THE JOURNAL OF SYMBOLIC Logic, Page 1 of 22

GENERIC EXPANSIONS OF GEOMETRIC THEORIES

SOMAYE JALILI, MASSOUD POURMAHDIAN, AND NAZANIN ROSHANDEL TAVANA

Abstract. As a continuation of ideas initiated in [19]. we study bi-colored (generic) expansions of
geometric theories in the style of the Fraissé-Hrushovski construction method. Here we examine that
the properties NTP,. strongness, NSOP;. and simplicity can be transferred to the expansions. As a
consequence, while the corresponding bi-colored expansion of a red non-principal ultraproduct of p-adic
fields is NTP,. the expansion of algebraically closed fields with generic automorphism is a simple theory.
Furthermore, these theories are strong with bdn("x = x”) = (Rg)_.

§1. Introduction. Extending the methods of stability and applying them to a
larger class of theories is a dominating theme in current research of pure model
theory. This line of research shows the prevalence of these methods with potential
applications beyond model theory. To instantiate general concepts in stability-
hierarchy and perhaps examine some related open questions/conjectures one would
need to look for some new examples, conceivably through adapting known model-
theoretic methods. Our main aim in this paper is to study the Fraissé—-Hrushovski
method beyond the realm of stability/simplicity. We aim to continue further, ideas
started in [14] to use the Fraissé—Hrushovski construction for studying bi-colored
expansions of geometric theories which are either NSO P, simple, or NTP;.

Our motivation mainly stems in the comprehensive studies of the expansion of
algebraically closed fields with a unary predicate p—often called a color predicate—
interpreted either by an arbitrary set (Black fields) [2, 3, 21], an additive subgroup
(Red fields) [6., 22]. or a multiplicative subgroup (Green fields) [5, 22]. All examples
obtained by this constructions are w-stable, either with Morley rank @ (non-
collapsed constructions) [3, 21, 22] or finite Morley rank (collapsed constructions)
[2. 5]

The other theme that our results are naturally connected to is the study of the
generic expansions of models of geometric theories by a unary predicate which can
be interpreted either by a submodel (Lovely pairs) [7, 9. 10, 20] or more generally
by submodels of reducts [10, 11, 12, 17].

To explain our contributions in more technical terms, we assume that 7" is a
complete geometric theory without finite models in a countable language L. It is
routine to assume that 7" admits elimination of quantifiers in £. The theory T is
geometric if it eliminates the quantifier 3°° and the algebraic closure operator gives
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rise to a pre-geometry. As a consequence, a notion of dimension function, dim, can
be defined; where dim(a) for any finite tuple a is the size of a basis of @. The theory
T is further required to satisfy the free-amalgamation property (Definition 2.6).
Subsequently, £ is expanded to £, = £ U {p} by adding a unary predicate p called
the coloring predicate. We consider the class of all £,-structures whose universe M
is a model of TV, fix a rational number 0 < o < 1, and for M = TV and a finite
subset A of M, define the pre-dimension function

3(4) = dim(4) — a| p(A)].

Now, as T is geometric, the dimension function satisfies certain definability
conditions which makes K. the class of £,-structures M such that 0a(4) >0
for all A Cqy M. L ,-axiomatizable.

There is a notion <, of closed substructures in K associated with the pre-
dimension function d,. The free-amalgamation of 7 implies that (K, <,) has
the amalgamation property which guaranties that (K. <,) has Fraissé limits for
arbitrary cardinal 4 > ®; denoted by A-rich models.

Here we give a complete axiomatization T, for the class all Ny-rich structures.
This axiomatization together with a description of types enables us to prove that
certain model theoretic properties of 7' can be transferred to T,. More precisely, the
following results are obtained in this paper.

THEOREM (Theorems 4.14, 4.22, and 4.25). If T is NTP,. strong, NSOP; and
simple then so is T,,.

THEOREM (Theorem 4.16). If T is further strong and indecomposable (Definition
2.9) then bdn(T,) = (Ng)_.

COROLLARY (Corollaries 4.17 and 4.27).

1. Let T be the theory of a non-principal ultraproduct of Q,’s. Then T 1 is a strong
theory with bdn(’H‘%) = (Ng)_.

2. Let T be any complete theory of a pseudo finite field. Then T 1 is a simple theory
of unbounded weight.

It is worth mentioning some technical differences between the present work and
[14]. First, while in [14] « is assumed to be both rational and irrational, here we
restrict ourselves only to rational a’s. This restriction yields less technical difficulties
in axiomatizing the class of Ry-rich structures. On the other hand, in [14] in addition
to quantifier elimination and free amalgamation properties, 7" is assumed to be a
geometric indecomposable theory. This extra condition implies that there exists a
simpler (in fact I1,) axiomatization of T,. However here we prefer not to impose
the indecomposability condition and only use it to show Theorem 4.16.

The structure of the paper is as follows. In Section 2 after fixing the setting and
reviewing the basic concepts, we introduce the class (K, <, ). In Section 3 we prove
there is a complete axiomatization T, for its rich structures. Finally in Section 4 we
prove the main theorems mentioned above.

§2. Preliminaries and conventions. Throughout this paper, £ is a countable
language and T is a complete geometric theory without finite models and has
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the quantifier elimination. Recall that 7T is geometric if it eliminates the quantifier
3°° and the algebraic closure, acl, satisfies the exchange property.

Convention. We use capital letters M, N, P, K for the L-structures and 4, B, C, D
and X, Y, Z, show finite and infinite sets, respectively. Instead of X U Y we would
write X'Y. For tuples a. b in a model of M of T (or even TY) by the quantifier-free
type of a over b, denoted by qftp,.(a/b), we mean the set of all quantifier-free
formulas o (%, b) such that M = ¢(a.b).

The dimension obtained by acl in T is denoted by dim. So for a set Y. dim(a/Y)
is the size of the acl-base of {aj.....a,} over Y.If b = (by..... b,). thendim(a/b) =
dim(a/{bi.....bn}). for a = (a.....a,). If p(%. ) is an L-formula and b € MV,
then dim(o (M. b)) = max{dim(a/b): M |=p(a.b)}.

The set Y is called dim-independent from Z over X and denoted by Y J,‘;{lm Z
if for every @ € Y9, dim(a/X) = dim(a@/XZ). Moreover, if Y N Z = X we state
that Y and Z are free over X. To emphasize that Y and Z are free over X, the set
YZ iswrittenas Y ©y Z.

In the following fact, some properties of the dimension and dim-independence are
expressed. As a convention, assume that all subsets and tuples are from (a sufficiently
saturated) model M of T.

Fact 2.1 [24]. The dimension has the following properties.

e Finite character. dim(a/Y) = min{dim(a/B): B Cg, Y}.
o Additivity. dim(ab/Z) = dim(a/Z) + dim(b/aZ).
e Monotonicity. dim(a/Y) > dim(a/Z) for Y C Z.

e Definability. For each formula o(%,7) and k < |X|, the set

{be MPl: dim(p(M.b)) =k}

is definable by a formula d, (7).

o \/-Definability. If dim(a/b) < n, then there is a formula y(%.7) such that
w(x.b) € qftp(a/b) andif M = w(a',b’) thendim(a’/b") < n. foreverya’,b'.

By the above properties, one can prove the following lemma. The first part of the
following statement appears in [11, Lemma 2.3] and the second part in [14, Lemma
2.2]. This lemma is later used in Section 3.

LEMMA 2.2. Let M be an Ng-saturated model of T, o(X: y) be an L-formula and k
be a natural number. Then,

1. there is a formula H,(y) that defines the set
{beMP': 3a M |=yp(a:b)&anaclb) =0}.
2. there exists an L-formula Dy (7) which defines the set
{beMV': 3a M |=p(ab)& dim(a/b) >k & anacl(h) = 0}.

The following definition characterizes the notion of a strong formula. Intuitively,
such formula is called strong, since it has enough information about dim.
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DEFINITION 2.3.  An L-formula ¢ (%, 7) is called strong with respect to the distinct
a.b. whenever ¢(a.7) € qftp(h/a) and for every a@’.b’ in a sufficiently saturated
model M =T,

1. if M = p(a’. E_’) then a’, b’ are distinct, and

2.if M = (a’.b’) and dim(d’/a’) = dim(b/a) then for every partition P =

(71. 72) of y we have dim(b) /b{a’) < dim(b,/ba).

Particularly, the second item of the above definition deduces dim(l_){ ja’) >
dim(b, /a).

The \/-Definability in Fact 2.1 proves that a strong formula exists for every pair
of distinct finite sequences. The proof of the following lemma can be found in [14,
Lemma 2.6].

LEMMA 2 .4.

1. For any pair of distinct tuples a.b. there exists a strong formula ©(%, ) with
respect to a, b. _

2. Let ¢(X.y) be a strong formula with respect to a.b and T = (0(X.7) —
o(x.7)).If0(a. y) € qftp(b/a), then 6(x, y) is strong with respect to a, b

The following fact presents fundamental properties of dim-independence.
Fact 2.5. [24] dim- independence has the following properties.
1. Symmetry. Y \L Z ifand only if Z \Ldlm

. Transitivity. Y J/ ZlZz if and only if Y \L Ziand Y \Ldlm

2
3. acl-Preservation. Y | 4™ v Zifand only if acl(Y) \L:le(l acl(Z).
4. dim-Morley sequences. Any non-constant order lndlscernlble sequence

{a;: i €I} over X is a dim-Morley sequence i.e., for any two disjoint
subsequences J\ and J, of I we have J, \|/

5. Strong finite character. If a »‘f/z b then there exists a formula ¢(Z,X,y) €
aftp(¢.a.b) which dim-forks, i.e.. for each model M and tuples a’. b and
&eMifMpEo(E.a.b)thena LS.

Recall that an L-embedding f : M — N is algebraically closed if acl(f (M)) =
f(M).

DEerINITION 2.6. The theory T has the free amalgamation property over alge-
braically closed substructures whenever for every My, My, M, |= TV and every
algebraically closed embeddings f| : My — M, f>: My — M, thereexist M = T
and embeddings g, : M| — M, g» : M, — M such that:

l. g1of1=g0 f2 and
2. g1(M;) and g,(M,) are free over g1 o f1(My) in M.

CONVENTION 2.7. The structure M is called a free amalgam of M, and M, over
My and denoted by My ©y, M>. Note that M is not unique up to isomorphism.

The following observation expresses a property of the free amalgamation which
can be easily proved. Assume 7 has the free amalgamation property and a model
M of T which is A-saturated, for 1 > N;.
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OBSERVATION 2.8. Let X(X) be a partial type over X which has a solution with no
intersection with acl(X'). Then. for every small set Y 2 X there is a solution d’ for X
in M such that d' N'Y = 0. Moreover, d’ can be chosen such that Xd' and Y are fiee
over X.

ProoF. By the hypothesis, there is a solution in M @©,qx) M which has no

intersection with acl(X). Since M is A-saturated one can find a solution d’ in M
such that Xd’ and Y are free over X. -

In the rest of this section, the notion of indecomposability is presented. This
notion has already appeared in [1] with a different name, federated. While this
notion is used in [14] for the axiomatization of bi-colored expansions, here it is only
used in Section 4 to prove Theorem 4.16.

DEerINITION 2.9. We call T is indecomposable if no finite-dimensional algebraically
closed set X can be written as a finite union X = Y7 ... Y, with dim(Y;) < dim(X)
fori < n.

The assumption of indecomposability provides the following desirable property
for bases. The proof can be found in [14, Lemma 2.10].

LemMa 2.10. Assume T is indecomposable and M \=T. Let B = {d, ..., d,, } be
an independent set over A C M. Then, for each natural number n, there is a subset
D C acl(Ad,, ....d,,) with |D| = n such that every m-element subset of BD is a base
for acl(Ad,. ....d,) over A.

ExamPLE 2.11. The class of geometric theories includes strongly minimal (see
[12]). o-minimal theories (see [11]) (in particular, 4 CFy, ACF,. and RCF ), generic
expansion of algebraically closed fields of characteristic p > 0 by an additive
subgroup (ACF,G) (see [12]), (any completion of a) perfect bounded PAC fields
and in particular any completion of a pseudo finite field (see [12]). Further this class
also includes theories of valued fields 7/(Q,) and Th(C,) and any (non-trivially
valued) Henselian valued field of equi-characteristic 0 in the language of Denef—Pas
[19]. Hence, in particular, the theory of a non-principal ultraproduct of all Q,’s is
geometric.

Note that the algebraic closure of the mentioned theories are equal to the field-
theoretic algebraic closure, (see [18. Theorem 4] and [11, Proposition 4.5]) and hence
these theories satisfy the exchange property. On the other hand, by compactness it
can be easily seen that the theory of a field with some extra structures eliminates
the quantifier 3*° if the model-theoretic algebraic closure coincides with the field-
theoretic algebraic closure, and hence these theories are geometric. Furthermore
models of the mentioned theories are geometric fields in the sense of [12, 13], and
therefore they also enjoy the free amalgamation property.

In all such fields, an algebraically closed subset cannot be decomposed into finitely
many algebraically closed subsets of strictly smaller transcendence degree (to justify
this, consider an algebraically closed set over a field K as a vector space, and observe
that no vector space can be written as the union of finitely many proper sub-vector
spaces). Hence the mentioned theories are also indecomposable.
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2.1. Bi-colored expansions. In the following subsection, the theory 7 is geometric
with the quantifier elimination and the free-amalgamation properties. First, we fix
some more notation and conventions.

Unary predicate p called the coloring predicate is added to the language £ and we
denote the new language by £,. Also, the class K is defined as the class of all £,-
structures whose universe M is a model of 7. For every X C M, the £,-structure
generated by X in M is denoted by (X) s, or (X). Therefore, M is finitely generated
if there is a finite set A C M such that M = (A4). As a convention, also ) is a finitely
generated structure in K. The element x is called colored if M = p(x). If there is
no ambiguity we may write p(x) instead of M |= p(x). Moreover, p(x) is used
instead of A}_, p(x;). when X = (x1..... x,). Additionally p(X/Y) denotes the set
of colored elements of X \ Y. Throughout this paper, by tp(X/Y) we mean the type
of X over Y in £,. Moreover for the rest of the paper, a rational number 0 < a <1
is fixed. Then for every structure M € K and a finite subset 4 of M, a pre-dimension
map J, is defined as

0a(4) = dim(4) - a|p(4)|.

Furthermore, for every X C M we define §,(A4/X) = dim(4/X) — a|p(4/X)|.
Note that by the quantifier elimination, ,(4) is independent from the choice of
M. For any finite subsets 4, B and C it is not hard to check that

0a(AB/C) =06,(A/BC) +5,(B/C).
The pre-dimension d,, is submodular, i.e.,
0a(AB) +06,(AN B) <5,(A) +64(B).
For the class K, one can define the subclass £ as
KL :={M € K| 64(4) >0 forevery 4 Cg, M}.

For simplicity, if M € K} then for every X C M, we say X € K if (X) € K.
Therefore, an embedding / : X — Y means the embedding f : (X) — (Y) where
X, Y € K. In the rest of the paper, every structure is assumed to be in K}, unless
we emphasize otherwise.

Clearly, by the previous conventions () € K. Moreover, \/-Definability implies
that 7 is axiomatizable in £, by the £ ,-sentences

=3x1. e X (W (X1 e X)) A \/ p(Y)).

YC{x{...xn}
|Y|=k

where y; asserts that the dimension of (x;. ..., x;) is bounded by /, and / < ak.
In the following definition, the notion of closedness is presented.

DEFINITION 2.12.

1. For A Csn M and X C M, A issaid to be closed in X and denoted by 4 <, X
if A C X and 6,(B/A) > 0 forevery A C B Cqy X.

2. For arbitrary subsets X and Y of M, X is called closed in Y and denoted by
X<, YiIfXCYandd,(4/X) > 0forevery A Cq, Y.
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3. The structure M is called closed in the structure N and denoted by M <, N
if M is a substructure of N and M <, N in the sense of (1) and (2).

One can relax the first item of the above definition by taking arbitrary finite
subsets 4 and B of X, since ,(B/A4) = 5,(AB/A). Hence the first item is a special
case of item 2.

For simplicity, we will omit & in <, and d,.

Note that o > 0 implies that all algebraic points over §) are non-colored. By
the definition of J, and since o > 0 whenever X < M, then —p(x) for all x €
acly (X)\ X. So, (X)) and acly, (X) are closed in M.

REMARK 2.13. (IC(j <) is a smooth class, i.e., for every M, M|, M, X,
1. 0. M < M.

2. If M < My and M| < M,, then M < M,.

3. If M < Mythen M < M forall M C M; C M.

4. If M < Mithen M N X < X forall X C M.

By 2 and 4 of the above remark, one can conclude if M, M, < M then
MiNM, <M.
Next, we introduce the concept of closure and an intrinsic extension of a set.

DEerINITION 2.14. Let X, A, B C M,

1. The closure of X in M, denoted by cly(X), is the smallest subset ¥ of M
containing X such that ¥ < M.

2. The set B is called an intrinsic extension of A and shownby 4 <; Bif 4 C B
but there is no 4’ # B with 4 C A’ < B. Equivalently, §(B) < d(A4’) for all
ACA & B.

3. Avpair (4. B) is called minimal if A C B,A &« Bbut A < C forall4 C C S B.
It is clear that if (4. B) is a minimal pair, then 4 <; B. Moreover if B is an
intrinsic extension of A then it is possible to find a tower By =4 C B; C --- C
B, = B where each (B;, B;,1) is minimal.

The following statements are well-known facts about basic properties of cly;.

Fact 2.15 [23, Notation 3.14].
1. cly (X)) is the intersection of all closed subsets of M that contain X.
3. ClM(X) = UAQX CIM(A)

Since « is rational, the values of § take place in a discrete set. Hence cl(A4) is
finite for each finite set 4. Therefore cl(4) C acl(A), where acl denotes the algebraic
closure in the sense of £,.

The following definition separates two different types of closed extensions.

DErFINITION 2.16. Let A < B.
1. The set B is algebraic over A if dim(b/A4) = 0 forevery b € B\ 4.
2. Bis transcendental over A if dim(b/A4) = 1 forevery b € B\ 4.

REMARK 2.17. It can be easily seen that if 4 < B then there exists B; such
that A < By < B with By is algebraic over 4 and B is transcendental over Bj.
Furthermore, if B is an algebraic extension of 4, 4 < B, and f : B — M is an
L ,-embedding. M € K} then. we have cly (f(B)) = cly (f(4)) & ;4) [ (B).
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§3. Theory of rich structures. This section is devoted to study the class of A-rich
structures in K}, for 4 > Ry. These structures are obtained as Fraissé limits of
which are also called A-generic or A-ultra-homogeneous. It is subsequently proved
that there is a complete theory T, which axiomatizes the class of rich structures.

To this end we, first of all, need to define the notion of strong £L-embedding.

DEFINITION 3.1. An L-embedding f : M — N is strong if f(M) < N. Also for
every two sets 4, B, the embedding f : A — B is strong whenever f : (4A) — (B) is
a strong embedding.

The following definition introduces the amalgamation property for the class
(K. <)

DEFINITION 3.2. The class (K. <) has the amalgamation property (AP) if for
each My, My, M, and each pair of strong embeddings 1| : My — M, f>: My —
M, there exist M and strong embeddings g1 : M1 — M, g, : My — M such that
grofi=g0 [

The next lemma establishes the amalgamation property for (K, <). The proof is
straightforward and can be found in [14, Lemma 3.2].

LemMaA 3.3. The class (K. <) has the amalgamation property. Moreover, if both
f1and [, are algebraically closed then the structure M € K[ can be chosen in such a
way that gi (M) and g,(M,) are free over g1 o f1(My) in M.

Since Pisin £ and @ < M foreach M € K, the amalgamation property implies
the joint embedding property, that is for every My, M, € K} there exist M € K}
and closed embeddings /| : M| — M and f» : M, — M. One can easily check that
if M isin K then so are all of its substructures.

DEFINITION 3.4. An L ,-structure M in K} is called A-rich, for a cardinal 4 > Ry,
if:
. MET.
2. If My < M;, and M, M, are generated by sets of cardinality < A, then every
strong embedding /' : M} — M extends to a strong embedding g : M, — M.

It is clear from the above definition by letting M, = () that there is a strong
embedding g : M, — M for each M;. This property of M is called A-universality.

The reason for existence of a A-rich structure is the amalgamation and joint
embedding properties, with the closedness of K under the union of <-chains of
models (of T'). This property is summarised in the following fact.

Fact 3.5. The class (IC;r <) contains A-rich structures. for all 4 > Ny.
The following theorem shows that richness implies £-saturation.
THEOREM 3.6. Each A-rich structure in K is A-saturated as a model of T.

PrOOF. Let M be A-rich. Assume that X(x) is a partial 1-type overaset X C M,
where |X| < A and without loss of generality we assume that X is closed in M.
Let d ¢ M be a solution of X(x) in an L-elementary extension N of M. Extend
the coloring of M to N by letting —p(x) for each x € N — M. so that now N ¢
K. Observe that cly (X) < M, N, hence we keep the notation cl(X). Note that
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(cl(X)d) € K}, (cl(X)) < (cl(X)d) and (cl(X)) < M. Now since M is /-rich, there
is a strong embedding f : (cl(X)d) — M, and hence f(d) is the solution of X(x)
in M. -

3.1. Axiomatization of rich structures. As we mentioned earlier, there exists a
complete theory T, that axiomatizes the class of A-rich structures of (K}, <). The
following notion of intrinsic formulas is utilized in this axiomatization.

DEerINITION 3.7. Let A <; B and a and_l_) be enumerations of 4 and B\ 4,
respectively. A formula w4 5(X:7) € qftp(ab) is called intrinsic if each realization
a' and b’ of w4 p(X;¥) in a model M of T implies A’ <; B’, where a’ and b’ are
enumerations of 4’ and B’ \ 4’ respectively. Assume A4 p.c (X, y) is the collection
of all intrinsic formulas in qftp(ab).

Let A < B and B is a transcendental extension of 4. Set
Cip={C: A<SBCC & B<, C & B L™ (C\B)}.

Respectively for any C € Cy4 p let F¢ be the collection of the formulas ¢(X, y:Z) €
A4 p:c which also dim-forks. Note that by strong finite character of Fact 2.5 the set
Fc is non-empty.

Below for an L-formula (x,7), let ¢*(7,x) := ¢(X, 7). Respectively, for a
natural number k, consider Dw_k()"c) and dw_k(i) as the formulas introduced in
Lemma 2.2 and Fact 2.1. B

Also, for A C B we denote a and b to be enumerations for 4 and B\ 4,
respectively.

DerFINITION 3.8, Let T, be an £ ,-theory whose models M satisfies the followings.

. MET.

2. M € K (thatisd(4) > 0 for all 4 Cg, M). .

3. For each transcendental extension B over 4 and enumerations a and b with
dim(b/a) = k if p(x. y) is strong with respect to a, b then for a given finite
subset @y of C4 5.

ME[VE (Do i) Ak (B) 5 35 (&) A A\ PO A\ =p()
p(b;) —p(b;)

A /\ —3zZ¢ WABC(XJ;ZC)))]’

CE‘DO
where w4.p.c(X, y:Zc) € Fc, foreach C € ®,.

The above items can be expressed as first-order axiom-schemes; the second item
is mentioned before Definition 2.12.

REMARK 3.9. Notice thatif |B \ 4| = 1 the item 3 states that if there are infinitely
many y that satisfies ¢ (X, y) then there exists y with the same color as b such that
@(X.¥) A Ncewo, "3Zc Wanc(X.y:Zc) holds.

LEMMA 3.10.  Any Ro-rich structure Ml is a model of Ty, (and hence Ty, is consistent).
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Proor. By Theorem 3.6, M is Ny-saturated as a model of 7. Now we just prove
that the third item in Definition 3.8 holds. Consider a.b, ¢, ®y and C4 p as in
the hypothesis of item 3. Let @’ in M be such that M |= Dy« (a') A dy. i (@’). So
there is b’ € M!?I with M = o(b'.a"). b’ nacl(a’) =0, and dim(B’/&’) = k. Since
cl(a’) is finite, by w-saturation of M and Observation 2.8 we may assume that
(cl(@)ynbd’ =0 and b’ and (cl(a’)) are free over a’. Consider the L-structure
generated by cl(a’)b’ in M and make it into an £,-structure N by coloring cl(a’)b’
with the same colors as cl(@)b and leaving the rest of the elements non-colored. It
is clear that (cl(a’)) < M. We claim that also {(cl(a’)) < N. By this claim, since M is
No-rich, there is a strong embedding f : N — M which fixes (cl(a’)) pointwise. Let
f(b') =é. Then

M = (p(a’.e) A /\ plei) A /\ —p(er)).
p(b;) —p(b;)
Furthermore we prove that
M E-3Z wapcla’.e: z),
for every C € ®y. Otherwise suppose there exists ¢’ in M such that

MEyapcla.ed).

for some C € @y. As ¢’ is disjoint from 4’ and ¢, it follows that ¢’ C cl(a’e) \ a’e.
Let A’ and B’ be the union of elements of tuples @’ and a’é, respectively. Since b’ and
(cl(a")) are free over @’ it follows thatcl(B’) = cl(4’) @4 B’. As y 4 p ¢ isan intrinsic
formula, we have that ¢’ C cl(B’) and ¢’ N B’ = (). Now since cl(A4’) Jf:,m B, it
follows that ¢’ J,il,m B’. But this contradicts the fact that w4 ¢ (X, y; Z) dim-forks.

Now to prove the claim, let l_){ C b’ andd C N \ cl(@’)b’. Notice that b \L(Cill(n;,) a
implies dim (5] /(cl(@’))) = dim(b]/a’). Moreover as g is strong, by Definition 2.3
we have dim(b]/a’) > dim(b; /a). Therefore

S(bld/(cl(@'))) = dim(b|d /(cl(a@"))) — a| p(bld)|
= dim(b]/(c1(@"))) - a|p(b))]
= dim(b}/a’) — a|p(b})|
> dim(b,/a) — a|p(b;)| > 0. B

In the following, we first prove that any Xy-saturated model of T,, is Ny-rich. This
result, together with the fact that any two Ry-rich structures of X are back and
forth equivalent, implies that T, is complete.

THEOREM 3.11. Suppose that M is an Ry-saturated model of T, then M is No-rich.

ProOF. Let M < N be two finitely generated structures in K and /' : M — M
be a strong £ ,-embedding. We claim that thereis a strong £ ,-embeddingg : N — M
extending f.

Since M and N are finitely generated, there are 4 Cg, M and B Cg, N such that
M = (A4). N = (B)and 4 < B < N. By Remark 2.17 we have two specific cases to
consider.
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Case 1. Bis algebraic over A.
Since A < N € K}, any x € B\ 4 is non-colored. So by Remark 2.17 it is clear
that there is a strong £ ,-embedding g : B — M extending f.

Case 2. B is transcendental over 4. By axiomatization and w-saturation there is
an embedding f : B — M fixing A pointwise and there is no embedding of C over
f(B)in M. for each C € C4 5. We claim that f(B) < M. Otherwise there should be
a tuple d € M disjoint from f(B) with f(B) <; f(B)d therefore 5(d/f(B)) < 0.
But since all structures in C g are omitted over f (B), it follows that d ij f(B).
Sod(d/A) =d(d/f(B)) < 0. But this is a contradiction, since 4 < M. —

THEOREM 3.12. T, is complete.

Proor. Clearly any two Ry-rich models of T, are back and forth equivalent. So
the above theorem would imply that any Ry-saturated models of T, are back and
forth equivalent. Hence T, is complete. -

COROLLARY 3.13. Let € be a monster model of T,,.

1. Assume that a,, a, in € are small tuples and X is a closed small subset of €. Then,
tp(ai/X) = tp(ay/X) < (cl(Xa1)) =x (cl(Xa)).

2. Any L ,-formula is equivalent to a Boolean combination of formulas of the form
37 p(X: ). where (X: §) is an L -intrinsic formula.
3. Cis A-rich, for all A < |€].

§4. Classification properties of T,,. In this section we study certain classification
properties of T, and show that if 7" is NTP;, strong, NSOP,, and simple then so is
T,. From now on we suppose that € is a monster model of T, and all tuples and
subsets are considered in € and small.

We first need to define the notion of D-independence to analyse the forking
independence for T,,.

DrriNITION 4.1. Let M be an arbitrary model of T,,, A, B Cg, M and X C M.
Define:

1. D(4) = min{d6(C)| 4 C C Cq, M},

2. D(B/A) = D(BA) - D(A).

3. D(A/X) = inf{D(A/X,). Xo Can X}

It can be easily seen that D(A) =d(cl(4)) and D(B/A) = D(B/cl(A)) =
D(cl(B)/cl(A)) =d(cl(BA)/ cl(A)). Therefore the set V' of values D(B/A) forms a
discrete set of positive real numbers, that is it does not have any limit point. So in the
third item of the above definition the infimum is attained and D(4/X) = D(A/Xy)
for some finite subset X of X.

DEeFINITION 4.2. Let M = T,, 4, B Ciy M and Z C M. We say that 4, B are

D-independent over Z and write A \Lg B whenever D(A/Z) = D(A/ZB) and
cl(A4Z)Ncl(BZ) = cl(Z). Moreover for arbitrary subsets X, Y of M we say that X

and Y are D-independent over Z and write X \I/g YifC J/g E forany C Cqp X
and E Cq, Y.
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Fact 4.3 [4]. The relation \I/D has the following properties.

D-symmetry. If A \Lg C. then C \Lg A.

D-transitivity. A \Lﬁ C and A \Lg)c E ifand only if A J/g CE.
D-monotonicity. If AA’ J_,I; CC' then A \Lﬁ C.

D-local character. For any X there exists a finite set Xy C X such that A \Lf\),o X.
D-existence. For all sets X, Y. Z with Y C Z and X is finite there exists a finite
X' such that tp(X/Y) = tp(X'/Y) and X' \Ll;, Z.

6. D-closure preservation. For every X,Y.Z if X J,? Z then cl(XY) \LCDI
c(YZ).

A

(Y)

The following lemma can be proved using techniques available in [4, Section 3].

LemvA 44. Let Z <M. X, Y CM. Then X | Y if and only if:
. d(XZ)Necl(YZ) = Z,
2. c(XY) =c(XZ)Ucl(YZ),

3. d(xZ) L™ e(vz).

In other words X Lg Y if and only if l(XY) = cl(XZ) @5 cl(YZ).

The following lemma can be easily proved using the properties of D-independence.
This lemma is particularly needed for proving strong finite character of the
independence that is introduced to show the NSOP; for T,,.

Lemma 4.5, For every Ml |= T, and rational number y € Vp. there is a partial type
2, (X, ) over M such that for every a and b we have that

Y. (a.b) ifand only if D(a/Mb) > y.

Proor. For finite tuples @ and b of fixed length if D(a@/Mb) < y then there is a
finite subset M, of M with d(cl(abMy)/ cl(aM,)) < y. So by \/-definability one can
find an existential £,-formula w (X, y.my) € tp(ab/M,) describing the closure of
ab M and witnessing (cl(@bMy)/ cl(@My)) < y. Hence X, (X, j) is a partial type
which consists of ~y (X, 7. 71 ) for every formula witnessing D(a/Mb) < y. -

4.1. NTP, and strongness of T,. We begin this section by showing that T, is
NTP; (respectively strong), provided that T is NTP, (respectively strong). To this
end we show that the burden of T, < oo under the assumption that 7 is NTP,. We
first review the basic related concepts and facts all of which can be found in [8].

DEFINITION 4.6 (In a monster model 9t of a theory I'). A formula ¢ (X, y) is TP,
if there is an array (d;;); jew and k € o such that:

1. {¢(X.a;;)}jew is k-inconsistent for each i € w. i.e.. any of its k-element subset
is inconsistent.

2. {@(X.a;7(;)) }ico is consistent for each [ : v — w.
A formula is NTP; if itis not TP,. The theory I"is NTP; if it implies that every
formula is NTP,.
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DEFINITION 4.7.

1. An array (@;;)ica jep is A-indiscernible if the sequence of its rows and the
sequence of its columns are A-indiscernible.

2. The rows of an array (d;;)ica jep are mutually indiscernible over A if each
row a; = (a;; : j € f) is indiscernible over A U a.; where a; == {a;; : [ #
i, j€p}.

3. The rows of an array (@;;)ica jep are almost mutually indiscernible over A
if each row a; = (a;; j € f) is indiscernible over Aa;(a;);>; where a; :=
{a;j - 1<, jep}

Next we recall the notion of burden. As in [8], for notational convenience, we
consider an extension Card* of the linear order on cardinals by adding a new
maximum element oo and replacing every limit cardinal k by two new elements x_
and k, with k. < k.. The standard embedding of cardinals into Card* identifies
with . In the following, whenever we take a supremum of a set of cardinals, we
will be computing it in Card*.

DEFINITION 4.8. Let p(X) be a (partial) type.
(i) An inp-pattern of depth x in p(X) consists of (a@;, ¢; (X, 7:). ki )icx With @; =

(@ij)jew and k; € w such that:
o {i(X.aij)} jcw is k;-inconsistent for every i € k.
o p(¥) U{pi(X.4(;))}iex is consistent for every [ : & — o.

(i) The burden of a partial type p(x), denoted by bdn(p), is the supremum of
the depths of inp-patterns in Card*.

(iii) A theory I is called strong if bdn(p) < (Rg)_ for every finitary type p
(equivalently, there is no inp-pattern of infinite depth).

FAcT 4.9. A theory T is NTP; if and if bdn(p) < |U|T for every finitary type p if
and only if bdn("x = x”) < |T'|*.

For a theory I put bdn(I') = bdn("x = x”).
FAct 4.10. Let T be an arbitrary theory and k € Card*. Then the following are

equivalent.

(a) bdn(p) < k.

(b) If b |= p(X) and the rows of the array (a;j)iex jcw are almost mutually
indiscernible over A then there are some i € k and indiscernible sequence
a = (d})jew such that a' is indiscernible over b A and (@}) jew =a;pa (aij) jcw-

(¢) For any mutually indiscernible array (a;;)icx jew over A and b |= p, there are
some i € k and indiscernible sequence a’' = (&;) jew such that a’ is indiscernible
over bA and (07})‘/@) =04 (i) jew-

From now on, as before, we work in the monster model € of T,,.

Lemma 4.11. LetI ={a; : i< k}bean L,-indiscernible sequence over A. Then
1L is L ,-indiscernible also over cl(A).

PrOOF. Let{¢; : i< k}bean L,-indiscernible sequence over cl(4) that realizes
the EM -type of 1. This sequence has the same type over A as the type of 7, and
therefore, there is an £, -automorphism ¢ : € — € fixing 4 pointwise such that
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o(¢;) = a;, for each i < k. So, {@; : i<k} is L,-indiscernible over o(cl(4)) =
cl(4). -

The following notions of D-Morley sequence and mutually D-Morley sequence
as well as Lemma 4.13 are needed to prove the main Theorem 4.14.

DEFINITION 4.12.

D

1. An indiscernible sequence (a;: i € «) is D-Morley over A4 if a; | y

@jy. ... a;, , foreach iy < --- <i, € .

2. The mutually indiscernible array (a;;);cq jep Over A is mutually D-Morley
over 4 if each row is a D-Morley sequence over A and the sequence of its rows
(@;)ica is also D-Morley over A.

LemMA 4.13. Assume that a mutually indiscernible array I = (a;;)icx. jew over A
is given. Then there is a closed set Z including A such that I is mutually indiscernible
and mutually D-Morley over Z.

ProOOF. We extend the array I := (d;;)icx jeo to a mutually indiscernible array
(ais)ierscq over A. Put Zy = (diy)icx.s<0-

It is clear that (di_,-) ier, jew 18 mutually indiscernible over Z; 4.

To prove that (a; i)ien jew 18 mutually D-Morley over Z;A. we first show that
the row a; is a D-Morley sequence over Z; A, for each i € k. So we prove that

a;; J/%A {ay: 1< j}.for each j € w. Put b := (@i)i<;. Hence it is enough to
verify that

C;,'j J-/ZA 1_7 (*)

Take a finite subset Z; of Z; 4 with d,t,»E J,go Z1A. So the properties of D-
independence implies that a;; \Lgo Z1A4 and a;; J“gof? Z1Ab. By D-transitivity, to
show (%), it is enough to prove that ajj J/go b. Put B=ZyNa; and find b’ =
{ay,. ...,dﬂH} such that s </y < --- < /;_1 <0 for each s with a;; € B. As I is
a mutually indiscernible array, b =7, 4a;; b’. But since b’ C Z, A, it follows that
(j,’j J_,go 5/. Hence ﬁij \Lgo Z)

By a similar argument we can prove that the sequence of rows of [ is also D-

Morley over Z;A. Take Z = cl(Z;A). By Lemma 4.11 we have that the sequence I
is also indiscernible over Z. -

THEOREM 4.14. If T'is NTP, then so is T,.

PrOOF. Let p(X) be an arbitrary finitary type. We prove that bdn(p) < |T,|" =
N;. By Fact 4.10 it is enough to show that for any given mutually indiscernible
I = (di)iex, over § and b |= p, there are some i € X, and sequence @' = (d}) jew
such that a’ is indiscernible over » and (&})jew =a, (@) jco-

By Lemma 4.13 we may find a closed set Z for which (&;);ex, is mutually D-
Morley over Z. Since each row a; is D-independent over Z, it implies that cl(a; Z) =
UkEw cl(@y Z). Furthermore for any iy, ....i, € ¥y and ji., ..., j, € w, we have
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Cl((j,'l s eees ﬁl’nZ) = Cl(dil Z) @Z EBZ Cl(d,‘nZ), (*)

Cl(&iljl’ vees Li,'"jnZ) = cl(d,-leZ) Dz - Dz cl(d,-njnZ). (**)

Now by an easy application of Ramsey’s theorem we may assume that the array
J = (cl(@;;Z))ien,.jew is mutually indiscernible and mutually D-Morley over Z.
Let [;ij = Cl(ﬁ,]Z)

Take a finite tuple ¢ = p. By D-local character (Fact 4.3) there is a finite subset
Iy of components of [ such that e J/Z 1. Choose a countable ordinal v such that

Iy € U, @i Put I' := (@) isv jew. J' = (bij)isv.jew and & = cl(ély). Then &' is
finite and both I’ and J’ are mutually indiscernible and mutually D-Morley over
cl(1oZ). Furthermore Iy \Lg I’. Hence by D-closure preservation (item 6 of Fact
3) & J,g Jandly L) J'.
So forany i > v and j; < j» < --- < j we have that

Cl(l_)l'jl, ,Z_)ijkl()) = (Bijl Sz Dz l;ijk) Dz CI(IOZ)v (T)

Cl(l_)l'jl s e s Bijk Ioé/) = Cl(B,'jl s e Bij/c 10) @01(10) él. ('H‘)

Since T is NTP, and &’ is finite. there are a countable ordinal 7 > v and b/ =

(b},)jew such that b, = (b;;) jco =501y 2) (b};)jew and b] is an L-indiscernible

over cl(IpZ)é'. Subsequently if we (re-)color (b, Iy) the same as (b, Ip) then we have
that (b/I,) € K and by cl(lpZ) < €. So (b 1) D (0 cl(102)) (bioe'IyZ) € K. Now

by richness of monster model we may find a closed isomorphic copy (b of (b!) over
(cl(IpZ)é'). Note that since b and b, have the same £-types and colors. b/ is a dim-

Morley and L-indiscernible sequence over cl(/yZ)é’. Hence b;;l b,”,n = b;;l

@z by, < by < € foreach ji < < j,. Furthermore &’ \Llo b Iy \LZ by’ and

(b,’;l By Z_J,’}n) ®z cl(lpZ) < €, for each j| < --- < j,. Therefore (1) and (1)

also hold for b/
Cram. l_),” is also L ,-indiscernible over cl(IyZ)e’'
PrOOF OF cLAM. We prove that for any i} < - < iy and j; < -+ < Ji
(b, ... b 10€")) =y z)ery (CAbLj, ... ] Toe")). (4.1)

Now by (1) and (1) for b” and by Corollary 3.13 in order for (4.1) to hold

it is sufficient to have tpﬁ(b”l b /cl(IOZ) N = tpc(b,’;1 b” /cl(IOZ)é’).

This is because by (1) and (1) any E isomorphism between cl(b;lfl b 1e)

_ ~ 7 - 1y
and cl(bf] ... by Ipe") which maps by . .. b,’l’] to by ... ..bf; and fixing cl_(IOZ)é’
pointwise also preserves the coloring. But the latter equality holds, since b’ is an

L-indiscernible sequence over cl(lpZ)é’. =

The next corollary to show strongness of T, can be easily deduced from (the proof
of) the above theorem. To this end we verify that bdn(p) < (Rg); = Ny for every
finitary type p.
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COROLLARY 4.15. If T is strong, then so is T,,.

The following theorem shows that if 7" is indecomposable then bdn(T 1 ) = (No)_.

This result remains true for every rational oe. However for simplicity and to have
some concrete examples we restrict ourselves only to a = % Note that by the
indecomposability of 7" we may use Lemma 2.10 to show that for every independent
set B = {by,....b,, } over a set 4 and for every n > m one can find b,,,11, ..., byin €
acl(B) such that each m-element subset of {b1, ..., by, b1, ... by} forms a basis
for acl(4B). Below we take A = {b} where b is a non-algebraic element, m = k and
n=k+1 fork >1.

THEOREM 4.16. Let T be an indecomposable theory. Then bdn(T 1) is not finite.

1
2

Proor. To show bdn(T%) is not finite, in the light of item () of Fact 4.10, for

each natural number k& we must construct an almost £ ,-mutually indiscernible array
(a; )ik jew over @ and find b’ such that for each i € k and for each £ ,-indiscernible
sequence @’ := (a}) jer, With @' isindiscernible over b’ we have (a}) jew Zayy (@i)) jco-

Let b € € be non-algebraic over (). Choose elements {b;,...,b;} of € such
that {b;,...,b;} is independent over b. Now by Lemma 2.10 we may choose
bii1s....bai1 € acl(b, by, ..., by) such that any k-element subset of {by,.... by 1}
is a base for acl(b, by, ..., byiy1) = acl(h, by, ..., by ). Let ¢; = by4p; foreach 0 < i <
k — 1. Hence C = {c¢y, ..., ¢k 1} is independent over ). Choose an L-indiscernible
sequence {co; : j € w} over {c,.... 1} With coo = co. Respectively by induction
over i € k, choose an L-indiscernible sequence {c¢;; : j € w} over ¢«;(ci0)i
with ¢;o = ¢;. Since {cp, ..., ¢;_1} is independent over (), by Ramsey theorem and
compactness there exists an array [ := (cij),-ek)_,e(u such that ¢;;’s are distinct.
Furthermore by free amalgamation of 7" and Observation 2.8 we may choose 1
in such a way that [ J/(gm {b,b1,....by11}. It is easy to see that I is an almost
L-mutually indiscernible sequence over {).

Now we color (Ibb; ... by, ) by letting the elements of I U {b, by, ..., by } colored
while leaving the rest of elements non-colored. By exchange property of 7" and since
I is almost mutually indiscernible, each row ¢; is dim-independent from ¢-;. So for

each subset X of ¢; we have that X < I. Moreover since [ J/(élm {b,b1,....br11},
we have I < Ibb; ... by 1. Therefore (Ibb; --,1) € K. Take [ : (Ibby ...by1) — €
to be a strong £,-embedding with b’ = f(b). b, = f(b,) and a;; = f(c;;) for each
t €k +2.i€kandj € w. Thenitisclearthat (a;;);ex jew is analmost £ ,-mutually
indiscernible array over (). Further we have that,
/ / / 1 1
5(6100, ,a(k71>0, 1seee ’bk+l/b ) =k - E(Zk + 1) = E

So (b'.{b’. ag, ..., age1)0-b1. ... b,’H_l}) is a minimal pair and hence by Fact 2.15
we have that a;o € cl(b’) for each i € k. We claim that for each i € k and L£,-
indiscernible sequence (a;) jew over b’ we have that (a}) jew Zay (@i) jew-

Assume not. Then for some i € k we have (a}) jew =4 (@ij)jcw- Note that since
ay = ajo € cl(b’) and (a}) e, is an L ,-indiscernible sequence over b’, we have that
a’; € cl(b’) for each j € w.
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But this gives infinitely many elements in cl(4’) which contradicts the fact that
cl(b’) is finite. =

COROLLARY 4.17.  Let T be the theory of a non-principal ultraproduct of Q,’s. Then
T% is a strong theory with bdn(T%) = (Ng)_.

4.2. NSOP; and simplicity of T,. In this subsection we examine whether the
NSOP; and simplicity of T can be transferred to T,. We first start by recalling the
definition of NSOP;. Let T be a complete theory and 9t |= " be a monster model
of I'.

DEFINITION 4.18 [15]. The formula ¢(x, y) has SOP; if there is a collection of
tuples (a,),e2<w so that:

1. forall 2 € 2%, {¢(x.a;,) : a < w} is consistent,

2. forally € 2<?,if v <y ~ 0, then {¢(x. a,). ¢(x. a,~1)} is inconsistent.
The theory I is called SO P if there is a formula with SO P;. Otherwise I' is NSOP;.

The following fact provides a technique for showing theory I' is NSOP;, ([15.
Theorem 9.1]).

FACT 4.19. Assume there is an Aut(9N)-invariant ternary relation | on small
subsets of the monster M = T which satisfies the following properties. For an arbitrary
M =T and arbitrary tuples and subsets from 9,

1. Strong finite character: If a L B. then there is a formula o(%.b.m) e

tp(a/BM) such that for any @' = (X.b.m) a i, B.

. Existence over models: M =T implies a \|/ M forany a € M.

. Monotonicity: Ifaa’ |,, BB thena | ,, B.

. Symmetry: a \LM b if and only if' b \LM a

. The independence theorem:a |, B.a’" |.,, C.B |,, C anda =y a' implies
there is a" witha” =yp a, a”’ =yc a’ and a” J,M BC.

ThenT is NSOP.

Now we want to show that the NSOP; can be transferred from 7 to T,. Notice
that since T is NSOP;. there is an Aut(¢)-invariant ternary relation \L‘ that fulfils
the conditions of the above fact.

W oA W N

REMARK 4.20. By taking Jj to be the Kim-independence, [15], we may assume
that:

l.a Jj b implies that aNb C M.,
.1fa\L bthena\L acl(Mb),
3. a \L b implies that a J/dlm b

In the light of the above fact a notion of independence is introduced to prove that
T, is NSOP;.

DEerFINITION 4.21. Suppose a, B, C are given. We say a J_,*C B if and only if
cl(ac) \L () cl(BC) and cl(aC) ©) cl(BC).

THEOREM 4.22. If Tis NSOP) then so is T,.
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PrOOF. It is enough to prove that | * satisfies the conditions of Fact 4.19. It
is easily seen that | * is an automorphism invariant and satisfies the properties
existence over models, monotonicity, and symmetry by the definition of | "

So we only prove the other properties. Notice that without loss of generality B, B’
and C can be considered to be closed in €.

e Strong finite character: Assume that a J/L B. We prove that there is a formula
¢(x.b.m) € tp(a/BM) such that for any @’ |= ¢(%.b.m).a' L), B
a [, Bimplies either cl(aM) J/M cl(BM)orcl(aM) J/M cl( BM). Then
we have two cases to consider:
Case 1. cl(aM) J/fl cl(BM) butcl(@aM) Ncl(BM) = M.
So D(a/M) > D(a/MB). Therefore there exist a finite set My < M and a
finite tuple b of B such that

D(a/M) = D(a/My) > D(a/MB) = D(a/Myb).
By D-symmetry this is equivalent to
D(b/My) > D(b/Moa). ()

Let y = D(b /My). Now in the light of Lemma 4.5 there exists a partial type
%, (X.7) over M expressing that D(y/M x) > y. Hence by (x) one can find a
formula 0(x. mg. b) which is satisfied by @ and

D(b/M) = D(b/My) > D(b/Ma’).
for every a’ with 0(a’, iy, b). Hence by D-symmetry
D(a'/M) > D(a'/Mb).
Thus cl(@’M) L%, cl(BM).

Case 2. cl(aM) Ncl(BM) # M orcl(aM) A}, cl(BM).

By Remark 4.20 this case is equivalent to cl(aM ) J/jv[ cl(BM).

Letcl(aM) J_,L cl(BM). Since T is NSOP; ., thereare a’ C cl(aM ), disjoint
from @, and an L-formula 0(%, %, b,m) € tp,(aa’/cl(BM)) witnessing the
strong finite character property with respect to 7. Let w(x,x’.m) be an
L p-intrinsic formula satisfied by aa’. Set o(%.b.m) :=3X(0(x.%'.b.m) A
w(x.%'.m)). We claim that ¢(%.b./m) is the desired formula. Let 4, be a
solution of ¢(X,b. ). Then there exits @, C cl(@; M) with 0(a;.a,. b, m).
Hence a1, ,L;w cl(BM). Therefore cl(a; M) ,L}u cl(BM).

o The independence theorem: Assume that a |, B.a’ [}, C. B L}, C and
a =y a'. Further, suppose that B = <B>. C ={(C), both include M and they
are closed in €. We prove that there is a” with a” =p a. a"” =¢ a’ and a” \L
BC. By definition of |}, we have cl(aM) \LM B.cl(a'M) \LL C.B \LL
and a =y a’ (in the sense of £ ). Since @ =y a’. by Corollary 3.13 it follows
that (cl(@aM)) =y (cl(a’M)).
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So by independence theorem for 7 there exists an L-structure £ such that
tp,(E/B) = tp((cl(@M))/B). tpz(E/C) = tp,((cl(@M))/C) and E L},
BC. By Remark 4.20 we have E J,i;m BC. Existence of an L-isomorphism
f :{cl(aM)) — E allows us to color E the same as (cl(aM)). So E € K}.

Let D =(BC) and F = E &3 D be an L-structure given according to
Convention 2.7. We subsequently turn F to an £ ,-structure by taking p(F) =
p(E)U p(D). Then by Lemma 3.3 we have that D < F € K. Therefore there
is a strong embedding g : F — € fixing D pointwise. Put g(f(a)) = a”. It can

be easily seen that a” =p @, a” =¢ a’ (in the sense of £,)and a” LL BC.

Thus a” Li/i[m BC. Furthermore cl(a” BC) = cl(a” M) @©j; BC. Therefore in
the light of Lemma 4.4 we have a” \Lfl BC and consequently a” [}, BC.

The following corollary presents an important example of a theory with NSOP;.
Recall that by Theorem 5.28 of [12] the theory ACF,G is an NSOP; geometric
theory.

CoOROLLARY 4.23. For rational o, ACF ,G, is NSOP;.

Now we turn our discussion to verifying simplicity of the theory T,. So from now
on we assume that 7 is a simple theory. A fact similar to Fact 4.19 states that a
theory I is simple if and only if it supports a notion of independence with certain
properties (see [16, Theorem 4.2]).

FACT 4.24. Let T be an arbitrary theory, and | be an Aut(9N)-invariant ternary
relation on small subsets of the monster model M |= I'. Suppose | has the following
properties.

1. Local character: For any a and B there is A C B such that the cardinality of A
is at most the cardinality of T and a \LA B.

2. Finite character: a J,A B if and only if for every finite tuple b from B. a \LA b.

3. Extension: For any a, A and B O A there is a' such that tp(a’/A) = tp(a/A)
and a’ J/A B.

4. Symmetry: If a J/A b then b J/A a.

5. Transitivity: Suppose AC B C C. Thena |, C and a L, B if and only if
al,cC.

6. The independence theorem: Suppose M is a model of T, a | u B a L uw C.
B J/M C and a =y a’. Then there is a” with " =yp a, 4" =yc a’, and
a"l, BC.

Then | is exactly the forking independence and T is simple.

THEOREM 4.25. The theory T, is simple.

Proor. As T is simple there is a notion of independence \LT which satisfies the
properties of Fact 4.24. Furthermore since \Jj is the T-forking independence, we
may assume that B J,L C and, furthermore a \LL B implies a \ij B.

Let | * be the notion of independence introduced in Definition 4.21. To simplify
our discussion sometimes cl(a C) Jj'(%) cl(BC) is used as an abbreviation of a J/Z

cl

B. We prove that | " satisfies the conditions 1-6 of Fact 4.24.
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One can easily prove invariance, monotonicity, symmetry, and finite character.
Further the proof of independence theorem is the same as of Theorem 4.22. So we
prove the other properties.

e Local character. Let a and a closed subset B be given. Take a finite closed subset
By of B such that a J/go B. So by D-closure preservation of Fact 4.3, we have

cl(aBy) J,go B. Now by local character property of Jj there exists a countable
closed subset By of B including By such that cl(a By) \L; Bandcl(aB;)NB =
By . Therefore cl(aB) J,gl B. By iterating this process a sequence By < B; <
B, < ... isfound such that cl(a B;) J_,gl_ Bandcl(aB;) J,LM Bforeachi € N.

Now put 4 = | J;c Bi- Hence a J,z B is obtained.

e Extension. Let a, A and B O A be given. Without loss of generality we may
assume that 4 < B < €. By simplicity of 7 and the extension property of
\LT there are By and a partial L-isomorphism f : cl(@aA4) — By fixing 4 such
that By LL B. Now by taking » = f(a) (and coloring By using / and leaving
By — Im(f) non-colored) the function f can be considered as a partial £,-
isomorphism between cl(a@A4) and cl(bA).

Since | " implies L9™ we have B, J/iim B.Let C = B®, By. Then By <

C. Take g : C — € to be a strong embedding and @’ = g(b). Then we have
a L’ B.

e Transitivity. Suppose A C B C C. We show thata |, C anda L, B if and
onlyifa |, CFix A< BLKC< Leta L, Canda L’ B.So by the
definition of | * we have cl(@B) J/;’D C and cl(aA) L‘D B. We prove that
cla4) L5° c.

Since cl(aB) \Lg C and cl(aAd) J/i) B, Lemma 4.4 implies cl(aC) =
cl(@B) ®p C and cl(aB) = cl(aA) ®4 B. Hence cl(aC) = cl(ad) &4 C and
cl(aa) L7 c.

Then cl(aA) C cl(aB) yields cl(aA) \LTB C. Now as we have cl(@A4) \LL B,
by transitivity of |7, cl(a@4) J_,L C is obtained

Conver_s_ely assume that a \LZ C. Then cl(aA) L‘D C. We prove that
cl(aB) L;’D Candcl(ad) L'D B.

By transitivity of | Tand | ? itisclear thatcl(aA4) Z’D Bandcl(ad) \L;D
C. On the other hand since cl(a4) J,L’D B. by Lemma 4.4 we have cl(aB) =
cl(@aA) @4 B. Hence cl(aB) \LED C is equivalent to cl(a4) B \LL’D C. But by

symmetry, transitivity of | " and B \L;’D C the latter holds. 4

Since any complete theory of a pseudo finite field is a simple geometric theory,
the following corollary is immediate.

COROLLARY 4.26. Let T be any complete theory of a pseudo finite field. Then for
any «, the theory T, is simple.
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It is known that for simple theories the burden of a partial type p is the supremum
of weights of its complete extensions (see [8, Fact 5.2]). Therefore in the light of
Theorem 4.16 the following corollary is established.

COROLLARY 4.27. Let T be any complete theory of a pseudo finite field. Then T ! is
a simple theory of unbounded weight.

Proor. Since T is supersimple, by Proposition 5.5 of [8], it is strong. Hence by
Theorem 4.16 the theory T 1 is a strong simple theory of unbounded weight. -
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