
Restrictions on the prime-to-p fundamental group of
a smooth projective variety

Donu Arapura

Compositio Math. 151 (2015), 1083–1095.

doi:10.1112/S0010437X14007982

https://doi.org/10.1112/S0010437X14007982 Published online by Cambridge University Press

http://dx.doi.org/10.1112/S0010437X14007982
https://doi.org/10.1112/S0010437X14007982


Compositio Math. 151 (2015) 1083–1095

doi:10.1112/S0010437X14007982

Restrictions on the prime-to-p fundamental group of
a smooth projective variety

Donu Arapura

Abstract

The goal of this paper is to obtain restrictions on the prime-to-p quotient of the étale
fundamental group of a smooth projective variety in characteristic p > 0. The results
are analogues of some theorems from the study of Kähler groups. Our first main result
is that such groups are indecomposable under coproduct. The second result gives a
classification of the pro-` parts of one-relator groups in this class.

Introduction

Our goal in this work is to obtain analogues, over fields of characteristic p > 0, of a few of the
known restrictions on the class of Kähler groups. Recall that a group is Kähler if it can be realized
as the fundamental group of a compact Kähler manifold. In this paper, we replace the usual
fundamental group by the maximal prime-to-p quotient of the étale fundamental group. We focus
on this group because it behaves most like its topological namesake. Let P(p) denote the class
of profinite groups that arise as prime-to-p fundamental groups of smooth projective varieties
defined over an algebraically closed field of characteristic p. Our first main result implies, among
other things, the indecomposability of groups in P(p) under coproduct. This is an analogue of
Gromov’s theorem [Gro89] in the Kähler setting. In our second main result, we show that if
G ∈ P(p) is the completion of a one-relator group, then for almost every ` the pro-` quotient
G` of G is isomorphic to the pro-` fundamental group of a smooth projective curve. This was
inspired by the recent classification of one-relator Kähler groups by Biswas and Mahan [BM12]
and Kotschick [Kot12], although the argument used here is completely different. We deduce from
the hard Lefschetz theorem that G` is a Demushkin group for almost all `, and then the result
follows from the classification of such groups.

1. Preliminaries

From the beginning, we fix an integer p which is either a prime number or 0. By a p′-group we
mean a finite group of order prime to p (or of arbitrary order when p = 0), and by a pro-p′ group
we mean an inverse limit of p′-groups. The symbol ` will always stand for a fixed or variable
prime different from p. Given a profinite group G, let Gp′ (respectively, G`) denote the maximal
pro-p′ (respectively, pro-`) quotient of G. Given a discrete group G, we let

Ĝ = lim
←−

G/N is a p′-group

G/N
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be the pro-p′ completion; so Ẑ =
∏
` 6=p Z`. Then Ĝ` can be identified with the pro-` completion

of G. Given a connected scheme X, let πet1 (X) denote Grothendieck’s étale fundamental group
[SGA1], where we ignore the base point. This is the profinite group for which the category of finite

sets with continuous action is equivalent to the category of étale covers of X. Let us write πp
′

1 (X)
and π`1(X) instead of πet1 (X)p′ and πet1 (X)`. Given an algebraically closed field k of characteristic

p, let P(k) denote the class of pro-p′ groups which are isomorphic to πp
′

1 (X), where X is a smooth
projective k-variety; P(C) is the class of profinite completions of topological fundamental groups
of complex smooth projective varieties. Set P(p) = P(Fp), where Fp is the algebraic closure of
the prime field of characteristic p (so that F0 = Q̄). There is no loss in focusing on this case
because of the following fact.

Proposition 1.1. If k is an algebraically closed field of characteristic p, then P(k) = P(p).

Proof. Clearly P(p) ⊆ P(k) because extension of scalars from Fp to k will not change the
fundamental group [SGA1, Exposé X, Corollaire 1.8]. Suppose that X is a smooth projective
k-variety. It is defined over a finitely generated extension K of Fp, i.e. there exists a K-scheme XK

such that X = XK×SpecK Spec k. Let S be a variety defined over Fp with function field K. After
shrinking S if necessary, we can assume that there is a smooth projective morphism X → S with
geometric generic fiber XK . Choose an Fp rational point y0 ∈ S, and let η denote the geometric

generic point. Then πp
′

1 (Xy0) ∼= πp
′

1 (Xη) ∼= πp
′

1 (X) by [SGA1, Exposé X, Corollaire 3.9]. 2

Lemma 1.2. If G ∈ P(p) and H ⊂ G is open, then H ∈ P(p).

Proof. If G = πp
′

1 (X), then H = πp
′

1 (Y ) for some étale cover Y → X. 2

Given a finitely generated Z`-module V with a continuous action by a profinite group G, we
define

H i(G,V ) := lim
←−
n

H i(G,V/`nV ),

H i(G,V ⊗Q`) = H i(G,V )⊗Q`.

This naive definition will suffice for our purposes, although there is one place where we would
be better off with the more subtle definition of Jannsen [Jan88]. We summarize what we need
about this in the following lemma.

Lemma 1.3. Suppose that 1→K→ G→H → 1 is an exact sequence of profinite groups where
G is topologically finitely generated and V is a finitely generated Z`-module with continuous H
action. Then there is the usual five-term exact sequence of Hochschild and Serre,

0→ H1(H,V )→ H1(G,V )→ H0(H,H1(K,V ))→ H2(H,V )→ H2(G,V ).

Proof. Following Jannsen, we define H i
cont(G,V ) as the ith derived functor of

V 7→ lim
←−
n

H0(V/`nV ).

The Hochschild–Serre spectral sequence and the resulting five-term sequence for H∗cont can be
constructed in the usual way. By [Jan88, (2.1)], we have an exact sequence

0→ lim
←−

1H i−1(G,V/`nV )→ H i
cont(G,V )→ H i(G,V )→ 0. (1)
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The prime-to-p fundamental group

When i 6 2, we claim that H i−1(G,V/`nV ) is finite. For i = 1 this is clear, because V is
finitely generated. So we have to show this for i = 2. We can find an open normal subgroup G1

which acts trivially on V/`nV . Then, by Hochschild–Serre, we have an exact sequence

H1(G/G1, V/`
nV )→ H1(G,V/`nV )→ H1(G1, V/`

nV ).

The finiteness of the middle group is a consequence of the finiteness of the outer groups. The
first group is finite because both G/G1 and V/`nV are finite; the last group H1(G1, V/`

nV )
is isomorphic to Homcont(G1, V/`

nV ). By assumption, G contains a finitely generated dense
subgroup Γ. The group Γ∩G1 is easily seen to be finitely generated and dense in G1. Therefore
Homcont(G1, V/`

nV ) is finite and the claim is proved.
The Mittag-Leffler condition holds for H i−1(G,V/`nV ) and i 6 2 by the previous claim.

Therefore the lim
←−

1 in (1) vanishes, and so H i(G,V ) ∼= H i
cont(G,V ) for i 6 2. By the same

argument, H i(H,V ) ∼= H i
cont(H,V ). So the five-term sequence for H∗cont can be identified with

the one given in the statement of the lemma. 2

Lemma 1.4. If G is a profinite group and V an abelian pro-` group, then

(G/[G,G])` ∼=G`/[G`, G`],

Hom(G,V )∼= Hom(G`, V ),

where Hom is the group of continuous homomorphisms.

Proof. It is enough to prove the first isomorphism, because the second is a consequence of it.
Since (G/[G,G])` is an abelian pro-` group, the homomorphism G→ (G/[G,G])` factors through
the abelianization of the maximal pro-` quotient G`/[G`, G`]. So we have a homomorphism
G`/[G`, G`]→ (G/[G,G])`. On the other hand, the map G→ G`/[G`, G`] must factor through
the maximal pro-` quotient of the abelianization (G/[G,G])`. This gives the inverse. 2

Proposition 1.5. Suppose that X is a connected scheme of finite type over k. Let G be
a quotient of πet1 (X) by a closed normal subgroup, such that G dominates π`1(X). Given a
finitely generated Z`-module V with continuous G-action, there exists a homomorphism to `-adic
cohomology

H i(G,V )→ H i(X,V ). (2)

This is compatible with the cup products

H i(G,V )⊗Hj(G,V ′)→ H i+j(G,V ⊗ V ′)

and
H i(X,V )⊗Hj(X,V ′)→ H i+j(X,V ⊗ V ′).

The map (2) is an isomorphism when i 6 1.

Proof. We start by proving the analogous statements over Λn = Z/`nZ, and then we take the
limit. We indicate two different constructions of the map; the first is simpler, but the second gives
more, so it is the one that we shall use. First of all, both H i(G,−) and H i(X,−) are δ-functors
from the category of discrete Λn[G]-modules to abelian groups, with the first being universal in
the sense of [Gro57]. By the connectedness assumption, H0(G,V ) ∼= H0(X,V ). Thus we get a
map

H∗(G,−)→ H∗(X,−)
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of δ-functors. Compatibility with cup products can be proved in principle by dimension shifting
and induction, but it seems simpler to give an alternate interpretation. Suppose that Y → X is
a Galois étale cover with Galois group H being a quotient of G by an open normal subgroup.
Then we have an isomorphism of simplicial schemes

cosk(Y → X)• ∼= (Y × EH•)/G,

where cosk(Y → X)• is the simplicial scheme

. . . Y ×X Y →→Y

and EH•→ BH• is a simplicial model for the universal H-bundle over the classifying space (cf.
[Del74, §§ 5.1 and 6.1] or [Mil80, pp. 99–100]). The projection cosk(Y → X)•→ EH•/G = BH•
induces a map from the bar complex C•(H,V ) with coefficients in an H-module V to the Čech
complex Č•(Y → X,V ). Thus we obtain maps

H∗(G,V )→ H∗(H,V )→ H∗(X,V ).

The compatibility with cup products now follows easily from the standard simplicial formulas
for them (see [Mil80, p. 172]).

We have already seen that the map (2) is an isomorphism when i = 0. We next prove that it
is an isomorphism when i = 1. First, suppose that V is a finite Λn-module with trivial G-action.
Then we have an isomorphism

H1(G,V ) ∼= Hom(G,V ).

On the other hand,
H1(X,V ) ∼= Hom(πet1 (X), V )

because both groups classify V -torsors [Mil80, pp. 121–123]. By Lemma 1.4, we can also make
the identification

Hom(πet1 (X), V ) ∼= Hom(G,V ).

Now suppose that V is a nontrivial finite Λn[G]-module. Let π : Y → X be an étale cover such
that π∗V is trivial. We can assume that π is a Galois cover, with Galois group H being a quotient
of G. Set K = πet1 (Y ). Then K acts trivially on π∗V . It follows that

H i(K,V ) ∼= H i(Y, π∗V ), i = 0, 1, (3)

and this isomorphism is compatible with the H-action. Then Hochschild–Serre gives a commu-
tative diagram

0 // H1(H,H0(K,V )) //

∼=
��

H1(G,V ) //

f
��

H0(H,H1(K,V )) //

∼=
��

H2(H,H0(K,V ))

∼=
��

0 // H1(H,H0(Y, V )) // H1(X,V ) // H0(H,H1(Y, V )) // H2(H,H0(X,V ))

with exact rows. The maps labeled with ∼= are isomorphisms by (3). Thus f is an isomorphism
by the five lemma.

To summarize, we have canonical multiplicative homomorphisms

H i(G,V )→ H i(X,V )

for Λn[G]-modules, which are isomorphisms for i 6 1. The proposition follows by taking the
inverse limit over n. 2
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We will apply the preceding proposition in the two cases G = πp
′

1 (X) and G = π`1(X). It is

worth remarking that when V = Q`, we have H1(πp
′

1 (X), V ) ∼= H1(π`1(X), V ), but there is no
reason to expect this for higher cohomology.

We have the following basic finiteness property.

Theorem 1.6 (Raynaud). Any element of P (p) is topologically finitely presented.

Proof. This follows from [SGA7, Théorème 2.3.1 and Remarque 2.3.2]. 2

The analogous statement for Kähler groups is a well-known consequence of the finite
triangulability of compact manifolds. We wish to point out that topological finite presentability
does not preclude some fairly wild examples such as

∏
`6=p Z`Z. However, such examples cannot

lie in P(p).

Proposition 1.7. If G ∈ P (p), then G/[G,G] is the product of a finite abelian group and
Ẑb =

∏
6̀=p Zb` where b is an even integer.

Proof. We can decompose G/[G,G] as
∏
`6=p Z

b`
` × A`, where A` is a finite abelian `-group. We

have to show that b` is constant and that A` = 0 for `� 0. The Kummer sequence [Mil80, p. 66]
gives an isomorphism

Hom
(∏

Zb`` ×A`,Z`
)
∼= T`Pic(X) = T`Pic0(X)red,

where we make the identification Z` ∼= Z`(1). For the last equality, we use the exact sequence

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0

and the fact that the Neron–Severi group NS(X) is finitely generated. Since Pic0(X)red is an
abelian variety, it follows that b` = b = 2 dim Pic0(X)red (see, for example, [Mil86, Theorem
15.1]).

Again by Kummer, we have an isomorphism

Hom
(∏

Zb` ×A`,Z/`Z
)
∼= `-torsion subgroup of Pic(X).

Since NS(X) is finitely generated, the `-torsion subgroups of Pic(X) and Pic0(X) coincide for
all `� 0. The `-torsion subgroup of Pic0(X) is isomorphic to (Z/`Z)b. Therefore, for `� 0, we
must have Hom(A`,Z/`Z) = 0, which implies that A` = 0. 2

2. Consequences of the hard Lefschetz theorem

By far the simplest restriction on Kähler groups is what we will refer to as the parity test: a
finitely generated Γ cannot be Kähler unless rank(Γ/[Γ,Γ]) is even. This is a consequence of the
Hodge decomposition. Proposition 1.7 gives an analogue in our setting. It is convenient to record
the relevant part of it as a corollary.

Corollary 2.1. If G ∈ P(p), rankG`/[G`, G`] is a fixed even integer for each ` 6= p.

The following fact, which refines the previous result, was first observed by Johnson and Rees
[JR87] in the Kähler group setting.
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Theorem 2.2. Let G ∈ P(p), and let H be a quotient of G by a closed normal subgroup such
that H dominates G`. Suppose that ρ : H → On(Q`) is an orthogonal representation such that
ρ(H) is finite, and let V be the corresponding H-module with quadratic form q : V ⊗ V → Q`.
Then there exists a linear map λ : H2(H,Q`)→ Q` such that λ(q(α ∪ β)) defines a symplectic
pairing on H1(H,V ).

Proof. Suppose that G = πp
′

1 (X), where X is an n-dimensional smooth projective variety. Fix
an ample line bundle OX(1), and let L denote the corresponding Lefschetz operator. We claim
that

H1(X,V )×H1(X,V )
q◦∪−→ H2(X,Q`)

Ln−1

−→ H2n(X,Q`) ∼= Q` (4)

gives a nondegenerate symplectic pairing. When ρ is trivial, (V, q) is a sum of n copies of Q` with
the standard pairing, and the claim follows from the hard Lefschetz theorem for étale cohomology
[Del80, 4.1.1]. In general, let π : Y → X be a Galois étale cover with Galois group K such that
π∗V is trivial. We can decompose π∗π

∗V into V ⊕ V ′ under the K-action. Let p : π∗π
∗V → V

denote the projection. We equip Y with the Lefschetz operator corresponding to π∗OX(1). Then
the pairing (4) is obtained by applying p to the nondegenerate pairing

H1(Y, π∗V )×H1(Y, π∗V ) −→ H2(Y,Q`)
Ln−1

−→ H2n(Y,Q`) ∼= Q`,

and the claim follows for general V with finite monodromy.
By Proposition 1.5, we have a commutative diagram

H1(H,V )×H1(H,V ) //

∼=
��

H2(H,Q`)

ι
��

λ

$$
H1(X,V )×H1(X,V ) // H2(X,Q`)

Ln−1
// Q`

where λ is defined as Ln−1 ◦ ι. 2

Second proof of Corollary 2.1. H1(G,Q`) carries a symplectic pairing, so it must be even-
dimensional. 2

The theorem itself gives more subtle information than the parity test. For example, we have
the following consequence.

Proposition 2.3. Suppose that

1→ K → G→ H → 1

is an extension of pro-p′ groups such that H1(H,Q`) 6= 0 and the trangression HomH(K,Q`)→
H2(H,Q`) is an isomorphism. Then G /∈ P(p).

Proof. From the Hochschild–Serre sequence

0→ H1(H,Q`)
α−→ H1(G,Q`)→ HomH(K,Q`)

∼−→ H2(H,Q`)
β−→ H2(G,Q`)

(Lemma 1.3), we conclude that α is an isomorphism and β = 0. Therefore

∪ : ∧2H1(G,Q`)→ H2(G,Q`)

is zero, because it factors through β. Thus G /∈ P(p) by Theorem 2.2. 2
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The conditions of the proposition are easy to check for the following example.

Corollary 2.4. The completion of the Heisenberg group
1 a b

0 1 c
0 0 1

 ∣∣∣∣∣ a, b, c ∈ Ẑ


is not in P(p).

A more general class of examples to which the proposition applies comes from generalized
universal central extensions. Given a pro-p′ group H, we have a (generally noncanonical) central
extension

0→ H2(H, Ẑ)→ G→ H → 1, (5)

with extension class lifting the identity under the surjection

H2(H,H2(H, Ẑ))→ Hom(H2(H, Ẑ), H2(H, Ẑ)).

Here the (co)homologies are defined by taking inverse limits of the usual groups with coefficients
in Z/nZ. Transgression gives an isomorphism, so that the following holds.

Corollary 2.5. If H1(H,Q`) is nonzero, then the group G of the above extension (5) is not
in P(p).

The last statement should be compared with [Rez02, p. 717, Corollary].

3. Free products

Given two pro-p′ groups G1 and G2, their coproduct in the category of pro-p′ groups exists
[RZ10, § 9.1]. We denote it by G1 ∗̂ G2. It is closely related to the usual free product ∗.

Lemma 3.1. Given discrete groups Gi, we have Ĝ1 ∗G2
∼= Ĝ1 ∗̂ Ĝ2.

Proof. See [RZ10, 9.1.1]. 2

The completion F̂ r of the usual free group on r generators is a free pro-p′ group. It can also
be expressed as a coproduct

F̂ r = Ẑ ∗̂ · · · ∗̂ Ẑ (r factors).

In [ABR92], it is shown that a Kähler group cannot be an extension of a group with infinitely
many ends by a finitely generated group. We observe that any nontrivial free product other
than (Z/2Z) ∗ (Z/2Z) has infinitely many ends. Since we do not (yet) have a theory of ends
in the profinite setting, we give a slightly weaker statement involving the aforementioned class.
On the other hand, the hypothesis on the kernel can be relaxed slightly.

Theorem 3.2. Let p 6= 2. Suppose that we have an extension of pro-p′ groups

1→ K → G→ H → 1 (6)

such that:

(a) (K/[K,K])2/(torsion) is a finitely generated Z2-module; and

(b) H is a nontrivial coproduct other than (Z/2Z) ∗̂ (Z/2Z).

Then G /∈ P(p).
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Proof. Suppose that G fits into the exact sequence (6) with H = H1 ∗̂ H2, where the Hi are
nontrivial and not both of order 2. We will show that G cannot lie in P(p). We first reduce to
the case where H is of the form J ∗̂ F̂ 2. Choose nontrivial finite quotients Qi of Hi such that
|Qi| > 2 for some i. Let L ⊂ H be the kernel of the projection H → Q1 × Q2. Then, by the
profinite version of the Kurosh subgroup theorem [RZ10, 9.1.9], we see that L ∼= J ∗̂ F̂ 2 for some
group J . It suffices to prove that the preimage G̃ of L in G is not in P(p) by Lemma 1.2. Since
it fits into an extension

1→ K → G̃→ L→ 1,

we may replace G by G̃ and H by L.
From the exact sequence (6), we get a continuous action of H on K/[K,K]. Therefore

M = (K/[K,K])2⊗Z2Q2 is a finite-dimensional representation of H. With respect to the

factor F̂ 2 = Ẑ ∗̂ Ẑ of H, we get two actions of Ẑ on M , which we refer to as the first and
second actions. Let {ξ1, . . . , ξn} be the (possibly empty) set of one-dimensional characters of F̂ 2

corresponding to one-dimensional subquotients of M . We may suppose that ξ1, . . . , ξm are the
characters among these of finite order. Let S ⊂ F̂ 2 be the intersection of kernels of ξ1, . . . , ξm.
The group S is necessarily of the form F̂ r with r > 2; see [RZ10, 3.6.2]. After replacing H by
J ∗̂ S = (J ∗̂ F̂ r−2) ∗̂ F̂ 2, J by J ∗̂ F̂ r−2 and G by the preimage of the new H in the old G,
we may assume that all the characters ξi are either trivial or of infinite order. Let ξ′i denote the
restrictions of the ξi to the first factor of F̂ 2 = Ẑ ∗̂ Ẑ. Then the sign character σ : Ẑ→ Z2→ Q∗2,
defined by

σ(x) =

{
+1 if x ∈ 2Ẑ,

−1 otherwise,

is not in {ξ′1, . . . , ξ′n}. Let χ1 = σ and χ2 ∈ {1, σ}, where the precise choice will be determined
below. Let V = Q2 denote the H = J ∗̂ Ẑ ∗̂ Ẑ module where J acts trivially and the two Ẑ
factors act through χ1 and χ2, respectively. We note that V is orthogonal, so that we can apply
Theorem 2.2 when the time comes.

We now compute dimH1(G,V ). From the Hochschild–Serre sequence (Lemma 1.3), we obtain
the exact sequence

0→ H1(H,V )→ H1(G,V )→ H0(H,H1(K,V )). (7)

We can identify

H0(H,H1(K,V )) ∼= H0(H,Hom(K/[K,K], V )) ∼= HomH(M,V ).

Since we chose χ1 /∈ {ξ′1, . . . , ξ′n}, the latter space is zero. Therefore, by (7) we obtain an
isomorphism

H1(G,V ) ∼= H1(H,V ).

By an appropriate Mayer–Vietoris sequence [RZ10, Proposition 9.2.13], we see that

H1(H,V ) ∼= H1(J, V )⊕H1(Ẑ,Q2,χ1)⊕H1(Ẑ,Q2,χ2),

where the subscripts χi indicate the action. The middle group on the right-hand side vanishes
because χ1 was nontrivial. By choosing χ2 to be trivial or not according to the parity of rank(J/[J,
J ]), we see that the right-hand side can be made to have odd dimension. Therefore G cannot be
the pro-p′ fundamental group of a smooth projective variety, by Theorem 2.2. 2
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Corollary 3.3. A group in P(p) cannot decompose as a coproduct of nontrivial pro-p′ groups;
in particular, it cannot be free.

Proof. The only case not covered by the last theorem is (Z/2Z) ∗̂ (Z/2Z), but since this contains
Ẑ as an open subgroup, it is ruled out by Corollary 2.1. 2

Corollary 3.4. Suppose that G satisfies all the assumptions of the theorem but with (a)
replaced by

(a′) K is topologically finitely generated.

Then G /∈ P(p).

Proof. The condition (a′) implies (a). 2

Corollary 3.5. Suppose that 1→ K → G→ H1 ∗ H2 → 1 is an exact sequence of discrete
groups, with K finitely generated and Ĥi nontrivial and not both of order 2. Then Ĝ /∈ P(p).

Proof. By [RZ10, Proposition 3.2.5] and Lemma 3.1, we have an exact sequence

K̂ → Ĝ
f
→ Ĥ1 ∗̂ Ĥ2→ 1.

Therefore ker f is topologically finitely generated. 2

As an illustration of the use of this theorem, we show that the pure braid group does not lie in
this class. This is a direct translation of the argument in [Ara95] for showing that braid groups are
not Kähler. Recall that Bn is given by generators s1, . . . , sn−1 with relations sisi+1si = si+1sisi+1

and sisj = sjsi if |i− j| > 1. This maps to the symmetric group Sn via si 7→ (i i+ 1). The kernel
is the pure braid group Pn. More geometrically, Pn is the fundamental group of the configuration
space of n distinct ordered points in the plane.

Proposition 3.6. We have P̂n /∈ P(p).

Proof. We have P2 = Z, so P̂2 /∈ P(p) by Corollary 2.1. The group B3 is generated by a = s1s2s1
and b = s1s2 with the relation a2 = b3. There is a surjective homomorphism from f : B3 →

Z/2Z ∗ Z/3Z which sends a and b to the generators of Z/2Z and Z/3Z, respectively. The kernel
of f is the cyclic group generated by a2 ∈ P3. Thus we have an extension

0→ Z→ P3→ f(P3)→ 1.

By Kurosh’s subgroup theorem [Ser03, § 5.5], the image f(P3) is a free product of a nonabelian
free group and some additional factors. Therefore P̂3 /∈ P(p) by Corollary 3.5. When n > 3,
projection of the configuration spaces gives a fibration resulting in a surjective homomorphism
Pn → P3 with finitely generated kernel. It follows that Pn → f(P3) is again surjective with
finitely generated kernel. So once again Corollary 3.5 shows that P̂n /∈ P(p). 2

4. One-relator groups

Recently, Biswas and Mahan [BM12] and Kotschick [Kot12] classified one-relator Kähler groups:
they are all fundamental groups of one-dimensional compact orbifolds with at most one orbifold
point. In more explicit terms, such a group is of the form

Γg,m =

{
〈x1, . . . , x2g | ([x1, xg+1] . . . [xg, x2g])

m〉 if g > 0,

Z/mZ = 〈x | xm〉 if g = 0.
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(Note that both [BM12] and [Kot12] classify infinite one-relator Kähler groups, but the statement
as given above is an immediate consequence.) We prove a pro-` version for large `, assuming that
the relation lies in the commutator subgroup. To reconcile the statement below with the one just
given, observe that (Γ̂g,m)` ∼= (Γ̂g,1)` when ` is coprime to m.

Theorem 4.1. Suppose that G ∈ P(p) is the pro-p′ completion of a discrete one-relator group.
Then there exists an explicit finite set S of primes such that if ` /∈ S, the maximal pro-` quotient
G` of G is isomorphic to the pro-` completion of the genus-g surface group Γg,1 where g =
1
2 dimH1(G,Q`).

Before giving the proof, we need the following version of Stallings’s theorem [Sta65].

Lemma 4.2. If f : G→ H is a continuous homomorphism of pro-` groups such that the induced
map H i(H,Z/`Z) ∼= H i(G,Z/`Z) is an isomorphism for i = 1 and an injection for i = 2, then f
is an isomorphism.

Proof. The surjectivity of f follows from [Ser65, I, Proposition 23], so it remains to check
injectivity. Define the `-central series by C0(G) = G and Cn+1(G) = [G,Cn(G)]Cn(G)`. We claim
that f induces an isomorphism G/Cn(G)→ H/Cn(H). The injectivity of f will follow from this
claim because one has

⋂
Cn(G) = {1}. The proof of the claim is essentially identical to the

argument in [Sta65] in dual form; nevertheless, we give it for completeness. This proof proceeds
by induction. The initial case n = 1 follows from the isomorphism H1(H,Z/`Z) ∼= H1(G,Z/`Z).
For the induction step, we use the following commutative diagram.

1 // CnH/Cn+1H //

γ

��

H/Cn+1H //

fn+1

��

H/CnH //

fn
��

1

1 // CnG/Cn+1G // G/Cn+1G // G/CnG // 1

We have to show that fn+1 is an isomorphism, assuming this is true for fn. It is enough to check
that γ is an isomorphism. We have the following diagram coming from Hochschild–Serre.

H1(H/Cn) //

α
��

H1(H) //

β
��

Hom(CnH,Z/`) //

γ∗

��

H2(H/Cn) //

δ
��

H2(H)

ε
��

H1(G/Cn) // H1(G) // Hom(CnG,Z/`) // H2(G/Cn) // H2(G)

The hypotheses, including the induction hypothesis, imply that α, β and δ are isomorphisms,
while ε is injective. Therefore γ∗ is an isomorphism by the five lemma. This implies that γ is an
isomorphism. 2

Proof of Theorem 4.1. Let G be the completion of the quotient of the free group on d letters,
F = F d, by the normal subgroup R generated by a single element r ∈ F with r 6= 1.

We have two cases. The first case is where r ∈ [F, F ]. The associated graded algebra of F
with respect to the lower central series

Gr(F ) = F/[F, F ]⊕ [F, F ]/[F, [F, F ]]⊕ · · ·

is a graded Lie algebra over Z with Lie bracket induced by the commutator [Laz54]. Let x1, . . . , xd
denote generators of F . The first summand F/[F, F ] is a free Z-module freely generated by the
classes x̄i of xi, and the next summand [F, F ]/[F, [F, F ]] is freely generated by [x̄i, x̄j ] with i < j.
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Thus we can expand the class r̄ ∈ [F, F ]/[F, [F, F ]] of r as r̄ =
∑
aij [x̄i, x̄j ] with aij ∈ Z. We

extend (aij) to a skew-symmetric matrix by setting aji = −aij and aii = 0. By [RZ10, 3.2.5], we
have an exact sequence

R̂`→ F̂`→ G`→ 1.

Thus Ĝ` is also a one-relator group in the topological sense, and therefore dimF`
H2(G`,Z/`Z) = 1

by [Ser65, p. 31, Corollaire]. We can also conclude that

G`/[G`, G`] ∼= F̂`/[F̂`, F̂`] ∼= Zd` .

Thus d = dimF`
H1(G`,Z/`Z) is the minimal number of generators of G`. From Theorem 2.2, it

follows that d = 2g for some integer g and H2(G`,Q`) 6= 0. Therefore H2(G`,Z`) ∼= Z` and the
cup product pairing

H1(G`,Z`)×H1(G`,Z`)→ H2(G`,Z`)

is nondegenerate. By an argument identical to the proof of [Lab67, Proposition 3], we see that
this pairing is represented by the matrix (aij). Let S denote the union of {2, p} and the set of
all prime factors of the aij . Then we can reduce modulo ` /∈ S to obtain a nondegenerate cup
product pairing

H1(G`,Z/`Z)×H1(G`,Z/`Z)→ H2(G`,Z/`Z).

It follows that G` is a so-called Demushkin group [Dem61, Lab67]; these groups are classified.
Since ` is odd, the only possibility is

G` ∼= 〈y1, . . . , y2g | y`
n

1 [y1, yg+1] . . . [yg, y2g]〉

for some integer n > 0. When n > 0, G`/[G`, G`] has torsion contrary to what was shown above.
Therefore n = 0 and the theorem is proved in this case.

Now we turn to the remaining case where r /∈ [F, F ]. Let r̄ ∈ F/[F, F ] ∼= Zd be the image
of r. Fix an isomorphism

(F/[F, F ])/(r̄)/(torsion) ∼= Zd−1,

and lift the generators on the right to the free group F ′ = F d−1. We thus have a commutative
diagram

F //

φ
�� !!

Zd

�� $$
F ′ // Zd−1 Zd/(r̄)oo

given by the solid arrows. We can choose a homomorphism φ : F → F ′ which completes the
commutative diagram as indicated. LetK be the quotient of F ′ by the normal subgroup generated
by r′ = φ(r), and let H = K̂. The homomorphism φ induces a continuous homomorphism
f : G→ H.

Let S1 be the set of primes ` such that Zd/(r̄) has `-torsion. Equivalently, S1 is the minimal set
of primes such that (Zd/(r̄))` is torsion-free whenever ` /∈ S1. We assume ` /∈ S1 for the remainder
of this paragraph. We claim that f induces an isomorphism G` ∼= H`. By construction, we have
H1(H`,Z/`Z) ∼= H1(G`,Z/`Z). If we can show that there is an injection on H2, the claim will
follow from Lemma 4.2. We split this into subcases. Suppose that r′ = 1; then H` is a free pro-`
group. Therefore H2(H`) = 0 and so the claim follows in this case. But, in fact, this case is
impossible because G` cannot be free. Thus r′ 6= 1. Then

H2(H`,Z/`Z) ∼= H1(R′,Z/`Z)F̂
′
` ∼= Z/`Z
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where R′ ⊂ F̂ ′` is the closed normal subgroup generated by r′ (cf. [Ser65, pp. 30–31]). We have
a similar description for H2(G`). From this it follows easily that the map H2(H`)→ H2(G`) is
nonzero and therefore an isomorphism.

With the claim now proven, we can work with H instead of G provided we choose ` /∈ S1.
By construction, r′ ∈ [F ′, F ′], so we are now in the same situation as the previous case. The
arguments for that case show that there is a finite set of primes S2, explicitly determined by r′,
such that when ` /∈ S2 we have H`

∼= Γ̂g,1;` for some g. In conclusion, the theorem holds in the
second case when S = S1 ∪ S2. 2

Corollary 4.3. With notation as in Theorem 4.1, the maximal pro-nilpotent prime-to-S
quotients of G and Γ̂g,1 are isomorphic.

Proof. This follows from the theorem and [LO10, Lemma 2.10]. 2
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Notes in Mathematics, vol. 288 (Springer, Berlin, 1972); Exposé II.
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