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Equivariant cobordisms between freely
periodic knots

Keegan Boyle and Jeffrey Musyt

Abstract. We consider free symmetries on cobordisms between knots, which is equivalent to cobor-
disms between knots in lens spaces. We classify which freely periodic knots bound equivariant
surfaces in the 4-ball in terms of corresponding homology classes in lens spaces. We give a numerical
condition determining the free periods for which torus knots bound equivariant surfaces in the
4-ball.

1 Introduction and main results

A knot K ⊂ S3 is freely (p, q)-periodic if there is a free Z/pZ-action on S3 with
quotient L(p, q)which leaves K invariant. An example is shown in Figure 1. Thinking
of S3 as the unit sphere in C

2, this symmetry is conjugate to (z, w) ↦ (αz, αqw),
where α = e2πi/p . The goal of this paper is to understand when a freely periodic knot
bounds an equivariant orientable surface in B4. For convenience, we will work in the
smooth category, although all results in this paper can easily be seen to hold in a more
general topologically locally linear category.

Definition 1.1 A freely (p, q)-periodic knot K is an equivariant boundary if there is a
smooth order p extension ρ ∶ B4 → B4 of the Z/pZ symmetry on S3 and an orientable
surface S properly smoothly embedded in B4 with ρ(S) = S and ∂S = K.

It is interesting to compare the case of periodic and strongly invertible knots,
which always equivariantly bound an orientable surface in S3 (and hence in B4) (see,
for example, [BI21a, Proposition 1]). On the other hand, freely periodic knots never
bound equivariant orientable surfaces in S3, since such a surface would necessarily
contain a fixed point, but the symmetry acts freely on S3.

In this paper, we characterize which freely periodic knots equivariantly bound
in B4.

Theorem 1.2 Let K ⊂ S3 be a freely (p, q)-periodic knot, and let π ∶ S3 → L(p, q) be
the quotient map. Then K is an equivariant boundary if and only if π(K) represents a
simple homology class (see Definition 2.1) in H1(L(p, q);Z).
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Figure 1: A freely (3, 1)-periodic diagram for T(2, 7). This diagram consists of three identical
tangles and one full twist.

Furthermore, we prove that a simple count of strands in a freely periodic diagram
determines if the knot equivariantly bounds.

Theorem 1.3 Let D be an oriented freely (p, q)-periodic diagram (see Definition 2.8)
for a knot K. Let m be the signed count of strands in D. Then K represents a simple
homology class in the quotient L(p, q) if and only if m ≡ ±1 or m ≡ ±q−1 (mod p).

In the case of torus knots, this reduces to a numerical condition on the torus knot
parameters and the order of the symmetry.

Corollary 1.4 (Corollary of Theorem 1.3) A freely (p, q)-periodic symmetry of
T(r, s) equivariantly bounds if and only if p is a divisor of r + 1, r − 1, s + 1, or s − 1.

Throughout the paper, all surfaces are orientable unless otherwise stated.

2 Definitions and proofs

Our results are based on considering the homology class which a freely periodic
knot represents in the quotient lens space L(p, q). We begin by distinguishing some
elements of H1(L(p, q)).

Definition 2.1 A simple homology class in H1(L(p, q);Z) is one which is repre-
sented by the core of a handlebody in a genus 1 Heegaard splitting.

In fact, there is a unique genus 1 Heegaard splitting for L(p, q) (see [Bon83]), so
that there are at most four simple homology classes in H1(L(p, q)) coming from the
two orientations on the cores of the two handlebodies.

The following proposition is a restatement of [BE12, Lemma 5.2], noting that the
lift in S3 of a knot K in L(p, q) is an unknot if and only if K is a rational unknot.

Proposition 2.2 [BE12, Lemma 5.2] Let U be a freely (p, q)-periodic unknot. Then the
quotient U represents a simple homology class in H1(L(p, q)). Conversely, every simple
homology class is represented by the quotient of an unknot.
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We now define our main object of study: equivariant cobordisms between freely
periodic knots. As we will see in Lemma 2.7, studying equivariant cobordisms from
K to the unknot is equivalent to studying equivariant surfaces with boundary K.

Definition 2.3 An equivariant cobordism (S3 × I, S , ρ) between a freely (p, q)-
periodic knot (K , ρ) and a freely (p, q′)-periodic knot (K′ , ρ′) is a proper smooth
embedding of a surface S → S3 × I such that S ∩ (S3 × {0}) = K and S ∩ (S3 × {1}) =
K′, along with a free smooth Z/pZ action ρ on S3 × I which restricts to the freely
periodic symmetries ρ on S3 × {0} and ρ′ on S3 × {1}, and leaves S invariant.

To study these cobordisms, it will be convenient to first take the quotient by the
free symmetry.

Lemma 2.4 Let W = S3 × I, let ρ be a finite order diffeomorphism acting freely on W,
and let ρ∣S3×{0} = ρ and ρ∣S3×{1} = ρ′, for example, an equivariant cobordism between
freely periodic knots. Then the quotient W =W/ρ is a homology cobordism between
lens spaces.

Proof Since S3 × I is simply connected, π1(W) = Z/pZ = H1(W), and the maps

H1(S3/ρ) → H1(W) and H1(S3/ρ′) → H1(W)

induced by inclusion are isomorphisms. Since W is connected, the same is true for
H0 so that W is a homology cobordism. ∎

We are interested in the maps induced on homology from these homology cobor-
disms. The following theorem, which is a consequence of the work in [AB68], first
appeared in [Mil66]. The theorem also follows from an analysis of the d-invariants of
lens spaces (see [DW15]).

Theorem 2.5 [Mil66, Corollary 12.2] Let W ∶ L(p, q) → L(p, q′) be a homology
cobordism. Then L(p, q) is homeomorphic to L(p, q′) and W induces ±Id on
H1(L(p, q);Z).

Corollary 2.6 Let K be a freely (p, q)-periodic knot, and let K′ be a freely (p, q′)-
periodic knot. If there is an equivariant cobordism between K and K′, then q′ = ±q±1 ∈
Z/pZ. In particular, K′ is a freely (p, q)-periodic knot.

Proof Apply Theorem 2.5 to the quotient of the equivariant cobordism, and use
the homeomorphism classification of lens spaces [Bro60]. ∎

We now relate equivariant cobordisms to equivariant surfaces for freely periodic
knots.

Lemma 2.7 A freely (p, q)-periodic knot K is an equivariant boundary if and only if
there is an equivariant cobordism between K and a freely (p, q)-periodic unknot.
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Proof Let S be an equivariant surface for K with respect to an order p diffeomor-
phism ρ ∶ B4 → B4. By classical Smith theory [Smi41], ρ has a contractible fixed-point
set F. Furthermore, since the fixed set of a self-diffeomorphism is a submanifold, F is
a single point. Similarly, the fixed-point set of ρ∣S is also the single point F. Removing
an equivariant neighborhood N(F) from B4 leaves an S3 boundary component
containing an unknot U. Hence, we have (S − N(F)) ⊂ S3 × I, which is preserved by
the free Z/pZ action and ∂(S − N(F)) = K ∪U . That is an equivariant cobordism
between K and U. By Corollary 2.6, U comes with a freely (p, q)-periodic symmetry.

On the other hand, suppose that we have an equivariant cobordism between K
and U. By Proposition 2.2, U can be taken to be the lift of a core of a handlebody in
a genus 1 Heegaard decomposition of L(p, q), and in particular, the cone of (S3 , U)
is a smooth equivariant disk in B4. Gluing this to the cobordism gives an equivariant
surface for K. ∎

We now have all of the tools we need in order to prove Theorem 1.2.

Proof Suppose K ⊂ S3 is a freely (p, q)-periodic knot which bounds a surface
S ⊂ B4 which is invariant under an order p diffeomorphism ρ ∶ B4 → B4 with ρ∣S3

the free Z/pZ action preserving K. Then, by Lemma 2.7, there is an equivariant
cobordism from K to a freely (p, q)-periodic unknot Up,q . By Lemma 2.4, the
quotient of this cobordism is a cobordism of the quotient knots K and U p,q in a
homology cobordism of lens spaces. In particular, there is a map f ∶ H1(L(p, q)) →
H1(L(p, q))with [ f (K)] = [U p,q]which is induced by a homology cobordism of lens
spaces. By Theorem 2.5, f = ±Id. Hence, K represents the same class as an unknot in
H1(L(p, q)). Then, by Proposition 2.2, we have that [K] is simple.

On the other hand, suppose that [K] is simple. Then, by Proposition 2.2, K is in
the same homology class as the core U of a handlebody in the genus 1 Heegaard
decomposition of L(p, q), which lifts to a freely periodic unknot U. Hence, there is a
surface S in L(p, q) with boundary K ∪U , and lifting S to S3 gives us an equivariant
surface S with boundary K ∪U . We can then take the cone of (S3 , U) with the free
symmetry to obtain a smooth equivariant disk in B4. Gluing this to S gives us an
equivariant surface for K. ∎

We now turn to understanding simple homology classes in terms of freely periodic
knot diagrams, the standard way in which we expect to present a freely periodic knot.

Definition 2.8 A freely (p, q)-periodic diagram is the closure of a tangle consisting
of the concatenation of p identical tangles and q full twists. See Figures 1–3 for
examples.

Theorem 2.9 [Chb97, Theorem 1] Every freely (p, q)-periodic knot has a freely
(p, q)-periodic diagram.

The proof of Theorem 1.3 is now straightforward.

Proof It is clear that a tangle with one strand is homologous to the core c of a genus
1 Heegaard splitting for L(p, q). It follows immediately from the definition of a lens
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Figure 2: A freely (3, 2)-periodic diagram for T(2, 7).

Figure 3: A freely (5, 1)-periodic knot.

space that the other core is q−1 ⋅ c ∈ H1(L(p, q)) so that a diagram with q−1 strands is
homologous to the other core. ∎

Remark 2.10 Theorem 1.3 depends on our convention for freely (p, q)-periodic
diagrams. We could instead switch the role of the two cores in our diagrams so that
a freely (p, q)-periodic diagram would have q−1 (mod p) full twists. In this case, the
simple homology classes would be represented by diagrams with ±1 or ±q strands.

Remark 2.11 If we instead consider surfaces which need not be orientable, then
a version of Theorem 1.2 using homology with Z/2Z coefficients implies that every
freely periodic knot bounds a smooth equivariant surface in B4.

We are also interested in the special case of torus knots. We first describe their free
symmetries.

Theorem 2.12 There is a freely (p, q)-periodic symmetry of T(r, s) if and only if
gcd(p, rs) = 1), and ±q±1 ≡ sr−1 (mod p). With respect to this symmetry, there is a freely
(p, q)-periodic diagram on r strands if and only if±q ≡ sr−1 (mod p). Finally, if ρ and ρ′
are two free periods of the same order, then the subgroups of the orientation-preserving
diffeomorphism group of the exterior of T(r, s) generated by ρ and ρ′ are conjugate.

Proof By [MS86, Theorem 2.2] and [Sch24] (see also [Kaw96, Exercise 10.6.4]),
the freely periodic symmetry preserves a Seifert fibered structure on the exterior of
T(r, s), which is a circle bundle over D(r, s), the disk with cone points of orders r
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and s. For p > 2, this orbifold has no order p symmetries. For the involution reflecting
across an arc containing the two cone points, we must also reflect the fibers to get an
orientation-preserving symmetry of the exterior of T(r, s), but this has global fixed
points. Thus, our free symmetry acts as identity on the base orbifold, and therefore as
a rotation on the fibers. In particular, there is a unique symmetry for each p.

When p has a common factor with r or s, then the order gcd(p, rs) subgroup has a
fixed circle in S3, and so there is no free symmetry of order p. On the other hand,
the symmetry is free when gcd(p, rs) = 1. We will describe these free symmetries
explicitly. Consider the standard tangle diagram for T(r, s)with r strands. Then there
are s total twists, which can be grouped as ±q full twists and p concatenated tangles
of n twists each (see Figure 2 for an example). Hence, s = ±q ⋅ r + n ⋅ p from which we
deduce that ±q ≡ sr−1 (mod p). However, a free (p, q)-symmetry can also be regarded
as a free (p, q−1)-symmetry (cf. the homeomorphism classification of lens spaces). In
particular, the diagram with s strands has ±q ≡ rs−1 (mod p). ∎

From Theorem 1.3, we can now deduce Corollary 1.4.

Proof Consider the freely (p, q)-periodic diagram for T(r, s)with r strands, which
consists of s total twists: ±q full twists and p tangles of n twists each. By Theorems 1.2
and 1.3, T(r, s) is an equivariant boundary if and only if r ≡ ±1 or r ≡ ±q−1 (mod p). By
Theorem 2.12, ±q ≡ sr−1 (mod p) so that p is a divisor of r − 1, r + 1, s − 1, or s + 1. ∎

Remark 2.13 Note that a freely (2, q) or (3, q)-periodic knot is always an equivari-
ant boundary by Theorem 1.3.

Our final result is the observation that the genus of an equivariant surface for a
freely periodic knot must be a multiple of p.

Theorem 2.14 Let S be an equivariant surface for a freely (p, q)-periodic knot. Then
the genus of S is a multiple of p.

Proof Let n be the genus of S so that χ(S) = 1 − 2n. Since S has exactly one fixed
point F (see the proof of Lemma 2.7), χ(S − F) = −2n. Quotienting S − F by the free
Z/pZ action leaves a surface S with χ(S) = −2n/p. However, since S has exactly two
boundary components, it must have an even Euler characteristic and so p∣n. ∎

3 Examples and questions

We conclude with some examples and questions.

Example 3.1 Consider the torus knot T(2, 7). It has a unique free period of order 3,
which is shown in Figure 2. By Corollary 1.4, T(2, 7) bounds an invariant surface in
B4 with respect to its free (3, 2)-period. This surface can be seen directly from Figure
1, where changing the sign of the crossing in the bottom of each of the three tangle
boxes gives an equivariant genus 3 cobordism to the unknot, which then bounds an
equivariant disk in B4. Note that, by Theorem 2.14, this is the minimum possible genus
for such a surface, since T(2, 7) is not slice.
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Example 3.2 Consider the torus knot T(2, 3). Since there are no primes which
divide 1, 3, 2, or 4 and are relatively prime to 2 and 3, Corollary 1.4 implies that
T(2, 3) does not equivariantly bound with respect to any of its infinitely many free
symmetries.

Example 3.3 Consider the freely (5, 1)-periodic knot K shown in Figure 3. It has
a signed count of two strands, so, by Theorems 1.2 and 1.3, K does not bound an
equivariant surface in B4.

In principle, one could use Theorems 1.2 and 1.3 to show that some freely periodic
slice knots do not bound equivariant surfaces (let alone disks). However, every freely
periodic slice knot we know of represents a simple homology class in the quotient lens
space.

Question 3.4 What tools can give a lower bound on the genus of an equivariant
surface for a freely periodic knot?

Question 3.5 Does there exist a freely periodic slice knot which does not bound any
(smooth) equivariant disk?

Note that these questions have been answered for several other types of symmetric
knots. In particular, examples of obstructions to slice symmetric knots being equivari-
antly slice can be found for periodic knots in [BI21a, CK99, DN06, Nai97], for strongly
invertible knots in [BI21a, DHM22, Sak86], and for strongly negative amphichiral
knots in [BI21b].

Acknowledgment We would like to thank Ahmad Issa for some helpful conversa-
tions and Robert Lipshitz for helpful comments on an earlier draft. We would also like
to thank an anonymous referee on a previous version for directing us to some useful
results of Atiyah–Bott and Milnor.

References

[AB68] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II.
Applications. Ann. Math. 88(1968), 451–491.

[BE12] K. Baker and J. Etnyre, Rational linking and contact geometry. In: Perspectives in analysis,
geometry, and topology, Progress in Mathematics, 296, Birkhäuser/Springer, New York,
2012, pp. 19–37.

[Bon83] F. Bonahon, Difféotopies des espaces lenticulaires. Topology 22(1983), no. 3, 305–314.
[BI21a] K. Boyle and A. Issa, Equivariant 4-genera of strongly invertible and periodic knots. Preprint,

2021. https://arxiv.org/abs/2101.05413
[BI21b] K. Boyle and A. Issa, Equivariantly slicing strongly negative amphichiral knots. Preprint,

2021. https://arxiv.org/abs/2109.01198
[Bro60] E. J. Brody, The topological classification of the lens spaces. Ann. Math. 71(1960), 163–184.
[CK99] J. C. Cha and K. H. Ko, On equivariant slice knots. Proc. Amer. Math. Soc. 127(1999), no. 7,

2175–2182.
[Chb97] N. Chbili, On the invariants of lens knots. In: KNOTS’96 (Tokyo), World Scientific

Publishing, River Edge, NJ, 1997, pp. 365–375.
[DHM22] I. Dai, M. Hedden, and A. Mallick, Corks, involutions, and Heegaard Floer homology. J. Eur.

Math. Soc.. Published online 21 May 2022.

https://doi.org/10.4153/S000843952200042X Published online by Cambridge University Press

https://arxiv.org/abs/2101.05413
https://arxiv.org/abs/2109.01198
https://doi.org/10.4153/S000843952200042X


Equivariant cobordisms between freely periodic knots 457

[DN06] J. F. Davis and S. Naik, Alexander polynomials of equivariant slice and ribbon knots in S3 .
Trans. Amer. Math. Soc. 358(2006), no. 7, 2949–2964.

[DW15] M. Doig and S. Wehrli, A combinatorial proof of the homology cobordism classification of lens
spaces. Preprint, 2015. https://arxiv.org/abs/1505.06970

[Kaw96] A. Kawauchi, A survey of knot theory, Birkhäuser, Basel, 1996, Translated and revised from
the 1990 Japanese original by the author.

[MS86] W. H. Meeks III and P. Scott, Finite group actions on 3-manifolds. Invent. Math. 86(1986),
no. 2, 287–346.

[Mil66] J. Milnor, Whitehead torsion. Bull. Amer. Math. Soc. 72(1966), 358–426.
[Nai97] S. Naik, Equivariant concordance of knots in S3 . In: KNOTS’96 (Tokyo), World Scientific

Publishing, River Edge, NJ, 1997, pp. 81–89.
[Sak86] M. Sakuma, On strongly invertible knots. In: Algebraic and topological theories (Kinosaki,

1984), Kinokuniya, Tokyo, 1986, pp. 176–196.
[Sch24] O. Schreier, Über die gruppen Aa Bb

= 1. Abh. Math. Sem. Univ. Hamburg 3(1924), no. 1,
167–169.

[Smi41] P. A. Smith, Fixed-point theorems for periodic transformations. Amer. J. Math. 63(1941), 1–8.

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
e-mail: kboyle@math.ubc.ca

Department of Mathematics and Statistics, Slippery Rock University, Slippery Rock, PA, USA
e-mail: jeffrey.musyt@sru.edu

https://doi.org/10.4153/S000843952200042X Published online by Cambridge University Press

https://arxiv.org/abs/1505.06970
mailto:kboyle@math.ubc.ca
mailto:jeffrey.musyt@sru.edu
https://doi.org/10.4153/S000843952200042X

	1 Introduction and main results
	2 Definitions and proofs
	3 Examples and questions

