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Readers familiar with numbers and their patterns will most likely know
of the game-playing exercise where one is invited to spot the next number in
a sequence, only to find that after giving an answer there can be a
multiplicity of possibilities, each of which is valid according to its own rule
of sequence construction. This is an instance of partial sequence matching
and the purpose of this note is to show how a simple method of constructing
a partial sequence match can be achieved. It requires only a knowledge of
polynomials and matrix algebra, which are topics within the grasp of an
undergraduate, and will be instanced against the backdrop of some well-
known sequences.

The concept of a sequence is well known to mathematicians and it is
simply a collection of terms, which is ordered according to some rule or
procedure. In the case of an integer sequence, one can be more precise by
stating that an integer sequence is essentially a mapping from  (the set of
natural numbers, or, positive integers) to  (the set of integers). Much about
them can be gleaned from the internet by googling the appropriate words.
The mapping can be described by a relationship that defines uniquely each
term in the sequence. For example, the value of the term in the sequence can
be denoted by  ( ) where  is a function of the parameter .
Alternatively, the terms of the sequence can be defined inductively,
recursively, or in a definite mathematical context, such as discussed below
in the first case.

�
�

In n = 1, 2, 3, … In n

With the above terminology, a finite subset of consecutive terms in a
sequence will be denoted by , where  is some natural
number. If , which will be the case here later, the subset is simply the
first  terms of the sequence. In general, to achieve a polynomial
match to this subset it will suffice first to assume a polynomial, , in the
form

{In, In + 1, … , In + m} n
n = 1

(m + 1)
F (x)

F (x) = In + ∑
m

i = 1

Ai (x − n)i (1)

where  assumes in turn each value in the range .
When  (the starting value for the subset), the polynomial value is
simply . If  denotes some other -value in this range, an
expression involving the coefficients  can be
determined by forcing the match . For all such possible -values

, this results in the following matrix system of
simultaneous equations to determine the :

x n, n + 1, … , n + m
x = n
F (n) = In q x

Ai (i = 1, 2, 3, … , m)
F (q) = Iq q

(q = n + 1, … , n + m) m
Ai
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( ) ( ) = ( ) (2)

1 1 1 … 1
2 22 23 … 2m

3 32 33 … 3m

4 42 43 … 4m

…

m m2 m3 … mm

A1

A2

A3

A4

…

Am

In + 1 − In

In + 2 − In

In + 3 − In

In + 4 − In

…

In + m − In

This system of equations can be solved directly using the numerical
method of pivotal condensation [1] or Gaussian elimination [2]. The
procedures are straightforward and are well suited to classroom practice
when the coefficient matrix in (2) is not large. Similarly, a matrix inversion
approach using Jordan's method can be employed [2] to determine the
inverse of the coefficient matrix. Fortunately, a matrix inversion method is
built into the software on an excel spreadsheet and it is convenient to use
this also for intermediate-sized coefficient matrices, provided of course that
the methods are fully understood. It is thus possible to determine the
numerically, and hence the value of the polynomial given in (1) can be
computed for various values of the input parameter . At those values where
a match has been forced, results from the polynomial evaluation will
perforce reproduce the sequence subset values.

Ai

x

Having proposed a way of reproducing a partial subset of consecutive
terms of a sequence, we will focus now on the practice as it relates to the
first few terms of some well-known sequences.

1. As a paradigm we consider the number sequence :
When this sequence is put before young students without further ado and
with an entreaty to guess the next number, the obvious candidate is usually
assumed to be 32, because each number in the sequence appears to be
double that of the preceding one. This is certainly the case if the sequence is
defined to be . However, the Canadian
Mathematician. Leo Moser, gave a method of sequence construction which
produced an alternative sequence in which the sixth number was 31. His
example concerned the maximum number of regions into which chords
joining  points on a circle's circumference partitioned its enclosed area. An
exposition can be found in a ‘You-Tube’ presentation [3]. Briefly,
arguments there were based on combinatorics and discrete mathematics to
develop a binomial expression yielding the sequence

, which starts the same as the example but
ends up differently after the fifth term of the sequence. This, and more, can
be appreciated by googling the phrase “Moser intersecting chords” to see a
number of internet leads on the subject, together with a variety of similar
‘You-Tube’ presentations. Generally, the argument exploits the well-known
Euler characteristic formula that relates the number of vertices , edges

 and faces  on straight-edged shapes, viz. , in tandem

{1, 2, 4, 8, 16, … }

{2n − 1; n = 1, 2, 3, 4, 5, … }

n

{1, 2, 4, 8, 16, 31, 57, 99, … }

(V)
(E) (F) V − E + F = 2
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with appreciations concerning number structures in a Pascal triangle.
Material that is relevant to such matters can be found in [4, 5, 6, 7]. Whilst
this argument leads to the development of a fourth order polynomial in the
guise of a binomial expression, it is possible to secure the same result in a
different way by adopting the above-mentioned protocol of a polynomial fit
to the data. This approach will be considered here for the class of sequence
we use as a paradigm sequence, i.e.

{pn − 1; n = 1, 2, 3, 4, 5, … } , (3)
where  is some positive integer. The case of  is the above paradigm
sequence. To illustrate the procedure, the details of a polynomial fit to the
first five terms of the sequence in (3) (with ) will be discussed. In this
case,  and so , , ,  and . The
corresponding matrix equation system given by (2) is then 

p p = 2

n = 1
m = 4 I1 = 1 I2 = 2 I3 = 4 I4 = 8 I5 = 16

( ) ( ) = ( ) .

1 1 1 1

2 22 23 24

3 32 33 34

4 42 43 44

A1

A2

A3

A4

1
3
7
15

A solution for the , obtained in the above described fashion, yields the
solutions , , , . The corresponding
polynomial expression from (1), with  replaced by , can then be
written

Ai
A1 = 7

12 A2 = 11
24 A3 = − 1

12 A4 = 1
24

(x − 1) τ

F (x) = 1 +
7

12
τ +

11
24

τ2 −
1
12

τ3 +
1
24

τ4. (4)

It is now a simple matter to verify that the -values of 1, 2, 3, 4, 5, 6, 7,
, respectively, produce from this polynomial the sequence of numbers

. The first five terms of this sequence are, as
expected, the same as the first five numbers in the paradigm sequence. The
above polynomial can be compared with the commonly accepted binomial

expression given in [1], i.e. . It is left as an exercise for the

reader to appreciate that the two results are identical. At the first point where
there is a mismatch in values between respective terms in the two sequences
(the paradigm one and the polynomial one), the difference is unity

. It is of interest to note also that the polynomial expression to
which this binomial reduces is the same as that to which the binomial

expression  also reduces,

when  is replaced by . The latter represents the number of regions in 4-
space formed by  hyperplanes.

x
8, …
{1, 2, 4, 8, 16, 31, 57, 99, … }

(( ) + ( ) + 1)x
4

x
2

(= 32 − 31)

⎧
⎩
⎨( ) + ( ) + ( ) + ( ) + ( )⎫⎭⎬n − 1

0
n − 1

1
n − 1

2
n − 1

3
n − 1

4
n x

The above-described numerical procedure can be developed to
incorporate more terms in the polynomial match so as to extend the level of
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agreement between the terms in the polynomial sequence and terms in the
given candidate sequence. For example, if the Number of Consecutive
Terms (NCT values) over which a sequence match is required (between the
candidate sequence and the polynomial one) is , then a polynomial of
order  will suffice. Computations were carried out to determine the
coefficients  for a variety of different NCT values pertaining to the current
candidate sequence. They are shown in Table 1.

m + 1
m

Ai

NCT A1 / G A2 / G A3 / G A4 / G A5 / G A6 / G A7 / G G

2 1 - - - - - - 1

3 1 1 - - - - - 1
2

4 5 0 1 - - - - 1
6

5 14 11 −2 1 - - - 1
24

6 94 5 25 −5 1 - - 1
120

7 444 304 −75 55 −9 1 - 1
720

8 3828 364 1099 −350 112 −14 1 1
5040

TABLE 1: Coefficient values required to achieve a partial match of
sequences at the given number of terms when .p = 2

The results in the table have been presented in normalised form, and
there seems to be a predictable pattern for the normalising factor . Results
for the coefficients in (4) above are captured when the NCT value is 5. A
further example to consider on the use of the Table is when the value of
NCT is 7 (the second to last row in the Table). The normalising factor in this
instance is  and the value of the coefficients required in the corresponding
polynomial of order 6 can be selected from the relevant row in the Table for
use in (1). With  replaced by , the associated polynomial result is 

G

1
720

(x − 1) τ

F (τ) = 1 +
1

720
(444τ + 304τ2 − 75τ3 + 55τ4 − 9τ5 + τ6) .

It is a straightforward matter to verify that, for -integer values given
respectively by , this polynomial expression
yields the corresponding sequence values .
The first seven terms here match those of the paradigm case. Again, there is
a delta value of unity ) at the first point where there is a
mismatch between terms in the paradigm and polynomial sequences.

x
1, 2, 3, 4, 5, 6, 7, 8, 9, …

{1, 2, 4, 8, 16, 32, 127, 247, … }

(= 128 − 127

Other sequences in the paradigm class:  By way of illustration, the case of
 in (3) will be considered when  in (1); that is to say, there will

be a forced fit between the first 7  terms of the specified
sequence and that of output from the polynomial. The terms of this

p = 3 m = 6
(= m + 1)
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paradigm class sequence are .
Again using the established spreadsheet facilities, the coefficients  for

 were found to be as shown in Table 2.

{1, 3, 9, 27, 81, 243, 729, 2187, 6561, … }
Ai

i = 1, 2, 3, 4, 5, 6

NCT A1 / G A2 / G A3 / G A4 / G A5 / G A6 / G G

7 −252 736 −600 250 −48 4 1
45

TABLE 2: Values of coefficients in the polynomial when   and p = 3 m = 6

With  again replaced by   in the polynomial expression of (1),
the corresponding polynomial in this case can be written

(x − 1) τ

F (x) = 1 +
1
45

(−252τ + 736τ2 − 600τ3 + 250τ4 − 48τ5 + 4τ6) .

Sequence values obtained using this polynomial for ,
were found to be . As
expected, the first seven values of this sequence are identical to the first
seven values above. At the first instance of a mismatch in respective
sequence terms, the delta value is . In the earlier case
when , such a difference was found to be unity. After examining a
number of cases, it seems that such differences at the first point of mismatch
for the class of sequences under consideration (see (3)) can be described by
the formula .

x = 1, 2, 3, … , 9, …
{1,  3,  9,  27,  81,  243,  729,  2059,  5281, … }

128 (= 2187 − 2059)
p = 2

(p − 1)m + 1

It is left as an exercise for the reader to explore agreements between any
number of sequence values determined using the polynomial matching
equation of (1) for other values of , but the required numerical effort
increases significantly as such values and numbers increase in size.

p

2. Another sequence of interest:  Also of interest is a match to the floor
function sequence

{INT (2n − 2) ; n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, … }
which produces respectively the sequence values

0, 1, 2, 4, 8, 16, 32, 64, 128, 512, … .
With the exception of an additional first term of zero, the other terms here
are the same as those in the first paradigm sequence above. The 10th term of
this sequence is 256. A polynomial match over various values can be
achieved with the coefficients shown in Table 3.
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NCT A1 / G A2 / G A3 / G A4 / G A5 / G A6 / G A7 / G G

3 1 - - - - - - 1

4 8 −3 1 - - - - 1
6

5 8 −3 1 0 - - - 1
6

6 184 −110 55 −10 1 - - 1
120

7 184 −110 55 −10 1 0 - 1
120

8 8448 −6384 3934 −1155 217 −21 1 1
5040

9 8448 −6384 3934 −1155 217 −21 1 1
5040

TABLE 3: Polynomial coefficient values required to match  floor function sequence
values at various NCT values

It is left as an exercise for the reader to determine explicitly the
associated polynomials, and it is apparent that matches at some NCT values
suffice also for a match at the next one.

3. A further type of integer sequence:  The above described method of fitting
a polynomial to selected consecutive terms of a given sequence can be
applied to yet other known sequences. For example, the Sloane sequence

 [8] is of interest. This sequence is
formed by determining the number of whole number divisors of
when  assumes, respectively, the values .
Again, it is possible in the usual way to determine coefficients in a matching
polynomial that depend on the NCTs in the Sloane sequence that are to be
matched. Typical results are shown in Table 4.

{1, 1, 2, 4, 8, 16, 30, 60, 96, 160, 270, … }
(x − 1)!

x 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

NCT A1 A2 A3 A4 A5 A6 A7

3 −1
2

1
2 - - - - -

4 −1
2

1
2 0 - - - -

5 −3
4

23
24 −1

4
1
24 - - -

6 −3
4

23
24 −1

4
1
24 0 - -

7 − 7
12

26
45

1
16 − 11

144
1
48 − 1

720 -

8 71
84 −263

90
473
144 −221

144
53

144 − 31
720

1
504

TABLE 4: Polynomial coefficient values required for matching various terms in the
Sloane sequence

Once more, it is interesting to note that matches at some NCT values suffice
also for a match at the next NCT value. Again, details of the matching
polynomial are left for the reader to explore.

https://doi.org/10.1017/mag.2024.108 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.108


THE NEXT NUMBER IN THE SEQUENCE 405

Discussion and conclusion:  The concept about the meaning of a pattern in
sequences is ubiquitous. People see trends, patterns and themes (and their
variations) in all facets of human endeavour, be it in the arts (especially
music), the sciences, mathematics or other disciplines.  The search for
understanding and appreciating them can move the state of knowledge in
any such discipline forward. Particularly, spotting pattern behaviour in
sequences is an endeavour that should be encouraged in a mathematician,
whether of the pure or applied variety. When mathematicians view patterns
they might come with preconceptions, or not. Whichever, established ways
of viewing things might, as a result, be skewed for the good. The pattern one
sees in a sequence when a prescription is not on offer is an invitation to
extend a repertoire, it is a force majeure that serves to stimulate the
enquiring mind much like musical variations that form in the mind to
complete the ending to a piece that is different to that envisaged by the
composer. Whenever a next-number candidate in a sequence has been
spotted, it should be appreciated by now that there will be other means that
produce a different candidate. Without knowing how a given integer
sequence is ordered, a next term could be almost anything. The above
polynomial matching procedure might, within reason, be employed to
determine it as long as the ‘anything’ is incorporated in the process. For
instance, in the above example due to Moser it was demonstrated that the
sixth term in the sequence was 31, not 32 as some might have expected.
However, using the above described procedure, it is possible to capture the
first five terms of Moser's sequence and for the 6th term to be, say, 33. The
5th order polynomial that will achieve as much is 

(−1 +
229
60

x −
67
24

x2 +
7
6

x3 −
5

24
x4 +

1
60

x5) .

It is left as an exercise for the reader to verify this.

The reader might appreciate also that the unexpected can occur in
pattern-spotting even when the terms in a sequence are well-defined. One
need look no further than the behaviour of coefficients in the 105th
cyclotomic polynomial. In lesser polynomials of this type, the coefficients
are generally  and/or 0, but in the 105th polynomial the number 2 appears
unexpectedly as one of the coefficients (see [9]).

±1

Finally, the process of matching output from a polynomial to some
consecutive terms in a target integer sequence has resulted in rational
coefficients in the matching polynomial, but it remains to be seen if
subsequent output terms from the polynomial sequence (terms where a
match has not been forced) will always be integers.

A standard example of spotting the next number in an integer sequence
has been re-examined in the light of matching a polynomial to various
paradigm cases, and the argument has been extended to consider other types
of integer sequences. There are numerous other examples that can be
considered in the same light. The polynomial matching process has been
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applied to match only the first few terms of a candidate sequence, and it is
well suited to such cases. However,  if the number of terms to be matched is
increased, the ensuing numbers in the associated matrix in (2) become large
very quickly and the subsequent matrix inversion process involves numbers
that likewise become small with increasing matrix size. Similarly, the power
terms in the matching polynomial become large quickly as their arguments
increase with the number of sequence terms to be matched.
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