl′) ∈ Q,

are given by universal formulas depending only upon the classical cohomology of X (including
possibly the Hodge decomposition). Conjectures 3, 4, and 4′ are all consequences of the reaction
view of the GW/DT correspondence for descendent fields.

2.6 An example

Let X be P3 and let β be the class [L] of a line. A Gromov–Witten calculation using localization
and known Hodge integral evaluations yields the following result

Z′
GW(X;u | τ0(L)τ1(P ))[L] =

(
sin(u/2)
u/2

)
cos(u/2)u−2
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(see [FP00, GP99]). By Conjecture 4′,

Z′
DT(X; q | τ̃0(L)τ̃1(P ))[L] = (−iu)3(−q)2

(
sin(u/2)
u/2

)
cos(u/2)u−2

= (−iu)3(−q)2 e
iu/2 − e−iu/2

iu

eiu/2 + e−iu/2

2
u−2

=
1
2
q(1 − q2).

The resulting Donaldson–Thomas series can be checked order by order in q via localization.

3. The Gromov–Witten/Donaldson–Thomas correspondence for relative theories

3.1 Gromov–Witten theory
Let X be a nonsingular, projective 3-fold and let S ⊂ X be a nonsingular divisor. The Gromov–
Witten theory of X relative to S has been defined in [EGH00, IP03, LR01, Li02]. Let β ∈ H2(X,Z)
be a curve class satisfying ∫

β
[S] � 0.

Let �µ be an ordered partition, ∑
µj =

∫
β
[S],

with positive parts. The moduli space M
′
g,n(X/S, β, �µ) parameterizes stable relative maps with

possibly disconnected domains and relative multiplicities determined by �µ. As usual, the connected
components of the domain are required to map nontrivially. The target of a relative map is allowed
to be a k-step degeneration, X[k], of X along S (see [Li02]).

The relative conditions in the theory correspond to partitions weighted by the cohomology of S.
Let δ1, . . . , δmS

be a basis of H∗(S,Q). A cohomology weighted partition η consists of an unordered
set of pairs

{(η1, δ�1), . . . , (ηs, δ�s)},
where

∑
j ηj is an unordered partition of

∫
β[S]. The automorphism group, Aut(η), consists of

permutation symmetries of η.
The standard order on the parts of η is

(ηi, δ�i
) > (ηi′ , δ�i′ )

if ηi > ηi′ or if ηi = ηi′ and �i > �i′ . Let
→
η denote the partition (η1, . . . , ηs) obtained from the

standard order.
Relative Gromov–Witten invariants are defined by integration against the virtual class of the

moduli of maps. Let γ1, . . . , γmX
be a basis of H∗(X,Q), and let

〈τk1(γl1) · · · τkr(γlr) | η〉′g,β =
1

|Aut(η)|
∫

[M
′
g,r(X/S,β,

→
η )]vir

r∏
i=1

ψki
i ev∗i (γli) ∪

s∏
j=1

ev∗j (δ�j
).

Here, the second evaluations,

evj : M ′
g,r(X/S, β,

→
η ) → S

are determined by the relative points.
The Gromov–Witten invariant is defined for unordered weighted partitions η. However, to fix

the sign, the integrand on the right-hand side requires an ordering. The over counting is corrected
by the automorphism prefactor.

1292

https://doi.org/10.1112/S0010437X06002314 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002314


Gromov–Witten and Donaldson–Thomas theory, II

As before, we will require the associated Gromov–Witten partition function,

Z′
GW

(
X/S;u

∣∣∣∣
r∏

i=1

τki
(γli)

)
β,η

=
∑
g∈Z

〈 r∏
i=1

τki
(γli)

∣∣∣∣ η
〉′

g,β

u2g−2. (5)

The definitions here parallel those of § 2.1.

3.2 Donaldson–Thomas theory
3.2.1 Stable relative ideal sheaves. Relative Donaldson–Thomas theory is defined via integra-

tion over the moduli space of relative ideal sheaves. We outline Li’s definition of the relative
theory here (private communication). A full foundational treatment of the moduli space, obstruc-
tion theory, and virtual class has not yet been written.

Let X be a nonsingular, projective 3-fold and let S ⊂ X be a nonsingular divisor. Let I be an
ideal sheaf on X with associated subscheme Y (assumed to components of dimension at most 1).
The ideal sheaf I is relative to S if the natural map

I ⊗OX
OS → OX ⊗OX

OS

is injective. Relativity may be viewed as a transversality condition of Y with respect to S.
In particular, the scheme-theoretic intersection, Y ∩ S, defines an element of the Hilbert scheme,

Hilb
(
S,

∫
β
[S]

)
,

of points of S.
Relativity is an open condition on ideal sheaves on X. A proper moduli space, In(X/S, β), of

relative ideal sheaves is constructed by considering stable ideal sheaves relative on the degenerations
X[k] of X.

Let S0, . . . , Sk denote the canonical images of S in the degeneration X[k]. Here, S0, . . . , Sk−1

are the singular divisors, and Sk is the transform of the original relative divisor. An ideal sheaf on
X[k] is predeformable if, for every singular divisor Sl ⊂ X[k], the induced map

I ⊗OX[k]
OSl

→ OX[k] ⊗OX[k]
OSl

is injective.
Let Y0, . . . , Yk be the restrictions of Y to the components of X[k] with Yl and Yl+1 incident

to Sl. The predeformability condition at the singular divisor Sl can be restated in the following
form: Yl and Yl+1 are transverse to Sl with equal scheme-theoretic intersections,

Yl ∩ Sl = Yl+1 ∩ Sl ⊂ Sl. (6)

Ideal sheaves I1 and I2 on the degenerations X[k1] and X[k2] are isomorphic if k1 = k2 and
there exists an isomorphism of varieties

σ : X[k1] → X[k2]

over X such that
σ∗{I2 → OX[k2]} ∼= {I1 → OX[k1]},

where the isomorphism σ∗OX[k2]
∼= OX[k1] is the identity. The automorphism group, Aut(I), is the

set of equivalences of I to itself. A predeformable ideal sheaf I on X[k] relative to Sk is stable if
Aut(I) is finite.

The moduli space, In(X/S, β), parameterizes stable, predeformable, ideal sheaves I on degen-
erations X[k] relative Sk satisfying

χ(OY ) = n
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and

π∗[Y ] = β ∈ H2(X,Z),

where π : X[k] → X is the canonical stabilization map. The moduli space In(X/S, β) is a complete,
Deligne–Mumford stack equipped with a canonical perfect obstruction theory.

Relative Donaldson–Thomas theory is defined via integration against the associated virtual class.
The primary and descendent fields are defined via the Chern characters of the universal ideal sheaf I

on the universal product stack following § 2.2. The predeformability condition is expected to imply
the existence of finite resolutions of J by locally free sheaves. The relative conditions in the theory
are defined via the canonical intersection map,

ε : In(X/S, β) → Hilb
(
S,

∫
β
[S]

)
,

to the Hilbert scheme of points.

3.2.2 The Nakajima basis. The cohomology of the Hilbert scheme of points of S has a canonical
basis indexed by cohomology weighted partitions. The basis is obtained from the representation of
the Heisenberg algebra on the cohomologies of the Hilbert schemes of points [Gro96, Nak99].

Let η be a cohomology weighted partition with respect to the basis δ1, . . . , δmS
of H∗(S,Q).

Following the notation of [Nak99], let

Cη =
1

z(η)
Pδ1 [η1] · · ·Pδs [ηs] · 1 ∈ H∗(Hilb(S, |η|),Q), (7)

where

z(η) =
∏

i

ηi|Aut(η)|

and |η| =
∑

j ηj . In the presence of odd cohomology, the sign of Cη is fixed by placing the operator
product (7) in standard order.

The Nakajima basis of the cohomology of Hilb(S, k) is the set

{Cη}|η|=k

(see [Nak99]).
We assume that the cohomology basis of S is self dual with respect to the Poincaré pairing.

Then, to each weighted partition η, a dual partition η∨ is defined by taking the Poincaré duals of
the cohomology weights. The Nakajima basis is orthogonal with respect to the Poincaré pairing
on the cohomology of the Hilbert scheme,∫

Hilb(S,k)
Cη ∪ Cν =

(−1)k−�(η)

z(η)
δν,η∨ (8)

(see [ES98, Nak99]).

3.2.3 Relative Donaldson–Thomas invariants. Relative Donaldson–Thomas invariants are
defined via integration over the moduli spaces of stable relative sheaves. The virtual dimension
of the relative moduli space In(X/S, β) can be calculated from the deformation theory.

Lemma 2. The virtual dimension of In(X/S, β) equals
∫
β c1(X).

Proof. The virtual dimension of In(X/S, β) at a stable relative sheaf with associated subscheme
Y ⊂ X[k] is easily calculated. Let Yl ⊂ Xl be the restriction of Y to the lth step Xl ⊂ X[k].
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Let ωX[k] denote the dualizing sheaf of X[k]. Then,

vir dim =
k∑

l=0

∫
[Yl]

c1(Xl) −
k−1∑
l=0

∫
[Yl]

2[Sl] − k + k

=
∫

[Y ]
c1(ωX[k])

=
∫

β
c1(X).

The first term on the right in the first line is the sum of the virtual dimensions of the relative
ideal sheaves on the individual steps. The second term is imposed by the matching condition (6).
The automorphisms of the last k steps contribute −1 each. Finally, the deformations of X[k]
contribute k.

The descendent invariants in relative Donaldson–Thomas theory are defined by

〈τ̃k1(γl1) · · · τ̃kr(γlr) | η〉n,β =
∫

[In(X/S,β)]vir

( r∏
i=1

(−1)ki+1chki+2(γli)
)
∩ ε∗(Cη).

We define the associated partition function by

ZDT

(
X/S; q

∣∣∣∣
r∏

i=1

τ̃ki
(γli)

)
β,η

=
∑
n∈Z

〈 r∏
i=1

τ̃ki
(γli)

∣∣∣∣ η
〉

n,β

qn. (9)

As before the charge n in the sum (3) is bounded from below.
The reduced partition function is obtained by formally removing the degree 0 contributions,

Z′
DT

(
X/S; q

∣∣∣∣
r∏

i=1

τ̃ki
(γli)

)
β,η

=
ZDT(X/S; q | ∏r

i=1 τ̃ki
(γli))β,η

ZDT(X/S; q)0
.

We conjecture a complete formula for degree 0 relative theory. Let ΩX [S] denote the locally free
sheaf of differential forms of X with logarithmic poles along S. Let

TX [−S] = ΩX [S]∨

denote the dual sheaf of tangent fields with logarithmic zeros. Let

KX [S] = Λ3ΩX [S]

denote the logarithmic canonical class.

Conjecture 1R. The degree 0 relative Donaldson–Thomas partition function for a 3-fold X is
determined by

ZDT(X/S; q)0 = M(−q)
∫

X c3(TX [−S]⊗KX [S]).

If S is empty, Conjecture 1R specializes to Conjecture 1′ of [MNOP06]. A proof of Conjecture 1R
in the toric case is presented in § 4. As before, we conjecture that the reduced series are rational
functions of q.

Conjecture 2R. The reduced series Z′
DT(X/S; q | ∏r

i=1 τ̃ki
(γli))β,η is a rational function of q.

3.3 Primary fields
We restrict our discussion of the relative GW/DT correspondence to the primary fields. A treatment
of the descendent correspondence at the level of § 2.4 is left to the reader. In particular, we do not
know the precise formulas for the descendent correspondence.
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Conjecture 3R. After the change of variables eiu = −q, we have

(−iu)d+�(η)−|η|Z′
GW

(
X/S;u

∣∣∣∣
r∏

i=1

τ0(γli)
)

β,η

= (−q)−d/2Z′
DT

(
X/S; q

∣∣∣∣
r∏

i=1

τ̃0(γli)
)

β,η

,

where d =
∫
β c1(TX) and �(η) denotes the length of η.

We present the simplest example in which all the features of the correspondence are visible.
Let D be a nonsingular surface, and let

X = P1 ×D.

Let 0,∞ ∈ P1 be two points in the base, and let D0 and D∞ be the associated fibers. Let

[P1] ∈ H2(X,Z)

denote the class of the horizontal P1, and let β = m[P1]. We will consider the theories of X relative
to the divisors D0 and D∞ in the curve class β.

Since there are two divisors, the boundary conditions of the relative theories are specified by
two partitions η and ν weighted by the cohomology of D. The relative Gromov–Witten theory is
particularly simple to compute. A direct calculation yields the answer

Z′
GW(X/S;u)β,η,ν =

1
z(η)

u−2�(η)δν,η∨ .

Our correspondence predicts the associated Donaldson–Thomas series,

Z′
DT(X/S; q)β,η,ν = (−q)d/2(−iu)d−2m+�(η)+�(ν) 1

z(η)
u−2�(η)δν,η∨

=
(−1)m−�(η)

z(η)
qmδν,η∨ ,

using the relation d = 2m in the last equality.

The moduli space Im(X/D0 ∪ D∞, β) is isomorphic to Hilb(D,m). The Donaldson–Thomas
invariant is therefore a classical intersection product,

〈η||ν〉m,β =
∫

Hilb(D,m)
Cη ∪ Cν .

The qm term of the predicted Donaldson–Thomas series is thus correct by (8). The division of the
degree 0 series does not affect the first term.

3.4 The degeneration formula

The relative theories satisfy degeneration formulas. Let

λ : X → C

be a nonsingular 4-fold fibered over a nonsingular, irreducible curve. Let X be a nonsingular fiber
of λ, and let

X1 ∪S X2

be a reducible special fiber consisting of two nonsingular 3-folds intersecting transversely along
a nonsingular surface S. The degeneration formulas express the absolute invariants of X via the
relative invariants of X1/S and X2/S. We will show that the degeneration formulas of the relative
theories are compatible with the GW/DT correspondence for primary fields.
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The degeneration formula for Gromov–Witten theory is naturally written in terms of the absolute
and relative partition functions,

Z′
GW

(
X

∣∣∣∣
r∏

i=1

τ0(γli)
)

β

=
∑

Z′
GW

(
l
X1

S

∣∣∣∣
∏
i∈P1

τ0(γli)
)

β1,η

z(η)u2�(η)Z′
GW

(
X2

S

∣∣∣∣
∏
i∈P2

τ0(γli)
)

β2,η∨
,

where the sum is over curve splittings β1 + β2 = β, marking partitions

P1 ∪ P2 = {1, . . . , r},
and cohomology weighted partitions η. The central factor on the right accounts for the multiplicities
and the shift in the genus variable u. A proof can be found in [EGH00, IP03, LR01, Li02].

The degeneration formula for Donaldson–Thomas theory takes a very similar form,

Z′
DT

(
X

∣∣∣∣
r∏

i=1

τ̃0(γli)
)

β

=
∑

Z′
DT

(
X1

S

∣∣∣∣
∏
i∈P1

τ̃0(γli)
)

β1,η

(−1)|η|−�(η)z(η)
q|η|

Z′
DT

(
X2

S

∣∣∣∣
∏
i∈P2

τ̃0(γli)
)

β2,η∨
,

where the sum is as before. The central factor on the right accounts for the diagonal splitting,

[�] =
∑
|η|=k

(−1)k−�(η)z(η)Cη ⊗ Cη∨ ∈ H∗(Hilb(S, k) × Hilb(S, k),Q),

and the shift in the charge variable q. The proof should follow [Li02] but has yet to be written.
The compatibility between the degeneration formulas and the GW/DT correspondence is

straightforward. Let d =
∫
β c1(X) as before, and let

di =
∫

βi

c1(Xi).

We have a partition of the total degree d,

d = d1 + d2 − 2
∫

β1

[S]

= (d1 − |η|) + (d2 − |η∨|).
Using the degree partition, the degeneration formulas for the relative theories are equivalent via the
GW/DT correspondence.

4. The equivariant vertex measure

4.1 Summary

Let T be a 3-dimensional complex torus with coordinates ti. Let T act on A3 with coordinates xi

by

(t1, t2, t3) · xi = tixi. (10)

In these coordinates, the tangent representation at the origin 0 ∈ A3 has character t−1
1 + t−1

2 + t−1
3 .

Let π be a 3-dimensional partition with three outgoing 2-dimensional partitions λ1, λ2, and λ3.
The equivariant vertex Vπ arises in the localization formula for the Donaldson–Thomas theory of
toric 3-folds [MNOP06].

The equivariant vertex determines a natural 3-parameter family of measures w on 3-dimensional
partitions. The measure of π is defined by

w(π) =
∏

k∈Z3

(s, k)−vk ,
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where s = (s1, s2, s3) are parameters, ( ·, · ) denotes the standard inner product, and vk is the
coefficient of tk in Vπ.

Consider the generating series of the equivariant vertex measures of 3-dimensional partitions π
with fixed outgoing 2-dimensional partitions,

W(λ1, λ2, λ3) =
∑

π

w(π)q|π|.

Here |π| is defined as the (signed) number of boxes obtained by formally removing the infinite
outgoing cylinders [MNOP06].

Theorem 1. For finite 3-dimensional partitions, we have

W(∅, ∅, ∅) = M(−q)−(s1+s2)(s1+s3)(s2+s3)/s1s2s3 .

Our proof is independent of the conjectural GW/DT correspondence. However, relative
Donaldson–Thomas theory plays an essential role.

4.2 Equivariant Donaldson–Thomas theory
Let the 1-dimensional torus T1 act on P1 with tangent weights −s1 and s1 at the fixed points 0 and
∞. Let the 2-dimensional torus T2 act on C2 with weights −s2 and −s3. The torus T = T1 × T2

acts on
X = P1 × C2

preserving the divisor S over ∞. We will study the equivariant Donaldson–Thomas theory of X
relative to S.

Since X is not projective, the nonequivariant theory is not well defined. However, the T-equi-
variant theory can be defined via the residue since the T-fixed locus of In(X/S, 0) is projective.
Let ZT

DT(X/S; q)0 denote the degree 0 partition function for the equivariant relative theory.
A rational function f ∈ Q(s1, s2, s3) has only monomial poles in the variables s2 and s3 if

f(s1, s2, s3) =
p(s1, s2, s3)

sk2
2 s

k3
3

for p ∈ Q[s1, s2, s3] and k2, k3 ∈ Z.

Lemma 3. The q coefficients of ZT
DT(X/S; q)0 have only monomial poles in the variables s2 and s3.

Proof. The Hilbert–Chow morphism and the collapsing maps

X[k] → X

together yield a T-equivariant, proper morphism,

ι1 : In(X/S, 0) → Symn(X).

The projection X → C2 yields a T-equivariant, proper morphism,

ι2 : Symn(X) → Symn(C2).

Finally, a T-equivariant, proper morphism,

ι3 : Symn(C2) →
n⊕
1

C2,

is obtained via the higher moments,

ι3({(xi, yi)}) =
(∑

i

xi,
∑

i

yi

)
⊕

(∑
i

x2
i ,

∑
i

y2
i

)
⊕ · · · ⊕

(∑
i

xn
i ,

∑
i

yn
i

)
.

Let j = ι3 ◦ ι2 ◦ ι1.
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The virtual class [In(X/S, 0)]vir is an element of the T-equivariant Chow ring of In(X/S, 0).
Since j is T-equivariant and proper, we have∫

[In(X/S,0)]vir

1 =
∫
⊕n

1C
2

j∗[In(X/S, 0)]vir,

where
∫

denotes T-equivariant integration. Since the space
⊕n

1 C2 has a unique T-fixed point with
tangent weights

−s2,−s3,−2s2,−2s3, . . . ,−ns2,−ns3,
we conclude that the integral ∫

⊕n
1C

2

j∗[In(X/S, 0)]vir

has only monomial poles in the variables s2 and s3.

4.3 Localization
The components of the T-fixed loci of In(X/S, 0) lie over either 0 or ∞. The fixed points
over 0 correspond to finite 3-dimensional partitions with localization contributions to ZT

DT(X/S; q)0
determined by W(∅, ∅, ∅); see [MNOP06].

A Donaldson–Thomas theory of rubber naturally arises on the fixed loci of In(X/S, 0) over ∞.
Let

R = P1 × C2,

and let S0 and S∞ denote the divisors over 0 and ∞ respectively. Let T2 act on C2 with weights
−s2 and −s3. We will consider the T2-equivariant Donaldson–Thomas rubber theory of R relative
to S0 and S∞. For the rubber theory, sheaves differing by the T1-action on P1 are identified.
We denote the rubber theory by a superscripted tilde.

The rubber moduli space In(R/S0 ∪ S∞, 0)̃ is obtained by an algebraic quotient construction.
Let

U ⊂ In(R/S0 ∪ S∞, 0)
be the open set with finite T1 stabilizers and no degeneration over ∞. Then,

In(R/S0 ∪ S∞, 0)̃ = U/T1.

The rubber moduli space In(R/S0 ∪ S∞, 0)̃ carries cotangent lines at the dynamical points 0
and ∞ of P1. Let ψ0 denote the class of the cotangent line at 0. Let

W∞ = 1 +
∑
n�1

qn

∫
[In(R/S0∪S∞,0)̃ ]vir

1
s1 − ψ0

,

where
∫

here denotes T2-equivariant integration. The leading term 1 may be viewed as a degenerate
n = 0 contribution. By the virtual localization formula applied to the relative Donaldson–Thomas
theory ofX/S, the series W∞ generates the localization contributions to ZT

DT(X/S; q)0 of the T-fixed
points over ∞.

The product of the localization contributions over 0 and ∞ yields the partition function,

ZT
DT(X/S; q)0 = W(∅, ∅, ∅) · W∞. (11)

Consider the T2-equivariant rubber theory without any cotangent line insertions,

F∞ =
∑
n�0

qn

∫
[In(R/S0∪S∞,0)̃ ]vir

1.
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By definition,

W(∅, ∅, ∅),W∞ ∈ Q(s1, s2, s3)[[q]]

and

F∞ ∈ Q(s2, s3)[[q]].

Lemma 4. We have log W∞ =
1
s1

F∞.

Proof. We first expand W∞ by powers of the cotangent line,

W∞ = 1 +
∑
l�0

1
sl+1
1

F∞,l,

where

F∞,l =
∑
n�1

qn

∫
[In(R/S0∪S∞,0)̃ ]vir

ψl
0.

Next, we apply a version of the topological recursion relation to inductively calculate F∞,l. Let

π : Yn → In(R/S0 ∪ S∞, 0)̃
be the universal subscheme over the moduli space. The morphism π is finite, flat, and compatible
with the T2-action. Therefore,

q
d

dq
F∞,l =

∑
n>0

qn

∫
[Yn]vir

ψl
0,

where the virtual class of Y is defined as the pull-back of the virtual class of the moduli space by π.
The canonical map

f : Yn → R[k]

projects further to P1[k], the associated degeneration of the base P1. By the definition of the relative
moduli space, the image in P1[k] is always disjoint from the relative points 0 and ∞ and the nodes.
Hence, the family of degenerating bases over Yn has three disjoint nonsingular sections.

The application of the topological recursion relation determined by the three sections to ψ0

yields the following equation:

q
d

dq
F∞,l = F∞,l−1 · q d

dq
F∞,0.

The solution,

F∞,l =
Fl+1
∞,0

(l + 1)!
,

is easily found. We conclude that

W∞ = exp
(

1
s1

F∞
)
.

4.4 Proof of Theorem 1
The logarithm of Equation (11) yields the relation

log W(∅, ∅, ∅) = log ZT
DT(X/S; q)0 − log W∞.

By Lemmas 3 and 4, the q coefficients of log W(∅, ∅, ∅) are of the form

1
s1

p1(s1, s2, s3)
p2(s2, s3)

,

1300

https://doi.org/10.1112/S0010437X06002314 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002314


Gromov–Witten and Donaldson–Thomas theory, II

where the pi are polynomials. Since the equivariant vertex measure is a degree 0 rational function
[MNOP06],

deg(p1) = 1 + deg(p2).
Since the series W(∅, ∅, ∅) is symmetric in the variables s1, s2, and s3, we conclude that

log W(∅, ∅, ∅) =
1

s1s2s3
F0(q, s1, s2, s3),

where F0 ∈ Q[s1, s2, s3][[q]]. The coefficients of F0 must be cubic polynomials.
By Lemma 5 below, the qn coefficient of W(∅, ∅, ∅) is divisible by the cubic factor (s1 + s2)

(s1 + s3)(s2 + s3) for all n > 0. Hence,

log W(∅, ∅, ∅) =
(s1 + s2)(s1 + s3)(s2 + s3)

s1s2s3
F0(q). (12)

The equivariant vertex measure takes a simple form after Calabi–Yau specialization,

W(∅, ∅, ∅)|s1+s2+s3=0 = M(−q). (13)

Viewing M as the generating function of 3-dimensional partitions, Equation (13) is a direct conse-
quence of Theorem 2 of [MNOP06].

Finally, by (12) and (13), we conclude that

F0 = −logM(−q).
The derivation is completed by exponentiating (12).

Lemma 5. The qn coefficient of W(∅, ∅, ∅) is divisible by the cubic factor (s1 + s2)(s1 + s3)(s2 + s3)
for all n > 0.

Proof. We will show that the factor s1+s2 occurs with positive multiplicity in the equivariant vertex
measure w(π) for any finite plane partition π. By symmetry, the cyclic permutations of s1 + s2 also
occur in w(π) with positive multiplicity.

Following the notation of [MNOP06], let Qπ(t1, t2, t3) be the characteristic polynomial of the
partition π. Then, the character of the virtual tangent space at π is given by

Vπ(t1, t2, t3) = Qπ − Qπ

t1t2t3
+QπQπ

(1 − t1)(1 − t2)(1 − t3)
t1t2t3

,

where Qπ(t1, t2, t3) = Qπ(t−1
1 , t−1

2 , t−1
3 ). The vertex measure is obtained from Vπ via the prescription∑

cijkt
i
1t

j
2t

k
3 →

∏
(is1 + js2 + ks3)−cijk .

Hence, the monomials of the form ti1t
i
2t

0
3 in Vπ are those which contribute a factor of s1 +s2 to w(π).

The total multiplicity of s1 + s2 is the negative of the constant term in the Laurent polynomial
Vπ(x, x−1, t3).

Let ρ be a 2-dimensional partition. The content of the box (r, s) in ρ is r − s. The slices of π
perpendicular to the z direction determine 2-dimensional partitions

π0, π1, π2, . . . .

Let ai,j be the number of boxes in πj with content i. For convenience, we set ai,j = 0 for j < 0.
By definition, Qπ(x, x−1, t3) =

∑
i,j ai,jx

itj3.

The constant term of Vπ(x, x−1, t3) may be expressed in terms of the contents. Using

Vπ(x, x−1, t3) = Qπ(x, x−1, t3) − Qπ(x, x−1, t3)
t3

+QπQπ

(
2 − x− 1

x

)(
1
t3

− 1
)
,
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we find that the constant term equals

a0,0 +
∑
i,j∈Z

(2ai,j+1ai,j − ai,j+1ai+1,j − ai+1,j+1ai,j) − (2ai,jai,j − ai,jai+1,j − ai+1,jai,j).

We rewrite the constant term in a factored form,

a0,0 +
∑
i,j∈Z

((ai,j+1 − ai+1,j+1)(ai,j − ai+1,j) − (ai,j − ai+1,j)2),

which equals

a0,0 − 1
2

∑
i,j∈Z

((ai,j − ai+1,j) − (ai,j+1 − ai+1,j+1))2. (14)

Since (ai,0 − ai+1,0) = 0 or 1, we see that

a0,0 =
∑
i�0

(ai,0 − ai+1,0) =
∑
i�0

(ai,0 − ai+1,0)2,

with a similar equality for i < 0. Therefore, a0,0 precisely cancels the j = −1 term in (14), yielding
the expression

−1
2

∑
i∈Z,j�0

((ai,j − ai+1,j) − (ai,j+1 − ai+1,j+1))2 (15)

for the constant term of Vπ(x, x−1, t3).
We conclude that (15) is negative since ai,j = 0 for j sufficiently large. Hence, the multiplicity

of s1 + s2 in w(π) is strictly positive.

Corollary 1. The degree 0 localization contributions over ∞ are

W∞ = M(−q)(s2+s3)/s1 .

Proof. By Lemmas 3 and 4, the corollary is obtained by extracting the pole in s1 of log W(∅, ∅, ∅).

4.5 Degree 0 results for toric 3-folds
Let X be a nonsingular, projective, toric 3-fold equipped with a T-action, and let S ⊂ X be a
nonsingular toric divisor.

Theorem 2. The function ZDT(X; q)0 = M(−q)
∫

X c3(TX⊗KX).

Proof. Let {Xα} denote the set of T-fixed points of X. By localization,

ZDT(X; q)0 =
∏
Xα

W(∅, ∅, ∅)|s1=−sα
1 ,s2=−sα

2 ,s3=−sα
3
,

where sα
1 , s

α
2 , s

α
3 are the tangent weights at Xα. By Theorem 1,

logZDT(X; q)0 =
(∑

Xα

(−sα
1 − sα

2 )(−sα
1 − sα

3 )(−sα
2 − sα

3 )
sα
1 s

α
2 s

α
3

)
· logM(−q).

The prefactor on the right is equal to
∫
X c3(TX ⊗KX) by a direct application of the Bott residue

formula.

Theorem 3. The function ZDT(X/S; q)0 = M(−q)
∫

X c3(TX [−S]⊗KX [S]).
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Proof. Let {Sγ} denote the set of T-fixed points of S. Let sγ
1 be the normal weight to S at Sγ , and

let sγ
2 , s

γ
3 be the tangent weights to S at Sγ . By localization,

ZDT(X/S; q)0 =
∏

Xα /∈S

W(∅, ∅, ∅)|s1=−sα
1 ,s2=−sα

2 ,s3=−sα
3

×
∏
Sγ

W∞|s1=sγ
1 ,s2=−sγ

2 ,s3=−sγ
3
.

By Theorem 1 and Corollary 1, we have

logZDT(X/S; q)0
logM(−q) =

∑
Xα /∈S

(−sα
1 − sα

2 )(−sα
1 − sα

3 )(−sα
2 − sα

3 )
sα
1 s

α
2 s

α
3

+
∑
Sγ

−sγ
2 − sγ

3

sγ
1

.

The weights of TX [−S] ⊗KX [S] at Sγ are

−sγ
2 − sγ

3 ,−sγ
2 ,−sγ

3 .

Hence, the right-hand side is equal to
∫
X c3(TX [−S] ⊗KX [S]) by the Bott residue formula.

4.6 Evaluations in higher degrees
While the equivariant vertex measure has a simple formula in degree 1,

W(1, ∅, ∅) = (1 + q)(s2+s3)/s1M(−q)−(s1+s2)(s1+s3)(s2+s3)/s1s2s3,

the higher degree cases are more subtle. We will study the evaluations in degrees 1 and higher in a
future paper.
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