
JFP 16 (3): 293–325, 2006. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005794 First published online 16 November 2005 Printed in the United Kingdom

293

Gencel: a program generator for correct
spreadsheets∗

MARTIN ERWIG, ROBIN ABRAHAM, STEVE KOLLMANSBERGER

School of EECS, Oregon State University, OR, USA

(e-mail: {erwig,abraharo,kollmast}@eecs.oregonstate.edu)

IRENE COOPERSTEIN†
Department of CS, University of Houston, Houston, TX, USA

(e-mail: Irene.Cooperstein@mail.uh.edu)

Abstract

A huge discrepancy between theory and practice exists in one popular application area

of functional programming – spreadsheets. Although spreadsheets are the most frequently

used (functional) programs, they fall short of the quality level that is expected of functional

programs, which is evidenced by the fact that existing spreadsheets contain many errors, some

of which have serious impacts. We have developed a template specification language that

allows the definition of spreadsheet templates that describe possible spreadsheet evolutions.

This language is based on a table calculus that formally captures the process of creating and

modifying spreadsheets. We have developed a type system for this calculus that can prevent

type, reference, and omission errors from occurring in spreadsheets. On the basis of the table

calculus we have developed Gencel, a system for generating reliable spreadsheets. We have

implemented a prototype version of Gencel as an extension of Excel.

1 Introduction

Spreadsheets are functional programs (Peyton Jones et al., 2003). Although spread-

sheets offer only a subset of the functionality of modern functional programming

languages, they are widely used: It is estimated that each year tens of millions

of professionals and managers create hundreds of millions of spreadsheets (Panko,

2000). These numbers indicate not only that spreadsheet systems are among the

most frequently used software systems, they also show that spreadsheets are the most

frequently employed functional programs. This also means that functional programs

outnumber by far all other programs in all other programming paradigms. What a

success of functional programming!

Not quite. One of the distinguishing claims of functional programming is that

functional programs are more reliable than, for example, imperative programs,

and contain fewer errors. To some degree the increased reliability is achieved

� This work is partially supported by the National Science Foundation under the grant ITR-0325273
and by the EUSES Consortium (http://EUSESconsortium.org).

† The work of Irene Cooperstein was performed at Oregon State University during summer 2004 as part
of the CRA-W Distributed Mentor Project.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

294 M. Erwig et al.

through a cleaner language design and through sophisticated type systems that

help to detect program errors early. Unfortunately, spreadsheets suffer heavily from

errors. Numerous studies have shown that existing spreadsheets contain errors at

an alarmingly high rate (Brown & Gould, 1987; Lerch et al., 1989; Panko, 2000).

Some studies even report that 90% or more of real-world spreadsheets contain

errors (Rajalingham et al., 2001). This situation should not be too surprising given

the facts that (a) spreadsheet systems offer only weak or no typing at all and (b)

the language in which spreadsheets are “written” is seldom given in an explicit

form with well-defined syntax and semantics. Instead the language is specific to a

particular spreadsheet system. (In other words, a spreadsheet system is essentially

an IDE for a particular spreadsheet language that is implicitly defined through the

features of the spreadsheet system.)

Imagine if we could bring some of the advantages of functional programming

with respect to safety and reliability to the realm of spreadsheets. This would have a

great impact in two major respects: First, it would make spreadsheet programs more

reliable. Second, it would boost the attention level for functional programming. Alto-

gether, this would mean a big success for functional programming in the real world.

Why has programming language research not taken spreadsheets seriously? One

reason might be that spreadsheets are considered to be trivial and not sufficiently

challenging. After all, spreadsheets are just simple first-order, non-recursive programs

with non-nested bindings, so why bother at all? Although this characterization is

accurate, the comparison is based on a static view of one particular spreadsheet

and ignores update operations in spreadsheets. However, much of the success of

spreadsheet systems is due to their interactive nature allowing changes to input data

and the spreadsheet program with immediate feedback after changes have been

performed (Hendry & Green, 1994; Lewis & Olson, 1987; Norman, 1986; Kay,

1984). Unfortunately, many spreadsheet errors are a consequence of how this form

of interaction is realized.

One major problem in existing spreadsheet systems is that the same user-interface

actions are used to change a program and its input. For example, placing a

number in a cell that already contains a (different) number means to change

an input argument of the spreadsheet, which causes a new run of the spreadsheet

program. In contrast, placing a number in a cell that contains a formula changes the

spreadsheet program, which also causes the immediate rerunning of the spreadsheet

program. This overloading can lead to the introduction of errors through unintended

overriding of formulas. Other sources of errors are the inconsistent definition of

insert-row and insert-column commands, which trigger the automatic adjustment

of ranges in aggregation formulas only in some cases. These errors are particularly

insidious since in many cases they creep into a spreadsheet unnoticed.

Since update operations are a major source of spreadsheet errors, we propose to

specify the possible evolutions of a spreadsheet in advance and to create customized

update operations for any such specification. The benefit of this approach is that

users still can apply update operations to their spreadsheets, but only those that

keep the spreadsheet within the specified evolution and that do not introduce any

reference, type, or omission errors.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 295

In the following we will present the spreadsheet system Gencel, which has been

implemented as an extension of Excel. A preliminary description of the system is

given in Erwig et al. (2005). Our approach to improving the reliability of spreadsheets

is to ensure the correctness not just of a single spreadsheet, but of all the spreadsheets

into which it can evolve over time. To this end we have defined a specification

language to describe spreadsheets and their possible evolutions through templates.

Any such template is translated into an initial spreadsheet and a set of spreadsheet

update operations that are tailored to this particular spreadsheet and ensure that

the spreadsheet can be changed only according to the template. Moreover, we

have defined a type system for the specification language that can guarantee the

following form of spreadsheet evolution correctness: Any spreadsheet that evolves

from a well-typed template will not contain any reference or type errors.

In section 2 we illustrate the idea of using program generation to support the

creation of safely evolvable spreadsheet. In section 3 we define syntax and semantics

of a table calculus that forms the formal foundation of our Gencel system. A type

system for the table calculus is developed in section 4 to guarantee that well typed

templates will be transformed into customized spreadsheets that can evolve only

without errors. This safety result is presented in section 5. In section 6 we describe

the implementation of the Gencel system as an extension of Excel. Related work is

discussed in section 7. We present conclusions and directions for future research in

section 8.

2 A spreadsheet generator

We regard a spreadsheet as a collection of tables where a table is essentially a

rectangular area consisting of a number of rows and columns. Changes in one table

of a spreadsheet should not affect other tables unless they contain a reference to the

changed table. For simplicity, we ignore the possibility of references between different

tables in this paper and therefore consider in the following only the specification of

single tables.

The tables in a spreadsheet often change over time. However, at any given time

only a subset of all possible changes to a table are reasonable. The decision whether

a particular update should be allowed or prohibited depends on the roles of the

affected cells in the table. From the point of view of a spreadsheet application, the

cells of a table can be distinguished into label, data, and computation cells. More-

over, some rows or columns of a table are fixed, like header and footer rows

and columns, while other rows and columns are duplicated if new data is to be

added.

The template specification language that is part of our Gencel system reflects this

view and offers constructs to define a template as a horizontal sequence of fixed and

extendable columns where a column is constructed as a vertical sequence of fixed

and extendable blocks, which are rectangular collections of cells containing values

and formulas. Note that the alternative view as a sequence of rows is also possible.

However, allowing this alternative representation would not add any functionality.

Therefore, we have fixed the representation to simplify the formal model.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

296 M. Erwig et al.

In the following we will illustrate the idea of table generation through several

examples. The templates will be given in a visual notation called Vitsl (an

acronym for Visual Template Specification Language). A corresponding textual

representation will be presented in Section 3 where we introduce the table evolution

calculus.

Our first example is the specification of a plain column of numbers with a header

at the top and a summation formula at the bottom. This template can be specified

by the following Vitsl expression.

Values

0
...

Σ(u)

The template consists of three elements: the header containing the label, the footer

containing the summation formula, and a vertically expandable group (also called

vex group for short) that consists of a single cell containing the value 0. The argument

of the summation formula, u, is a relative reference to the vex group above it. (Note

that u means “up” and is simply a name for (0,−1).)

The template describes a class of tables that all consist of one column with the

shown header and footer and that have one or more number cells in between.

This template can be compiled into an initial Excel spreadsheet together with

customized definitions for all spreadsheet update operations that ensure that only

tables matching the template will be created. Vitsl offers the following visual

elements for templates:

• Cells, represented by rectangles and containing formulas.

• References, represented by (names for) relative grid offsets.

• Vex groups, represented by vertical dots that indicate the possible expansion

of one or more cells in the vertical direction.

• Hex groups, represented by horizontal dots that indicate the possible expansion

of one or more columns in the horizontal direction.

An example of a horizontally expandable group (hex group) is given in the following

template for a summation table:

Values · · · Total

0 Σ(�)
...

...

Σ(u) Σ(u)

Here the summation column from the previous example is horizontally expandable

and is horizontally joined by a column that also contains a header and a summation

footer, but whose vex group contains a summation formula whose argument

references the number cell of the hex group.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 297

The hex group in the last example illustrates that expandable groups may consist

of groups of cells and not just single cells. Moreover, one column can also contain

multiple vex groups. Similarly, a template can contain multiple hex groups. However,

vex groups and hex groups cannot be arbitrarily nested. The only possible nesting is

indicated by the example: Hex groups may contain vex groups. There are two aspects

of this restriction. First, it prevents nested expansion groups in one dimension, which

is important to keep the spreadsheet user interface simple, because to be able to

work with nested expansion groups in one dimension a more sophisticated notion

of “position” would be needed: Just knowing, for example, the current row number

is not enough to tell whether to insert a new row in the innermost expansion group

or a new group in the enclosing one. The second aspect is the restriction that vex

groups cannot contain hex groups, which is just for technical reasons to keep the

formalism simple. Since columns have to be vertically aligned, templates in which

hex groups are nested in vex groups would not add to the expressiveness of the

language and could be transformed into a corresponding template in which vex

groups are nested in hex groups.

In addition, several structural constraints are needed to ensure that a reasonable

definition for the spreadsheet update operations exists. For example, all columns

in a template have to align vertically. To explain the idea of alignment, consider

a column as a sequence of non-vex and vex groups, say c = [b1, . . . , bk]. Now c

matches another column c′ = [b′1, . . . , b
′
k] only if (a) bi has the same height as b′i

and (b) bi is an expandable group iff b′i is. These constraints ensure, in particular,

that vex groups are horizontally aligned and have the same height, which allows

the insert-row command to be defined to insert a number of rows according to the

common height of the vex groups. Similarly, we require that all blocks in a column

have the same width. For columns in hex groups, this constraint ensures that the

insert-column command can be defined to create a number of columns according

to the common width of the blocks of the hex group.

We can consider an example that violates these constraints to see why they are

required. Consider the case for the following template:

0 Σ(�)
...

In this template, we have the horizontal composition of two columns – the left

column repeats vertically whereas the right column is simply a reference. These

columns do not align and thus the above template is not legal. In the initial

table, we would have one value with a single reference to that value, which causes

no problems. However, if we consider the insertion of rows, we can observe that

additional values would be added. What would be the meaning of the reference in

that case? Would it refer merely to the topmost value or to all of the values? In

addition, the vertical and horizontal concatenation of blocks assumes that, at all

times, blocks, columns and tables will be rectangular. However, we can see a non-

rectangular shape emerging in this example. How does such a shape concatenate with

other columns or tables? These uncertainties have led us to forbid such templates.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

298 M. Erwig et al.

An example for a template containing multiple vex groups is the accounting sheet

shown below.

Income

0
...

Σ(u)

Expenses

0
...

Σ(u)

Net Earnings

∆(u5, u2)

The gaps between cells indicate the scope of the vertical dots. For example, the

first vex group is the repeated 0 and not the block of the top two cells. Similarly,

the second vex group consists only of the one cell containing the 0, which is below

the cell labeled Expenses. The formula ∆(u5, u2) computes the difference between

the two summation cells. An exponent k attached to a relative reference means the

k-fold repetition of the reference. For example, u2 refers to two cells above. Since the

vertical (and horizontal) dots are not cells on their own, they are not counted when

determining relative references. Therefore, u5 refers to the upper vex group and u2

to the lower one.

The relative references used in templates are very expressive: First, unlike absolute

addresses, relative references are compositional, that is, they need not be adjusted

when cells or blocks are composed with other blocks. Second, depending on their

origin and target, relative references can express single-cell addresses as well as

ranges. For example, the references from the summation formulas point into a vex

group and refer to all the cells that will be generated within that group, in contrast

to the references u5 and u2, which point to nonexpandable cells and refer always to

single values.

As a final example we present a template for a multi-year budgeting sheet that

contains a multi-column hex group.

2005 · · · Total

Category Qnty Cost Total Qnty Cost

0 0 Π(�2, �) Σ(�3) Σ(�2)
...

...
...

Total Σ(u) Σ(u)

The multi-column hex group illustrates another powerful feature of our model

that goes beyond Excel’s update capabilities – the possibility of automatically

maintaining non-consecutive ranges over insert and delete operations. Consider, for

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 299

Fig. 1. Generated Excel budget spreadsheet.

Fig. 2. Updated Excel budget spreadsheet.

example, the rightmost summation formula Σ(�2). The relative reference refers to the

cell containing the Π formula, which represents a product. The repeated application

of insert-column commands generates several non-adjacent instances of that cell.

Nevertheless, the update operations created by the Gencel system will properly

update the rightmost summation formula to always contain references to exactly all

those cells (see Figure 2). The same is true for the Qnty summation formula.

The initial spreadsheet generated from the budget-sheet specification is shown in

Figure 1.

After one column and two row insertions and several changes to the stored values,

the spreadsheet might look as shown in Figure 2. Note, in particular, how the ranges

in the SUM formulas in rows H and I represent non-consecutive ranges.

The Gencel system offers additional buttons for inserting columns to the left and

right of the current position as well as for inserting rows above and below the

current row. Note that it is not possible to enter values of wrong types or to change

or delete existing formulas.

For illustration we show here the formula view of the generated spreadsheet. End

users will generally only see the computed values. The spreadsheet in Figure 2 is

created by precisely following the formal definitions of the table calculus. We can

optimize the generated formulas further by compressing ranges, which yields, for

example, SUM(D3:D5) in cell D6.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

300 M. Erwig et al.

3 The table evolution calculus

The table evolution calculus provides a formal foundation for the Gencel system. In

section 3.1 we will define its syntax. In section 3.2 we define the semantics, which

consists of the generation of tables from templates, the definition of table update

operations, which define the possible evolutions of tables, and the reduction of tables

into tables containing just values.

3.1 Syntax

A template (t) is given by a horizontal composition (|) of fixed (c) or expandable

(c→) columns, where a column is given by a vertical composition (ˆ) of fixed (b)

or expandable (b↓) blocks. A block is given by a composition of formulas (f).

Blocks are also used to represent plain tables. Formulas consist of basic values (φ),

references (ρ), and expressions that are built by applying functions to a varying

number of arguments given by formulas (φ(f, . . . , f)). In this simple version of the

table calculus we only use functions that can be applied to an arbitrary number of

arguments of the same type, like addition (Σ) and multiplication (Π). This restriction

simplifies the semantics of formulas and the type system a bit, but is not essential.

References are given by pairs of integers and represent relative references in the

form of offsets, that is, a reference (v, h) means to go v cells to the right and h

cells up. We use the following abbreviations for cell offsets: � = (−1, 0), r = (1, 0),

u = (0,−1), and d = (0, 1). We sometimes use sequences of abbreviated offsets to

represent larger offsets, for example, � � = �2 = (−2, 0).

The syntax of templates is summarized in Figure 3.

f ∈ Fml ::= φ | ρ | φ(f, . . . , f) (formulas)

b ∈ Block ::= f | b | b | bˆb (blocks, tables)

c ∈ Col ::= b | b↓ | cˆc (columns)

t ∈ Template ::= c | c→ | t | t (templates)

Fig. 3. Templates.

The constructs correspond directly to the visual notation. Whenever we want to

talk about an arbitrary repeating group, that is, either a vex or a hex group, we also

use the notation u+ where the metavariable u ranges over columns and blocks. We

also define that ˆ and | associate to the left.

As an example, consider the summation column, which was shown as the first

Vitsl example in section 2. This column is represented by the following template.

Valuesˆ0↓ˆΣ(u)

We refer to this expression as SumCol in the following. The summation table is

represented by the following template, which we name SumTab.

(Valuesˆ0↓ˆΣ(u))→ | TotalˆΣ(�)↓ˆΣ(u)

We introduce as a structure to support the semantics definition a generalization of

the concept of template in which we represent the number of expansions for each

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 301

Table 1. Structures used in the semantics of Gencel

Structure/Concept contains ...

template (t) ˆ, |, b↓, c→, and u+

template instance (t) ˆ, |, b|k , ck , and uk

table (= block) (b) ˆ and |

repetition (k) exponent in b
|k , ck , or uk

expansion area (b) subpart of a table

vex and hex group. This structure is called template instance; its syntax is identical to

the syntax of templates in Figure 3 except that b↓ and c→ are replaced by b|k and ck ,

respectively. We use the metavariable t to range over template instances. Similar to

repeating groups in templates, we use the abbreviation uk to represent an arbitrary

vex or hex group in a template instance. A column c (from a template) of width w

that is expanded k times in a template instance corresponds in the generated table to

kw columns. This whole area in the table is called c’s expansion area, and k is called

c’s repetition. Likewise, a block b of height h that is expanded k times corresponds

in the generated table to a rectangular area of height hk (and width of b). Again,

this area is called b’s expansion area, and k is called b’s repetition.

We summarize all structures/concepts and their distinguishing characteristics

explicitly in Table 1 for easy future reference.

3.2 Semantics

The semantics of the table calculus consists of three parts: (1) the translation of

templates into initial tables (sections 3.2.1 through 3.2.3), (2) the semantics of table

update operations relative to a template (section 3.2.4), and (3) the evaluation of

tables (section 3.2.5). In the following we will describe all these steps in some detail.

3.2.1 Generating template instances

The function I produces a template instance from a template by simply replacing

each “→” or “↓” exponent by a fixed exponent n. For the purpose of spreadsheet

generation, we need to use I only with the index 1, but in the definition of the

type system in Section 4 we will use it with a different exponent to identify cells in

repeating groups. We use the metavariables u and v to range over Template, Col,

and Block, which allows us to give some definitions more concisely. For example, in

the definition for I, we can combine the cases for horizontal and vertical repetition.

In(t | t
′) = In(t) | In(t

′)

In(cˆc
′) = In(c)ˆIn(c

′)

In(u
+) = (In(u))

n

In(b) = b

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

302 M. Erwig et al.

We employ the following auxiliary functions for computing the width and height of

templates.1

←→
f = 1
←→
u | v = ←→u +←→v
←→
uˆv = max(←→u ,←→v)
←→
u+ = ←→u
←→
b|k =

←→
b

←→
ck = k←→c

�f = 1

�u | v = max(�u, �v)
�uˆv = �u + �v
�u+ = �u
�b|k = k�b
�ck = �c

The following function locates cells in templates, template instances, and tables

based on absolute references.

f[1, 1] = f

(u | v)[x, y] =

{
u[x, y] if x �←→u
v[x−←→u , y] otherwise

(uˆv)[x, y] =

{
u[x, y] if y � �u
v[x, y − �u] otherwise

u+[ρ] = u[ρ]

b|k[x, y] =

{
b[x, ((y − 1) mod �b) + 1] if y � k�b
⊥ otherwise

ck[x, y] =

{
c[((x− 1) mod←→c) + 1, y] if x � k←→c
⊥ otherwise

The last two cases allow applications of the lookup function to work on template

instances. In section 4 we will use the function also on template types.

Next we define the function G for generating a table from a template. In fact, we

define a slightly more general function that works on template instances and that

can be reused in the definition of the update operations. In the initial table all →

and ↓ exponents are replaced by ones. Then each application of an insert-column

command increases the exponent of one hex group by one, whereas each application

of an insert-row command increases the exponents of all vex groups in one row by

one.

A template instance contains sufficient information to (re)generate all formulas

with all correct references for the corresponding table. This fact is exploited in the

definition of the update operations, which essentially create an updated template

instance and derive the changed formulas from the new instance. Template instances

do not contain the current values from the actual table, which is not problematic

1 Since we will reuse these auxiliary functions in the definition of the type system, we define them more
generally for arbitrary templates and template instances.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 303

since they are not needed for the definition of the update operations, because all

newly inserted values are taken from the template.

3.2.2 Translation of relative references

We have to pay particular attention to the generation of absolute addresses from

relative references in formulas. In particular, when a relative reference points into

a vex or hex group, the reference might mean a range of cells that have been

expanded from the cell in the specification. However, this is only the case if the

relative reference points to a vex or hex group that is not in the same horizontal

or vertical expansion area, that is, an insert-row or insert-column command in that

vex/hex group does not cause a duplication of the cell containing the reference as

well, because in that case the reference would be just a reference to a “parallel”

developing expandable block. In other words, the generation of absolute references

has to distinguish whether or not the referenced cell b is expand-dependent on the

cell a that contains the reference. A cell b is expand-dependent on a cell a if b is

expanded only if a is also expanded. In particular, this is true whenever b is not

expandable at all.

We can convert a relative reference ρ = (i, j) contained in a cell a = (x, y) into an

absolute reference with four steps. First, we determine a single absolute address by

adding the relative reference to the cell address, giving b = (x+ i, y + j). Second, we

determine the range of cells for the expansion area of the target address b. Third, to

account for expansion dependency (that is, when the source and target cell expand

in an aligned way), we remove from the calculated range the set of cells whose x

or y coordinate falls within the expansion area of the source address a. The only

exception to this removal is the block containing a, since it is possible that b is

within this block. Finally, we ensure that the source cell a is not in the referenced

set, while the original target cell b is. In the following we formalize these four

steps.

First, we define an auxiliary function H to compute for a template instance the

horizontal range of coordinates that is covered by the hex group containing a

particular address. Such a range is represented by a triple (x1, x2, w) where x1 and x2

describe the vertical range and w gives the width of the hex group. In the following

definitions we use ⊕ to add a value to the first two components of a range triple,

that is, i⊕ (x1, x2, w) = (i + x1, i + x2, w).

Hx(f) = (x, x, 1)

Hx(u | v) =

{←→u ⊕Hx−←→u (v) if x >←→u
Hx(u) otherwise

Hx(uˆv) = Hx(u)

Hx(b|k) = Hx(b)

Hx(ck) =

{
(1, k←→c ,←→c) if x � k←→c
⊥ otherwise

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

304 M. Erwig et al.

Similarly, V computes the vertical range (y1, y2, h) of the vex group covering a cell

where h represents the height of the vex group.

Vy(f) = (y, y, 1)

Vy(u | v) = Vy(u)

Vy(uˆv) =

{
�u⊕ Vy−�u(v) if y > �u
Vy(u) otherwise

Vy(b
|k) =

{
(1, k�b, �b) if y � k�b
⊥ otherwise

Vy(c
k) = Vy(c)

As an illustration of how the functions H and V work consider the following

instance of the template SumTab.

t = (Valuesˆ0
|3ˆΣ(u))2 | TotalsˆΣ(�)

|3ˆΣ(u)

Let us examine the cell at absolute address (3, 2) using the H and V functions.

Initially, we break up t into u = (Valuesˆ0|3ˆΣ(u))2 and v = TotalsˆΣ(�)|3ˆΣ(u),

and we apply the second rule of H , that is, H3(u | v) = 2 ⊕ H1(v). The region of

interest lies within v, the right-most horizontal position. Examining v, we see that

it is constructed from three vertically composed blocks: TotalsˆΣ(�)|3, represented

by u′, and Σ(u), represented by v′. This structure matches the third rule of H ,

that is, H1(u′ˆv′) = H1(u′). Because we are computing only horizontal data, these

vertically composed blocks are insignificant. However, u′ is still formed from two

vertically composed blocks, so we repeat this step once more, which leads to

H1(u′′ˆv′′) = H1(u′′). Now, since u′′ is merely the value Totals, the expression matches

the final rule of H , and we obtain H1(u′′) = (1, 1, 1). The final output of the function

H is thus H3(t) = 2 ⊕ (1, 1, 1) = (3, 3, 1). The first value indicates that the region

containing the cell at absolute address (3, 2) begins at the horizontal coordinate 3.

The second value indicates that the region also ends at the horizontal coordinate 3 –

in other words, it consists of only a single column. The third value denotes the width

of the region, which, as we knew already from the previous data, is merely 1.

Next we examine V2(u | v) to determine the vertical range. We obtain V2(u | v) =

V2(u), which indicates the insignificance of horizontal composition to the V function.

We now have u = u′ˆv′, where u′ is Valuesˆ0|3 and v′ is Σ(u). We have V2(u
′ˆv′) = V2(u

′).

Since the height of u′ is 4, this step concludes that the vertical region of interest

is within u′. Now break up u′ further into u′′ = Values and v′′ = 0|3. We obtain

V2(u
′′ˆv′′) = 1 ⊕ V1(v

′′). Finally, we obtain V1(0
|3) = (1, 3�0, �0) = (1, 3, 1). The final

result is therefore V2(t) = 1 ⊕ (1, 3, 1) = (2, 4, 1). The first value indicates that the

vertical region begins at y coordinate 2 and ends at y coordinate 4 (making it a

total of 3 cells tall); the height of a single repeating block is 1.

With the help of H and V we can define a function T that translates relative

offsets into absolute “target” addresses. If a is not a cell that has been expanded

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 305

from a repeating group or if a + ρ does not leave the repeating group containing a,

b is obtained by simply adding ρ to a. Otherwise, b is obtained by adding ρ to the

first generated cell from a. For example, in all instances of the following template

the reference �2 should refer to the cell (1, 1) that contains the 0.

0 | (9 | �2)→

For the initial template instance 0 | (9 | �2)1, (1, 1) is indeed obtained by simply adding

the relative reference, that is, (3, 1)+�2 = (3, 1)+(−2, 0) = (1, 1). However, this is not

the case for the instance 0 | (9 | �2)2, in which �2 in the rightmost cell simply points to

(3, 1). In this case, adding �2 to the first of the generated cells, which has the address

(3, 1), works. On the other hand, the reference � in the template 0 | (9 | �)→ always

refers to the cell directly left to it, which contains the 9. The situation is analogous

for vex groups.

This distinction is reflected in the definition of the function T as follows. First, the

first instance of (x, y) in the repeating group is computed by determining the offset

that x and y have from the start of the repeating block (given by (x − x1) modw

and (y− y1) mod h) and adding this offset to the first cell of the whole range, which

is (x1, y1). Second, we determine a tentative “target cell” (xt, yt) by adding ρ to the

first instance. For (xt, yt) we then check for each dimension whether or not it is

contained in the corresponding range of (x, y), which is given by (x1, x2) and (y1, y2),

respectively. If this is the case, the final address is computed by using ρ simply as

an offset from (x, y), otherwise the xt and/or yt correctly addresses an out-of-block

address.

Tx
y(t, i, j) = (if x1 � xt � x2 then x + i else xt, if y1 � yt � y2 then y + j else yt)

where (x1, x2, w) = Hx(t)

(y1, y2, h) = Vy(t)

(xt, yt) = (x1 + (x− x1) modw + i, y1 + (y − y1) mod h + j)

The third step in computing references is to determine the range of cells for the

originating cell (x, y) to account for expansion dependency. This ignore range is

represented by four x and four y coordinates (since the block containing (x, y) must

be omitted from the ignore range) and is computed through the function I by first

determining the horizontal and vertical range for the referencing cell (x, y) and then

removing the actual block that contains (x, y).

Ixy(t) = ((x0, x1, x2, x3), (y0, y1, y2, y3))

where (x0, x3, w) = Hx(t)

(y0, y3, h) = Vy(t)

(x1, x2) = (x− xmodw − 1, x− xmodw + w)

(y1, y2) = (y − ymod h− 1, y − ymod h + h)

Finally, with the functions T and I we can define the the function R to translate an

offset into (a range of) absolute address(es).

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

306 M. Erwig et al.

Rx
y(t, i, j) = {(k, l) ∈ X × Y | kmodw = x′modw ∧ l mod h = y′mod h}

−{(x, y)} ∪ {(x′, y′)}
where ((x0, x1, x2, x3), (y0, y1, y2, y3)) = Ixy(t)

(x′, y′) = Tx
y(t, i, j)

(xa, xb, w) = Hx′(t)

(ya, yb, h) = Vy′ (t)

X = {xa, . . . , xb} − ({x0, . . . , x1} ∪ {x2, . . . , x3})
Y = {ya, . . . , yb} − ({y0, . . . , y1} ∪ {y2, . . . , y3})

As an example, consider the template SumCol together with the instance t =

Valuesˆ0|3ˆΣ(u). Assume we want to find the range of the u parameter in the bottom-

most cell. In this case, we apply the function R1
5(t, 0,−1) since the u is in the fifth

row of this instance, and it references an offset of one up in the vertical direction.

First, we compute (x′, y′) = T 1
5(t, 0,−1), which yields the horizontal and vertical

information for the current area, giving us x1 = x2 = 1 and y1 = y2 = 5. Since the

width and height are 1, xt and yt are simply given by x1 + i and y1 + j respectively,

that is, xt = 1 and yt = 4. For x, we find that x1 � xt � x2, so x + i = 1, is chosen

as the x coordinate. For y, we find that yt = 4 is outside of y1 and y2, which are

both 5. So in this case, we select yt = 4 as the y coordinate. The returned value is

thus (1, 4).

Next, the horizontal and vertical information of this target location is computed.

We compute H1(t) and V4(t). This concludes that the target range has width 1, with

xa = 1 and xb = 1. Vertically, the range is of height 3, with ya = 2 and yb = 4.

Next, we compute the ignore range, namely I1
5(t). This is also based on the

horizontal and vertical information for (1, 5). It computes x0 and x3 to be both 1,

and y0 and y3 to be both 5. This is because the block is not repeating and is only

1× 1 in size. (x1, x2) is found to be (0, 2) and (y1, y2) is found to be (4, 6). Thus the

complete result is ((1, 0, 2, 1), (5, 4, 6, 5)).

Now we can compute X and Y . X is the range from xa to xb excluding the ignore

ranges x0 to x1, x2 to x3, and Y is the range from ya to yb excluding y0 to y1 and y2

to y3. Those four ranges are 1..0, 2..1, 5..4, and 6..5, respectively. All of these ranges

are empty. Therefore, X and Y are simply the ranges X = {1} and Y = {2, 3, 4}.
Finally, we compute all pairs from X and Y such that they align within the block

(which is trivial in this case since the width and height are 1), excepting the origin

(to avoid circular references) and including the original destination. This gives us

the set {(1, 2), (1, 3), (1, 4)}.
As another example that illustrates how non-continuous ranges are constructed,

consider the following template

(A |B)ˆ((0 | 0)ˆ(0 | 0))↓ˆ(Sum A | Sum B)ˆ(Σ(u2) |Σ(u2))

together with the following template instance.

t = (A |B)ˆ((0 | 0)ˆ(0 | 0))
|2ˆ(Sum A | Sum B)ˆ(Σ(u2) |Σ(u2))

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 307

In this example we repeat vertically a square 2× 2 block of numbers. At the bottom

of this column, we have two sum fields, each one summing the lower halves of the

2× 2 blocks in their column. Assume we want to find the range of the u2 parameter

in the leftmost sum. We apply R1
7(t, 0,−2).

To determine the range, the target location is determined by computing

T 1
7(t, 0,−2). This tells us the horizontal and vertical information for the current

area, giving us x1 = x2 = 1 and y1 = y2 = 7. Since the width and height are 1, xt
and yt are simply x1 + i and y1 + j, respectively. Thus, xt = 1 and yt = 5. For x, we

find that x1 � xt � x2, so x + i = 1, is chosen as the x coordinate. For y, we find

that yt, being 5, is outside of y1 and y2, which are both 7. So in this case, we select

simply yt, which is 5. Therefore, T 1
7(t, 0,−2) is (1, 5).

Once the target location has been found, the horizontal and vertical information

is calculated. We compute H1(t) and V5(t). This tells us that the target range has

width 1, with xa = 1 and xb = 1. Vertically, the range is of height 2, with ya = 2

and yb = 5.

The horizontal and vertical information of the target location prepares us to

construct the range of the reference, but before that, we must determine the

ignore range, namely I1
7(t). In order to find this, we use the horizontal and vertical

information for the origin location (1, 7). The ignore range finds x0 and x3 to be

both 1, and y0 and y3 to be both 7. This is because the block is not repeating and is

only 1 × 1 in size. Next (x1, x2) is found to be (0, 2) whereas (y1, y2) is found to be

(6, 8). Thus the complete result is ((1, 0, 2, 1), (7, 6, 8, 7)).

At this point we are ready to determine the basic reference coordinate sets, X and

Y . X is the range from xa = 1 to xb = 1 excluding the ignore ranges x0 to x1, x2 to

x3, and Y is the range from ya = 2 to yb = 5 excluding y0 to y1 and y2 to y3. Those

four ranges are 1..0, 2..1, 7..6, and 8..7, respectively, which are all empty. Therefore,

X and Y are simply the ranges specified, namely X = {1} and Y = {2, 3, 4, 5}.
In this case, the modulo in the final computation comes into play. Since the height

is 2, only y values with the same modulo 2 as the target 5 will be accepted. In other

words, only odd values of y. This excludes from the set the pairs {(1, 2), (1, 4)},
leaving us with the final range {(1, 3), (1, 5)}.

As a final example that demonstrates how references across aligned repeating

blocks do not create ranges but single references, consider the template 0↓ |Σ(�)↓

and a corresponding template instance 0|3 |Σ(�)|3. In this example, we have two

columns, each consisting of a vertical repeating block, concatenated horizontally.

This is the interesting case of referencing from one repeating block to another which

is aligned with the first. We will ask what the range of the first � is, in cell (2, 1).

Therefore, we compute R2
1(t,−1, 0).

The target location, (x′, y′), is determined first by applying T 2
1(t,−1, 0). In the

process, this finds the horizontal and vertical information of the origin area, giving us

x1 = x2 = 2 and y1 = 1 and y2 = 3, since there is a vertical repetition. Since the width

and height are 1, xt and yt are simply x1+ i and y1+j respectively, that is, xt = 1 and

yt = 1. For x, we find that xt is outside the range of x1 to x2, so we select xt, which is

1, for our x coordinate. For y, we find that yt is within the range of y1 to y2, so we

accept y + j, which is 1. Therefore, the target location is determined to be (1, 1).

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

308 M. Erwig et al.

The horizontal and vertical information of this target location reveals the possible

extent of the reference. We use H1(t) and V1(t) to find it. These functions determine

that the target range has width 1, with xa = 1 and xb = 1. Vertically, the range is of

height 3, with ya = 1 and yb = 3.

We exclude from the possible extent of the reference anything indicated by the

ignore range, I2
1(t). Using the horizontal and vertical information for (2, 1) (the

origin), it computes x0 and x3 to be both 2, and y0 = 1 and y3 = 3. This is because

the block is vertically repeating. (x1, x2) is found to be (1, 3) and (y1, y2) is found to

be (0, 2). The ignore range is ((2, 1, 3, 2), (3, 0, 2, 3)).

Using these results, we can find X and Y . X is the range from xa to xb excluding

the ignore ranges x0 to x1, x2 to x3, and Y is the range from ya to yb excluding y0 to

y1 and y2 to y3. Notice that one of the ranges, 2..3, is not empty, but contains {2, 3}.
These values must be excluded from the range of Y . This gives us the sets X = {1}
and Y = {1, 2, 3} − {2, 3}, with the final set for Y = {1}. Note that the values 2 and

3 have been excluded because the two columns align.

Since the block height and width is 1, the modulo does not come into the play,

and the final reference set is simply {(1, 1)}.

3.2.3 Table generation

The translation function G to create tables from template instances defined in Fig-

ure 4 takes as input the complete template instance (t) together with the position of

the top-left corner of the part currently being translated (x, y), which is needed for

the proper translation of references (third line). The last argument is the part of the

template instance that is seen at the current location. The notation
S� extracts the

elements out of a set, that is,
{x1, . . . , xn}� = x1, . . . , xn. This technical adjustment

is needed in the third line to inject the set of references computed by R as a single

reference or sequence of references into a formula as required by the syntax of

blocks.

Gx
y(t, φ) = φ

Gx
y(t, φ(f1, . . . , fn)) = φ(Gx

y(t, f1), . . . ,Gx
y(t, fn))

Gx
y(t, (i, j)) =
Rx

y(t, i, j)�
Gx

y(t, u | v) = Gx
y(t, u) | Gx+←→u

y (t, v)

Gx
y(t, uˆv) = Gx

y(t, u)ˆGx
y+�u(t, v)

Gx
y(t, c

k) = Gx
y(t, c) | Gx+←→c

y (t, c) | . . . | Gx+(k−1)←→c
y (t, c)

Gx
y(t, b

|k) = Gx
y(t, b)ˆGx

y+�b(t, b)ˆ . . . ˆGx
y+(k−1)�b(t, b)

Fig. 4. Table generation.

Applying the function G to I1(t) yields the initial table, that is, a block that

contains a copy of all the values and formulas from the template.

The function G generates a complete table consisting of only horizontal and

vertically composed individual blocks from a template instance. A primary feature

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 309

of this function is converting repeating groups into a sequence of individual blocks.

It does so by breaking the table up piece by piece. In the case of a repeating group,

either horizontal or vertical, G unrolls the group to actually be repeated that many

times. It then uses the function R to determine the appropriate references to replace

the relative offsets.

As an example, assume we want to construct the table for the instance t =

Valuesˆ0|3ˆΣ(u). In this case, G first starts with G1
1(t, (Valuesˆ0|3)ˆΣ(u)). G breaks

the template instance into the upper and lower segment, determines the height

of the upper segment, and recursively calls G1
1(t,Valuesˆ0|3) and G1

5(t,Σ(u)). The

latter parameter coordinate is generated by inspecting the height of the top piece,

which consists of a single unit label and a three unit expansion block. The sum is

calculated, 1 + (3 ∗ 1) and the total value, 4, is added to the original offset of 1 to

get a final offset of 5. The upper section is broken again, so that the repeating block

is addressed with G1
2(t, 0

|3), which leads to G1
2(t, 0)ˆG1

3(t, 0)ˆG1
4(t, 0). Each of these

applications of G reduces to the argument value 0. The lower portion is handled by

the case of function application, which turns G1
5(t,Σ(u)) into Σ(G1

5(t, u)), which results

in Σ((1, 2), (1, 3), (1, 4)), as shown through the example for illustrating the working of

R. Therefore, the generated table will be Valuesˆ0ˆ0ˆ0ˆΣ((1, 2), (1, 3), (1, 4)).

3.2.4 Update operations

Two kinds of update operations are allowed on generated tables: (1) changing

values to other values of the same type2 and (2) inserting and deleting rows and

columns. The first kind of update is realized in the following way. Before a new

value φ can be entered into a cell at address (x, y), it is ensured that the cell in

the template that corresponds to (x, y) does not contain a formula and the type

of the cell is the same as the type of φ. We write chgφ(x,y)(t, b) for the update of

the cell located at (x, y) in table b to the new value φ. The argument t gives the

template instance that corresponds to b. Formally, chgφ(x,y) returns a pair (t, b′) where

t is the unchanged template instance and b′ is the changed table. The effect of the

row/column-insertion commands depends on the current position in the table. For

example, the insert-column command will insert k new Excel columns if the current

position is within a hex group that has the width k. The formulas and values to

be inserted into the new cells are taken from the hex group of the template. For a

position outside of a hex group the insert-column command has no effect. Similarly,

the insert-row command works only when the current position is in a cell from a

vex group, in which case k new rows will be inserted where k is the height of all

the aligned vex groups covering the current vertical position. Again, formulas and

values are copied from corresponding vex groups of the template.

In general, the insertion of columns and rows requires also the adjustment of

absolute references in existing cells. We can accomplish the generation of absolute

references in newly inserted formulas and the reference adjustments by employing

the G function in the following way. First, we update the template instance by

2 In fact, we allow arbitrary type-correct formulas that do not contain references.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

310 M. Erwig et al.

increasing the exponent of a hex group (or a collection of vex groups). Then we

can simply apply G to the new template instance and obtain correct formulas with

correct absolute addresses for the whole table. Finally, we copy into this new table

the values from the old table.

The functions for updating template instances are defined as follows. The functions

Cx and Ry update a template instance on an insert-column or insert-row command,

respectively. In these cases, both functions take a template instance and a current

offset (x for column insert, y for row insert) to determine what, if anything, should

be added. The functions find the location of the current position, and if it is within

a vex or hex group, they increase the expansion of that group by one.

Cx(t | t′) =

{
Cx(t) | t′ if x �←→t
t |Cx−←→t (t′) otherwise

Cx(ck) =

{
ck+1 if x � k←→c
ck otherwise

Cx(c) = c

Ry(t | t
′) = Ry(t) |Ry(t

′)

Ry(c
k) = (Ry(c))

k

Ry(cˆc
′) =

{
Ry(c)ˆc

′ if y � �c
cˆRy−�c(c

′) otherwise

Ry(b
|k) =

{
b|k+1 if y � k�b
b|k otherwise

Ry(b) = b

Consider again the template instance t = Valuesˆ0|3ˆΣ(u). Assume that an insert-

row command is executed on row 2. In this case, we start with R2((Valuesˆ0|3)ˆΣ(u)).

The height of the first block is 4, which is greater than the value for y (which

is 2), so the function applies recursively to the first block, that is, we obtain

R2(Valuesˆ0|3)ˆΣ(u). The height of the first block is only 1, so the second case is

executed, modifying the y parameter of Ry by the height of the top block. Therefore,

the recursive call R1(0
|3) results. We find that y is within the height of this block, so

we increase its repetition, returning 0|4 as a subexpression, which leads to the final

new template instance Valuesˆ0|4ˆΣ(u).

Merging the actual values from the old table with the new table obtained by G is

achieved by two functions that copy all values outside of the column (or row) range

for the newly inserted column (row). These “ignore ranges” can be computed with

the help of V and H because, after an insert column command, the x coordinate

of the current position must be between x1 + kw and x1 + (k + 1)w for some k

where Hx(t) = (x1, x2, w). Similarly, the y coordinate must be between y1 + lh and

y1 + (l + 1)h for some l where Vy(t) = (y1, y2, h). The functions H and V can be

defined as follows. They traverse the newly generated table and copy values from

the old table within the old areas. H and V accept four parameters: an x and y

coordinate, which both start at 1, along with a newly generated table and the old

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 311

table (b) before the row or column insertion. The position of insertion is held as

x̂ and ŷ where x̂ = x1 + kw and ŷ = y1 + lh, so that we have x̂ � x < x̂ + w or

ŷ � y < ŷ + h for the current position (x, y).

Hx
y(b1 | b2, b) = Hx

y(b1, b) |Hx+
←→
b1

y (b2, b)

Hx
y(b1ˆb2, b) = Hx

y(b1, b)ˆHx
y+�b1

(b2, b)

Hx
y(f, b) = f (for f �= φ)

Hx
y(φ, b) =



φ if x̂ � x < x̂ + w

b[x, y] if x < x̂

b[x− w, y] if x � x̂ + w

Vx
y(b1 | b2, b) = Vx

y(b1, b) |Vx+
←→
b1

y (b2, b)

Vx
y(b1ˆb2, b) = Vx

y(b1, b)ˆVx
y+�b1

(b2, b)

Vx
y(f, b) = f (for f �= φ)

Vx
y(φ, b) =



φ if ŷ � y < ŷ + h

b[x, y] if y < ŷ

b[x, y − h] if y � ŷ + h

Consider the template instance t = Valuesˆ0|3ˆΣ(u) and a corresponding actual table

b = Valuesˆ1ˆ2ˆ3ˆΣ((1, 2), (1, 3), (1, 4)).

In this case, assume a row insert is made at position (1, 3), that is, x̂ = 1 and

ŷ = 3. The application of R3 yields the new template instance Valuesˆ0|4ˆΣ(u) to

which G is applied and produces the table

b′ = Valuesˆ0ˆ0ˆ0ˆ0ˆΣ((1, 2), (1, 3), (1, 4), (1, 5))

as demonstrated previously. The function application V1
1(b
′, b) unfolds into the

two function calls V1
1(Valuesˆ0ˆ0ˆ0ˆ0, b) and V1

6(Σ((1, 2), . . . , (1, 5)), b), which is

unchanged since it is a formula (third rule of V). The y parameter of 6 comes

from the sum of the original 1 plus the calculated height of the first vertical block,

which is 5. The block of the first function call is again broken vertically into

V1
1(Valuesˆ0ˆ0ˆ0, b) and V1

5(0, b). The latter, whose parameter of 5 is computed the

same way as above, is simply a value. Now the definition tries to find where in the

original table the value should come from. In this case, the current y value of 5

is greater than the original ŷ value of 3 plus the height of the inserted row, which

is 1. Therefore, we access the location (1, 5 − 1) (third case of the last rule for V),

which gives us the value 3 from the original table, which replaces the placeholder 0.

The top block is broken again into V1
1(Valuesˆ0ˆ0, b) and V1

4(0, b). In this case, we

find out that the value of y, being 4, is equal to the ŷ plus the height of the row,

which also totals to 4. In this case, we still apply the same rule as before, looking up

(1, 4− 1) in the table, which gives us the value 2. The top block is broken again into

V1
1(Valuesˆ0, b) and V1

3(0, b). In this case, the value of y, which is 3, is less than the

value of ŷ plus the height of the row. However, this is still equal to ŷ, so we take

the placeholder value without looking one up in the original table b. This is where

the “new” value appears.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

312 M. Erwig et al.

The top block is broken again intoV1
1(Values, b) andV1

2(0, b). The latter case has

a y which is less than ŷ, so simply the value of the (1, 2) is looked up in the original

table. The top value is analyzed likewise. Thus, the newly constructed table is

Valuesˆ1ˆ0ˆ2ˆ3ˆΣ((1, 2), (1, 3), (1, 4), (1, 5)).

Finally, the semantics of the insert-column and insert-row operation is defined as

follows. In the given definitions, the t argument represents the current template

instance, whereas the b argument represents the actual table. In addition to the new

table, the functions also return the new template instance t′.

insC(x,y)(t, b) = (t′,H1
1(G1

1(t
′, t′), b)) where t′ = Cx(t)

insR(x,y)(t, b) = (t′,V1
1(G1

1(t
′, t′), b)) where t′ = Ry(t)

Note that in the implemented Gencel system we do not keep a copy of the whole

actual spreadsheet. Instead we send to Excel only cell definitions that need to

be changed. The concept of template instances allows us to describe the update

operations in the formal model as well as to implement a space efficient system.

Deleting rows and columns works in a similar way. First, we need two functions

R̄ and C̄ for decreasing exponents, which are defined exactly as R and C , except for

the exponent, which has to be k − 1 instead of k + 1 and is only decreased if k > 1.

Moreover, we need two functions H̄ and V̄ that are defined like H and V except

for the following cases.

H̄x
y(φ, b) =

{
b[x, y] if x < x̂

b[x + w, y] otherwise

V̄x
y(φ, b) =

{
b[x, y] if y < ŷ

b[x, y + h] otherwise

For delete row and delete column we get the following definitions.

delC(x,y)(t, b) = (t′, H̄1
1(G1

1(t
′, t′), b)) where t′ = C̄x(t)

delR(x,y)(t, b) = (t′, V̄1
1(G1

1(t
′, t′), b)) where t′ = R̄y(t)

3.2.5 Table evaluation

The evaluation of a table essentially means to evaluate all cells by applying basic

functions and looking up references. The evaluation of cells requires the whole table

as an additional parameter to facilitate the evaluation of references, which are given

by absolute addresses. The metavariable x used in the rules Sum and Prod ranges

over numeric values.

As an example, consider the following table.

b = Valuesˆ1ˆ2ˆ3ˆΣ((1, 2), (1, 3), (1, 4))

The goal is to derive the table b′ such that b→→b′, which can be achieved through

the Tab→→ rule.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 313

Val→→
φ→→b φ

Sum→→
fk→→b xk 1 � k � n

Σ(f1, . . . , fn)→→b x1 + . . . + xn

Prod→→
fk→→b xk 1 � k � n

Π(f1, . . . , fn)→→b x1 ∗ . . . ∗ xn

Ref→→
b[ρ] = f f→→b φ

ρ→→b φ

Hor→→
b1→→b b3 b2→→b b4

b1 | b2→→b b3 | b4

Ver→→
b1→→b b3 b2→→b b4

b1ˆb2→→b b3ˆb4

Tab→→
b→→b b′

b→→b′

Fig. 5. Evaluation of tables (blocks).

Since b is a vertical composition of cells, we have to repeatedly apply the Ver→→
rule, which causes the table to be broken into multiple individual chunks, namely

the label Values, the numbers 1, 2 and 3, and the summation formula. These are all

reduced individually, and then vertically concatenated. The label and the numbers

are reduced immediately using the Val→→ rule. This rule returns them unchanged.

To reduce the summation the premises of the Sum→→ rule must be established.

These preconditions require that all references from the Sum→→ rule must already be

reduced before the sum can be evaluated. In this case, the references refer to the

three numbers, all of which have been reduced using the Val→→ rule. The function

application of the Σ function can then be reduced to 1+2+3, which is 6. Therefore,

the resulting table is Valuesˆ1ˆ2ˆ3ˆ6.

4 Type system

In this section we define a type system for templates to guarantee a meaningful

generation of tables and their update operations.

We distinguish between two sets of types. First, the types of formulas (ϕ) include

base types (α), for example, Num and String, and (first-order) function types for

functions with an arbitrary number of arguments. It is easy to add, for example,

unary and binary operations and corresponding function types and additional

function-application typing rules. Second, template types (τ) have the same structure

as templates except that horizontal and vertical repetition are identified, see Figure 6.

ϕ ::= α | α+ → α (formula types)

σ, τ ::= α | τ | τ | τˆτ | τ+ (templates types)

Fig. 6. Formula and template types.

The type system is defined through several judgments. First, we give typing rules

for formulas. Since the type of a formula f depends, in general, on the types of

formulas that are contained in cells referenced by f, we formalize the typing of

formulas by a judgment σx
y � f : ϕ that expresses that f, found at position (x, y) in

the template, has type ϕ in the context of the template type σ. The typing rules for

formulas are shown in Figure 7. We have two rules for typing references that are

used to distinguish between references to single cells and ranges. We can reuse the

functions defined in Section 3.2.2 to determine the nature of a reference ρ. First of

all, we determine whether or not a referenced cell b = (x′, y′) is in a hex or vex

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

314 M. Erwig et al.

group, because only then it can mean a range. To this end, we can check the range

computed by H or V for a template instance in which each repeating group has

been expanded at least twice (which can be obtained by I2(t)): If the spanned cell

range is larger than the width of the block, the cell is located in a repeating group.

Second, the referenced cell denotes a range if and only if its repeating group is

independent of the referencing cell, which is the case only if its range is different.

Therefore, we can define the “is-range” predicate Θ as follows.

Θx
y(t, (i, j)) = (x′2 − x′1 > w ∧ (x′1, x

′
2) �= (x1, x2)) ∨ (y′2 − y′1 > h ∧ (y′1, y

′
2) �= (y1, y2))

where t = I2(t)

(x′, y′) = Tx
y(t, i, j)

(x′1, x
′
2, w) = Hx′(t)

(y′1, y
′
2, h) = Vy′ (t)

(x1, x2,) = Hx(t)

(y1, y2,) = Vy(t)

In rule App we use the notation α[+] to represent α or α+, which allows single

references as well as range references to be used as function arguments. However,

range references are otherwise prohibited in cells. This restriction is expressed effect-

ively through the Fml rule in Figure 9, which requires α and prohibits α+ for f.

Val

φ has type ϕ

σx
y � φ : ϕ

App

σx
y � φ : α+ → α′ σx

y � fi : α[+]

σx
y � φ(f1, . . . , fn) : α′

Ref

σ[(x, y) + ρ] = τ ¬Θx
y(σ, ρ)

σx
y � ρ : τ

Ref
+

σ[(x, y) + ρ] = τ Θx
y(σ, ρ)

σx
y � ρ : τ+

Fig. 7. Formula typing rules.

We do not allow the arbitrary alignment of blocks and columns. Some constraints

are already expressed by the abstract syntax. In addition, we allow the vertical

composition only for blocks of equal width, see the rules Ver and Col in Figure 9.

Finally, we restrict the horizontal composition to columns that have the same vertical

pattern. This constraint is expressed through the alignment predicate t � t, which is

formalized in Figure 8 and which is used in rule Template in Figure 9.

t � t
t � t′

t′ � t
t1 � t2 t2 � t3

t1 � t3
t1 � t t2 � t
t1 | t2 � t

c � t
c→ � t

c1 � c3 c2 � c4

c1ˆc2 � c3ˆc4

c1 � c4 c2 � c5 c3 � c6

c1ˆ(c2ˆc3) � (c4ˆc5)ˆc6

b1 � b2

b
↓
1 � b

↓
2

�b1 = �b2

b1 � b2

Fig. 8. Column alignment.

The first three rules in Figure 8 define that vertical alignment is an equivalence

relation. The next rule expresses that vertical alignment holds for horizontally

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 315

composed templates if it holds for both templates individually. The fifth rule states

that vertical alignment is invariant under horizontal repetition. The sixth rule defines

vertical alignment as a congruence relation with respect to vertical composition while

the seventh rule expresses that vertical composition is associative with respect to

the equivalence defined by vertical alignment. The eighth rule defines that vertical

alignment hold for vex groups if it holds for the argument blocks, and the last rule

establishes the base case that says that blocks align vertically if the have the same

height.

The typing rules for templates shown in Figure 9 define judgments of the form

σx
y � t : τ. We overload the judgment notation for blocks, columns, and tables.

Fml

σx
y � f : α

σx
y � f : α

Hor

σx
y � b : τ σx+

←→
b

y � b′ : τ′ �b = �b′

σx
y � b | b′ : τ | τ′

Ver

σx
y � b1 : τ σx

y+�b1
� b2 : τ′

←→
b1 =

←→
b2

σx
y � b1ˆb2 : τˆτ′

Block
+

σx
y � b : τ

σx
y � b↓ : τ↓

Col

σx
y � c1 : τ σx

y+�c1 � c2 : τ′ ←→c1 =←→c2

σx
y � c1ˆc2 : τˆτ′

Col
+

σx
y � c : τ

σx
y � c→ : τ→

Template

σx
y � t : τ σx+←→t

y � t′ : τ′ t � t′

σx
y � t | t′ : τ | τ′

Fig. 9. Table typing rules.

To illustrate the typing rules, we give a couple of examples. Using rule Val (from

Figure 7) and Block
+ (from Figure 9), we can derive that 0↓ has type Num↓. Since

Values has type String and is also of width 1, rule Ver can be employed to show

that Valuesˆ0↓ has type StringˆNum↓. To type the reference in the formula Σ(u) we

need a template-type context. With a context σ = StringˆNum↓ˆNum we can first

derive by rule Ref
+ σ1

3 � u : Num↓ (the row number 3 results from the adjustment

in the second premise of the Ver rule). Since according to rule Val, Σ has the type

Num+ → Num in any template-type context σx
y , we can apply the App rule to obtain

the type Num for the summation cell, which finally yields the type σ for the whole

summation column.

For the type of the summation template shown at the end of section 3.1 we first

determine the type for the hex group, which according to rule Col
+ is σ→ (where

σ is the type of the summation column). For typing the formula Σ(�) in the total

column, we again need a context, which we select as τ = σ→ | σ.

The type system allows the typing of cyclic references by assuming a fixed,

arbitrary type for all cells on the cycle in σx
y . Cycles represent nonterminating

computations and correspond to nonterminating function definitions whose value

is undefined. In contrast to a Turing-complete functional language, we can easily

detect nonterminating computations by identifying cycles in templates. Therefore,

we consider a template to be type correct only if it does not contain any cycles.

Although we could encode the cycle detection (or better, prevention) into the type

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

316 M. Erwig et al.

system, it seems to be easier to add an explicit definition. We can determine all

references that are contained in a formula by the following function.

�(φ) = �

�(ρ) = {ρ}
�(φ(f1, . . . , fn)) = ∪1�i�n�(fi)

A template t contains a cycle [(x1, y1), . . . , (xn, yn)] iff

∀1 � i < n.(xi+1, yi+1) ∈ �(t[xi, yi]) ∧ (xn, yn) ∈ �(t[x1, y1])

Next we define the notion of well typing for templates (and tables).

Definition 4.1

t is well typed with template type τ if τ1
1 � t : τ and t does not contain a cycle.

5 Evolution safety

The main result for the presented table calculus is that a type-correct template allows

only the generation of tables that can be always safely evaluated and never result in

a computational error, such as a type error or reference error. To express this result

formally we define the set of tables T(t), that is, the set of (template instance, table)

pairs, that can be obtained from a template t through update operations as follows.

T(t) is the smallest set satisfying:

(1) (I1(t),G1
1(I1(t),I1(t))) ∈ T(t)

(2) (t, b) ∈ T(t) =⇒ u(x,y)(t, b) ∈ T(t)

for 1 � x �
←→
b , 1 � y � �b and

u ∈ {insR, insC, delR, delC, chgφ}

We use the judgment ⇓b, which is defined in Figure 10, to express that the table b is

fully evaluated, that is, b contains only values and does not contain any unevaluated

formulas or unresolved references.

⇓φ
⇓b ⇓b′

⇓(bˆb′)
⇓b ⇓b′

⇓(b | b′)

Fig. 10. Table normal form.

The safety result can now be expressed as follows.

Theorem 1

If t is well typed and (t, b) ∈ T(t), then ∃b′.b→→b′ ∧ ⇓b′.

Proof

(Sketch) The proof is by induction over the construction history for elements of

T(t), that is, first we show that the theorem is true for bt = G1
1(I1(t),I1(t)). Then

we show that each application of an update operation preserves the property. The

theorem follows then by induction over the number of applied updates.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 317

(1) It is obvious from the definition of G that bt differs from t only in the following

way: For any subexpression u+ in t, the corresponding subexpression in bt is just

u, because the exponent is translated by I into 1, which is simply ignored by G.

The evaluation of bt works by recursively descending to formulas (rules Hor→→ and

Ver→→ in Figure 5). Values can always be evaluated to themselves (rule Val→→). The

rules for function application (rules Sum→→ and Prod→→) require that all arguments

can be evaluated to values of the appropriate type. This precondition is ensured by

the typing rule App that is shown in Figure 7. The evaluation of a reference requires

that the referenced cell exists and that the contained formula can be evaluated (rule

Ref→→ in Figure 5). The existence of references is guaranteed by the typing rules Ref

and Ref
+ in Figure 7. The fact that the referenced formula can be evaluated follows

by induction because the well typing of t implies the absence of cycles.

(2) Next we consider an arbitrary element (t, b) ∈ T(t). Let (t′, b′) = insC(x,y)(t, b).

First, Cx increases the index of the hex group that covers the x coordinate by one.

Then G regenerates the formulas for the whole new table. The adjustment of the

x coordinate by ←→c ensures that the generator keeps track of the correct position

for the generation of all instances of the column, in particular, the newly inserted

one and the ones that are moved to the right. This fact guarantees (through the

definition of Rx
y) that all references for newly generated cells and for moved cells

will be translated into absolute addresses that refer to cells of the same type as the

relative references in the template. Since the definition of H takes into account the

position and width of the newly inserted column, the process of copying the values

from the old table into the generated table does not change any reference. Therefore,

the same line of reasoning as under (1) applies to the evaluation of references and

arguments of operations, only on a larger set of cells.

An initial spreadsheet is known to be free of circular references. For each vex or

hex group, it may reference some aligned and some unaligned blocks. If a row or

column is added, a reference to an aligned block will be of the same form, thus not

introducing a new circular reference. A reference to an unaligned block will remain

constant. That unaligned block cannot reference the newly inserted cell, because it

may only reference the entire vex/hex group or none of it. If it did reference the

group, then there would have already been a circular reference in the initial sheet.

If it does not, then no new circular reference will be introduced by the inserted cell

referencing it.

Therefore, the theorem is true for the insC operation. Similar considerations apply

to the other structure-changing operations. Since the chgφ operation changes a value

to another value of the same type, the theorem is true also for this operation. �

In analogy to Milner’s slogan that “well-typed programs cannot go wrong”, the

above result can be paraphrased as “well-typed templates cannot evolve wrong”.

6 Implementation of the Gencel system

The components of the Gencel system are shown in Figure 11. The generator and

type checker are implemented in Haskell (Peyton Jones, 2003). These components

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

318 M. Erwig et al.

Fig. 11. Gencel system architecture.

Fig. 12. Interface for loading Gencel specifications.

are connected through a VBA module to Excel, which serves mainly as the user

interface. We have already successfully employed a similar Haskell-backend strategy

in the recent implementation of a header and unit inference system (Abraham &

Erwig, 2004) and a debugger (Abraham & Erwig, 2005) for Excel. The information

from the Excel sheet being manipulated by the end user is captured by a VBA

program and sent to the backend server. The VBA system is shipped as an Excel

add-in. The Haskell modules are compiled with GHC (GHC, 2004) to a Windows

executable that runs as the backend server.

The Gencel toolbar has four buttons for row and column insertions, two buttons

for row and columns deletions, and one button to bring up the interface for loading

the specifications. This interface (shown in Figure 12) shows the user a listing of the

available templates. When the user clicks on any file name from the list on the left

she is shown a preview and a description of the specification, which can be added

manually as a comment to templates.

Depending on which button has been clicked, the VBA program sends the

corresponding message, with information about the current cell selection, to the

backend server. The server performs the update to yield the new template instance.

It then generates the messages for the updates to be performed to the Excel

spreadsheet and sends them to the VBA program (these messages simply paint the

new template instance in the Excel spreadsheet). Through Excel events, the VBA

program also keeps track of value updates to the Excel spreadsheet.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 319

Fig. 13. Vitsl interface.

The backend server contains a “Message Dispatcher” that receives messages from

the VBA program. In case of structural updates like row/column insert/delete

operations, the dispatcher interacts with the “Generator” module to come up with

the new template instance and the messages to reflect the update in the Excel

frontend. In case the user changes a value in the Excel spreadsheet, the dispatcher

forwards the message to the “Value Checker” module that checks the updated value

against the specification to ensure that the new value is type correct. The other

components of the backend server include the “Type Checker” module that checks

the template loaded into the system by the user to ensure that it is type correct.

The template, after type checking, is translated into the initial template instance and

table by the generator.

The frontend VBA program keeps a copy of the Vitsl representation of the most

recent template instance. Each time the user issues the save-file command in Excel,

Excel saves the workbook and the corresponding Vitsl template instance. Whenever

the Gencel add-in has been enabled in Excel, every time the user loads a workbook

in Excel, the events trigger the backend server to load the corresponding template

instance. This allows us to keep both files synchronized.

Moreover, we have implemented an interface that allows users to edit Vitsl speci-

fications. The interface is shown in Figure 13 with the template for the budget sheet.

Vitsl is targeted at domain experts who are familiar with Excel. Therefore,

to maintain the closeness of mapping, we have adopted a structure and behavior

similar to Excel. Along the lines of the Gencel system, the Vitsl interface also allows

insertion of rows (or columns) above or below (left or right) of the current cell.

We have additional buttons for the creation of vertically or horizontally repeating

groups. The interface differs from the visual notation used in section 2 in how

it represents repeating groups. In the interface, the light gray shading marks the

expansion areas of repeating groups, and the three vertical and horizontal dots (for

vertically/horizontally repeating groups) appear only on the borders. Moreover, the

absence of separators between the cells in the headers expresses that those rows or

columns are part of the same repeating group. For example, in Figure 13, columns

B, C, and D belong to the same repeating group.

The design of the Vitsl editor and an evaluation of the design using the Cognitive

Dimension framework (Green & Petre, 1996) is described in more detail in Abraham

et al. (2005).

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

320 M. Erwig et al.

7 Related work

The pervasiveness of errors in spreadsheets has motivated some research into

spreadsheet design (Isakowitz et al., 1995; Yoder & Cohn, 1994; Ronen et al.,

1989), testing (Rothermel et al., 2001), consistency checking (Erwig & Burnett, 2002;

Burnett & Erwig, 2002; Burnett et al., 2003; Ahmad et al., 2003; Antoniu et al., 2004;

Abraham & Erwig, 2004), fault localization (Ruthruff et al., 2003; Prabhakarao et al.,

2003), and debugging (Abraham & Erwig, 2005).

However, little research has been performed on creating new, safer spreadsheet

systems. The spreadsheet language Forms/3 (Burnett et al., 2001) extends the

spreadsheet paradigm by a number of features found in other programming

languages. The language contains many experimental features, such as a time

dimension, generalizations, gestures, and a model of sequence I/O. The application

is itself not so much an end-user application, but a platform to study potential

end-user applications. Since Forms/3 allows the free positioning and resizing of

cells, it deviates from the traditional interaction model of spreadsheets, which makes

it difficult to implement it as an extension of, for example, Excel as we did. Our

approach is also strongly concerned with typing and safety, whereas this was not

the primary concern in the design of the Forms/3 system.

On the other hand, the Forms/3 group has explored different approaches for

auditing spreadsheets. Rothermel et al. have come up with the “What You See Is

What You Test” methodology for testing spreadsheets (Rothermel et al., 2001). This

methodology uses data flow adequacy criteria and coverage monitoring to give users

incremental feedback (using cell coloring and a “testedness” progress bar) on the

percentage of cells that have been tested. Fisher et al. have developed a system that

automatically generates test cases for end users to test their spreadsheets (Fisher II

et al., 2002). Fault localization techniques to help end users debug spreadsheets

have also been incorporated into the Forms/3 language (Ruthruff et al., 2003;

Prabhakarao et al., 2003).

The formulae, formats, relations (FFR) model presented in Sajaniemi (2000)

abstracts the structure of spreadsheets. It also helps to analyze visualization

mechanisms for spreadsheets. In this approach, errors in spreadsheet formulas show

up as anomalies in the visualizations. A similar approach of identifying recurring

structure (regions) in spreadsheets and then presenting anomalies as potential

problem areas to the user is followed by the system described in Mittermeir &

Clermont (2002). Both systems are designed to provide insights into the structure of

existing spreadsheets; they are not intended to prevent errors in spreadsheets.

The Haxcel system of Lisper & Malmström (2002) is an attempt to bring the

advantages of spreadsheets together with the type-safe, functional language Haskell.

They define a system where Haskell programs are defined in a graphical list, and

specialized arrays of data are displayed as tables. Any changes to the Haskell

program will be immediately visible in the results of computation. This creates a

tight “definition-eval-display loop” as spreadsheets have. Our approach is to begin

at spreadsheets and move them toward a type-safe, structured system. Haxcel uses

the opposite approach: to begin with a type-safe, structured language (Haskell) and

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 321

make it more like a spreadsheet. They do this by separating the Haskell code from

the data it is to process and placing the data in a table. In both cases, the goal of

providing users with a clean and safe environment is present. However, very few

users are familiar with Haskell compared to the number familiar with spreadsheets

and this discrepancy is a potential barrier to the adoption of the Haxcel system. On

the other hand, our system allows users to use functions and formulas that they are

comfortable with in a familiar environment.

The FunSheet system (de Hoon et al., 1995) is another work which combines

spreadsheets and general functional programming. The FunSheet system uses a

regular row and column spreadsheet, but replaces the traditional formulas with more

expressive functional syntax. The cells are lazily evaluated and may contain lists and

other composite values. Cells are referenced by the use of column functions, that is,

each column (A, B, etc.) is a function which takes an integer parameter and returns

a cell value. Cell formulas can include functions like map and fold. The system

also allows partial reductions of cell formulas and unbound variables. FunSheet

is implemented in Clean and is used as an experiment in functional graphics and

I/O as well as spreadsheets. FunSheet and our approach are similar on the surface:

both start with a row and column spreadsheet model and move toward a safer

system. FunSheet retains the unstructured model of spreadsheets and instead allows

highly expressive functional programming in the cells. Our system retains many of

the familiar abilities of spreadsheet formulas, but enforces a structured layer on

the sheet itself. This is quite different from the FunSheet approach. One reason for

this difference is a difference in goals: FunSheet seeks to explore and extend the

computational capabilities of spreadsheets while our system seeks to increase safety

and usability of spreadsheets.

The approach of Peyton Jones and others (Peyton Jones et al., 2003) to extend

Excel by user-defined functions has a strong basis in end-user usability. The authors’

primary goal is to design a method for end users to easily create new functions in

their spreadsheets. They use a familiar spreadsheet model and attempt to minimize

the impact (learning curve) on users while maximizing the user’s productivity. The

authors note that traditional spreadsheets often compute very complex models, but

do not include any user-defined functions, which makes the spreadsheets needlessly

complicated and difficult to maintain. The authors introduce a system that allows

users to define functions within the existing spreadsheet model. The user creates

a function sheet, which appears the same as any ordinary sheet, and defines the

function from input cell(s) to an output cell. They may then use the function like any

other built-in function. The authors have implemented a minimal prototype using

VBA macros in Excel. They have also devised several mock-ups to demonstrate the

concept of user-defined functions in Excel. The approach of the authors differs

strongly from our approach. First, the authors focus heavily on the cognitive

dimensions approach (Green & Petre, 1996). The authors also use as much of

the existing paradigm as possible – they purposefully do not attempt to add a

new representation for functions or new structure to the spreadsheets. The authors’

approach does not increase the safety of a spreadsheet, except perhaps in cases

where functions decrease the complexity of a sheet and allow the user to notice

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

322 M. Erwig et al.

errors. However, the approaches are not entirely different. Both the authors’ and our

approach start with a familiar spreadsheet model. Both seek to improve end-user

experience specifically. Both are more concerned with usability than adding new

features to the spreadsheet system.

8 Conclusion and future work

We have designed a specification language for describing spreadsheet tables and

their possible evolutions. The language is based on a table evolution calculus that

defines semantics of generating tables from templates and the evaluation of tables.

We have developed a type system for this calculus that ensures that any table

obtained from a template can be safely evaluated without causing any errors.

We have implemented a prototype, called Gencel, as an extension to Excel that

allows users to work safely with tables based on templates. The current system works

well for many examples and can even conveniently deal with some computations

that are difficult to perform in Excel.

In particular, Gencel exterminates the following kinds of errors from spreadsheets.

• Range errors (for example, omitted cells in aggregations)

• Reference errors

• Type errors

The impact of these errors has been extensively documented. For example, an

omission error has caused a Florida construction company to underbid a project by a

quarter of a million dollars (Ditlea, 1987; Hayen & Peters, 1989; Gilman & Bulkeley,

1986). An example of a type error is the illegal interpretation of a date as a numeric

value, which caused an operating fund of the Colorado Student Loan Program to be

understated by $36,131 (U.S. Department of Education, 2003). Finally, a reference

error caused a hospital’s records to overstate its Medicaid/Medicare crossover log

by $38,240 (U.S. Department of Health and Human Services, 2003). The use of

Gencel would have prevented all these errors.

The presented formalism and implementation indicate a new direction for

functional programming research that is targeted at end users. Due to the widespread

use of spreadsheets, the impact of work in this area can be enormous.

We have identified several topics for future research, both relating to the formal

system and the tool implementation. We first discuss extensions to the formal system.

Each value φ in a cell of an expandable group potentially denotes a sequence

of values, because the insert row/column operations can duplicate the cell. In the

current model, this sequence of values is fixed to be [φ,φ, φ, φ, . . .]. A simple and

useful generalization is to allow the specification of value generators in cells of

expandable groups.

Currently, references all relate from one cell to another within the same table.

If spreadsheets were allowed to contain multiple tables, it should be possible for

references to refer to other tables in the same spreadsheet. There are several possible

approaches to construct multiple-table spreadsheets. Perhaps the simplest approach

would be to name tables and use names plus relative references.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 323

Another limitation of references in expandable groups is that they either refer to

another cell in the current repeating group or a fixed cell or range outside of the

current group. No mechanism exists to allow a recursive reference to a different

expansion of the same group. To solve this problem, the system needs a new kind

of relative references, which reference a different generated block within the same

expansion area. Such an extension affects syntax and semantics of the table calculus.

Moreover, the rules of the type system become more complex since the references

may be constructed to float over a wide variety of cells as expansion occurs.

Future work also extends into improvements of Gencel and associated tools. To

support a wide-spread use of the Gencel system and to enable a smooth transition, we

have to offer tools that can load existing Excel spreadsheets into the Gencel system.

Since those spreadsheets are only given in Excel format, we have to distill a template

of which they can be an instance. We call this process of identifying templates from

plain spreadsheets template parsing. Template parsing is indispensable for the work

with legacy spreadsheets.

It might not be possible to completely automate this process because of

ambiguities. Techniques employed in probabilistic grammars (Charniak, 1996) might

be useful to generate a ranked list of possible parsed templates. Alternatively, we

could adapt spatial analysis techniques to identify semantic structures in spreadsheets

that we developed to support the automatic header and unit inference (Abraham &

Erwig, 2004).

Another feature that seems to be valuable in practice is the ability to encode

formatting information with a spreadsheet template. This does not pose any

theoretical difficulties.

Acknowledgments

The authors would like to thank the anonymous reviewers for their help in improving

the presentation of this paper.

References

Abraham, R. and Erwig, M. (2004) Header and Unit Inference for Spreadsheets Through

Spatial Analyses. IEEE Int. Symp. on Visual Languages and Human-Centric Computing,

pp. 165–172.

Abraham, R. and Erwig, M. (2005) Goal-Directed Debugging of Spreadsheets. IEEE Int.

Symp. on Visual Languages and Human-Centric Computing. pp. 189–196.

Abraham, R., Erwig, M., Kollmansberger, S. and Seifert, E. (2005) Visual Specifications of

Correct Spreadsheets. IEEE Int. Symp. on Visual Languages and Human-Centric Computing.

pp. 37–44.

Ahmad, Y., Antoniu, T., Goldwater, S. and Krishnamurthi, S. (2003) A Type System for

Statically Detecting Spreadsheet Errors. 18th IEEE Int. Conf. on Automated Software

Engineering, pp. 174–183.

Antoniu, T., Steckler, P. A., Krishnamurthi, S., Neuwirth, E. and Felleisen, M. (2004)

Validating the Unit Correctness of Spreadsheet Programs. 26th IEEE Int. Conf. on Software

Engineering, pp. 439–448.

Brown, P. S. and Gould, J. D. (1987) An Experimental Study of People Creating Spreadsheets.

ACM Trans. Office Infor. Syst. 5(3), 258–272.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

324 M. Erwig et al.

Burnett, M. M. and Erwig, M. (2002) Visually Customizing Inference Rules About Apples and

Oranges. 2nd IEEE Int. Symp. on Human-Centric Computing Languages and Environments,

pp. 140–148.

Burnett, M. M., Atwood, J., Djang, R., Gottfried, H., Reichwein, J. and Yang, S. (2001)

Forms/3: A First-Order Visual Language to Explore the Boundaries of the Spreadsheet

Paradigm. J. Funct. Program., 11(2), 155–206.

Burnett, M. M., Cook, C., Summet, J., Rothermel, G. and Wallace, C. (2003) End-User

Software Engineering with Assertions. 25th IEEE Int. Conf. on Software Engineering,

pp. 93–103.

Charniak, E. (1996) Statistical Language Learning. MIT Press.

de Hoon, W. A. C. A. J., Rutten, L. M. W. J. and van Eekelen, M. C. J. D. (1995) Implementing

a Functional Spreadsheet in Clean. J. Funct. Program. 5(3), 383–414.

Ditlea, S. (1987) Spreadsheets Can be Hazardous to Your Health. Personal Comput. 11(1),

60–69.

Erwig, M. and Burnett, M. M. (2002) Adding Apples and Oranges. 4th Int. Symp. on Practical

Aspects of Declarative Languages, pp. 173–191. LNCS 2257.

Erwig, M., Abraham, R., Cooperstein, I. and Kollmansberger, S. (2005) Automatic Generation

and Maintenance of Correct Spreadsheets. 27th IEEE Int. Conf. on Software Engineering,

pp. 136–145.

Fisher II, M., Cao, M., Rothermel, G., Cook, C. and Burnett, M. M. (2002) Automated

Test Case Generation for Spreadsheets. 24th IEEE Int. Conf. on Software Engineering,

pp. 141–151.

GHC. (2004) The Glasgow Haskell Compiler. http://haskell.org/ghc.

Gilman, H. and Bulkeley, W. (1986) Can Software Firms be Held Responsible When a

Program Makes a Costly Error? Wall Street J. CCVII(24), 17.

Green, T. R. G. and Petre, M. (1996) Usability Analysis of Visual Programming Environments:

A ‘Cognitive Dimensions’ Framework. J. Visual Lang. & Comput. 7(2), 131–174.

Hayen, R. L. and Peters, R. M. (1989) How to Ensure Spreadsheet Integrity. Management

Accounting, 60(9), 30–33.

Hendry, D. G. and Green, T. R. G. (1994) Creating, Comprehending and Explaining

Spreadsheets: A Cognitive Interpretation of What Discretionary Users Think of the

Spreadsheet Model. Int. J. Human-Computer Stud. 40, 1033–1065.

Isakowitz, T., Schocken, S. and Lucas, Jr., H. C. (1995) Toward a Logical/Physical Theory of

Spreadsheet Modelling. ACM Trans. Infor. Syst. 13(1), 1–37.

Kay, A. (1984) Computer Software. Sci. Am. 251(3), 41–47.

Lerch, J. F., Mantei, M. M. and Olson, J. R. (1989) Skilled Financial Planning: The Cost

of Translating Ideas Into Action. ACM Conf. on Human Factors in Computing Systems,

pp. 121–126.

Lewis, C. and Olson, G. M. (1987) Can Principles of Cognition Lower the Barriers to

Programming? 2nd Workshop on Empirical Studies of Programmers, pp. 248–263.

Lisper, B. and Malmström, J. (2002) Haxcel: A Spreadsheet Interface to Haskell. 14th Int.

Workshop on the Implementation of Functional Languages, pp. 206–222.

Mittermeir, R. and Clermont, M. (2002) Finding High-Level Structures in Spreadsheet

Programs. 9th Working Conference on Reverse Engineering, pp. 221–232.

Norman, D. A. (1986) Cognitive Engineering. In: Norman, D. A. and Draper, S. W. (editors),

User-Centered System Design, pp. 31–61. Lawrence Erlbaum.

Panko, R. R. (2000) Spreadsheet Errors: What We Know. What We Think We Can Do. Symp.

of the European Spreadsheet Risks Interest Group (EuSpRIG).

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

Gencel: a program generator for correct spreadsheets 325

Peyton Jones, S. L. (2003) Haskell 98 Language and Libraries: The Revised Report. Cambridge

University Press.

Peyton Jones, S. L., Blackwell, A. and Burnett, M. M. (2003) A User-Centered Approach to

Functions in Excel. ACM Int. Conf. on Functional Programming, pp. 165–176.

Prabhakarao, S., Cook, C., Ruthruff, J., Creswick, E., Main, M., Durham, M. and Burnett,

M. (2003) Strategies and Behaviors of End-User Programmers with Interactive Fault

Localization. IEEE Int. Symp. on Human-Centric Computing Languages and Environments,

pp. 203–210.

Rajalingham, K., Chadwick, D. R. and Knight, B. (2001) Classification of Spreadsheet Errors.

Symp. of the European Spreadsheet Risks Interest Group (EuSpRIG).

Ronen, B., Palley, M. A. and Lucas, Jr., H. C. (1989) Spreadsheet Analysis and Design. Comm.

ACM, 32(1), 84–93.

Rothermel, G., Burnett, M. M., Li, L., DuPuis, C. and Sheretov, A. (2001) A Methodology

for Testing Spreadsheets. ACM Trans. Softw. Eng. & Methodology, 110–147.

Ruthruff, J., Creswick, E., Burnett, M. M., Cook, C., Prabhakararao, S., Fisher II, M. and

Main, M. (2003) End-User Software Visualizations for Fault Localization. ACM Symp. on

Software Visualization, pp. 123–132.

Sajaniemi, J. (2000) Modeling Spreadsheet Audit: A Rigorous Approach to Automatic

Visualization. J. Visual Lang. & Comput. 11, 49–82.

U.S. Department of Education (2003) Audit of the Colorado Student Loan Program’s

Establishment and Use of Federal and Operating Funds for the Federal Family Education

Loan Program. Report ED-OIG/A07-C0009.

U.S. Department of Health and Human Services (2003) Review of Medicare Bad Debts at Pitt

County Memorial Hospital. Report A-04-02-02016.

Yoder, A. G. and Cohn, D. L. (1994) Real Spreadsheets for Real Programmers. Int. Conf. on

Computer Languages, pp. 20–30.

https://doi.org/10.1017/S0956796805005794 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005794

