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Summary
A class of dual integral equations involving Bessel functions is solved by

formal application of Mellin transforms.

1. Introduction
Dual integral equations involving Bessel functions occur in the solution

of axially-symmetric boundary value problems in elasticity and electrostatics.
Noble (1) has recently obtained the solution of a general class of such integral
equations. Noble's method is an extension of that developed by Copson (2)
for the problem of the electrified disc. The approach is an indirect one and
requires a knowledge of certain integrals of products of Bessel functions and
considerable manipulation. In the present note a simple direct method is
given for solving Noble's equations by a formal application of Mellin transforms.
Mellin transforms were first used by Titchmarsh (3) to solve this type of dual
integral equation but the present method differs from that of Titchmarsh.

Solutions of the Equations
The equations which we shall consider are

f
Jo

f
Jo

(1)

(2)

The left-hand sides of equations (1) and (2) represent functions of x for all
values of x and we shall denote these functions by F{x) and G(x) respectively.
We also denote the Mellin transform of a function F(x) by F*(s) i.e.

Jo
F*C0 = x*~lF{x)dx.

Jo
From the convolution theorem for Mellin transforms (4) we have that

(3)

(4)
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where

Equations (3) and (4) may be re-arranged to give.

The convolution theorem shows that the right-hand side of equations (5) and (6)
is the Mellin transform of the function K(x) denned by

Jo
(7)

In order to simplify the discussion it is convenient at this point to write
down two Mellin transforms which will be used in the subsequent analysis.
We have (4)

T(X) ') T{s+X)

where H(x) is Heaviside's unit function and 2>0. We thus see that the left-
hand side of equation (5) is the product of the transforms of F(x) and a function
which vanishes for x< 1, hence, since F(x) is known for x< 1, the convolution
theorem shows that the function whose Mellin transform is the left-hand side
of (5) is known for x<l. Similarly the function whose Mellin transform is
the left-hand side of (6) is known for x> 1. Thus the function K(x) is known
for all x^.0 and hence ij/(O may be found by Hankel's inversion theorem.
The actual form of the inverses of the left-hand sides of (5) and (6) depends
on whether —2<a<0 or 0 < a < 2 and we consider these two cases separately.

(a) -2<<x<0.

We have that

-»-«-i A_(_JiJL—f(x2_w
2)*V + 1/(w)dw), 0<x<l

Mr(l i ) J / '

K(x) =—^— f
T(—l«)Jx
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Hankel's inversion theorem now gives

77 f
i«) Jo

- 1 — -

(b) 0<a<2.
In this case

^ 7 7 f
r(i+i«) Jo

J (10)

K(x) = 2 l "X " I wn+\x2-w2)i'-if(w)dw,
Hia) Jo

K(x) =

Hankel's inversion theorem then gives

^ J x
(11)

The above analysis is purely formal but it may be verified by direct substitution
that equations (10) and (11) represent the solution of the integral equations
for «>0. Equations (10) and (11) are in exact agreement with Noble's
solution.

Solution for F(x) and G(x)
In some problems one is more interested in the actual forms of F(x) and

G(x) than in the function i^(^). Clearly F and G may be determined from \j/
but it is possible to use a more direct approach not involving ifr. This approach
was in fact the starting point of the present investigation. We shall consider
only the case — 2<a<0, the case 0 < a < 2 may be treated similarly.

From (3) and (4) we obtain

F*(s) = 2<T(is+in)r(in + ia+l-is)
i)G*(s)

Thus, from equations (8), (9), (12) and the convolution theorem,

where
2 1 f " 2 2 * 1 + 1 (14)
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Then from equation (1)

f
Jo

{F(-i«)}2JoV "
the above equation is a generalisation for Abel's integral equation and a
solution has been given by Noble (1). We have that

m = - X*V W J ™*u,t u -v 7 W ^ f ( ) < ^ < 1 ( 1 5 )

G(t) is known for t>\ and thus ./(£) is known for all £ from equations (14)
and (15). Hence

Jo ^ Jo ( ? - ' ) " *

(16)

G(t) in 0<f< 1 may be obtained in a similar fashion from equation (14).
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