
ON THE MOTION OF THREE VORTICES 

J. L. SYNGE 

1. Introduction. In a perfect incompressible fluid extending to infinity, 
the determination of the motion of N parallel rectilinear vortex filaments in­
volves the solution of N non-linear differential equations, each of the first 
order. The method of Kirchhoff1 provides certain constants of the motion. 
If we describe the positions of the vortices by their point-traces on a plane 
perpendicular to them, the following facts follow from the theory of Kirchhoff: 

(1.1) The mean centre of the system is fixed. 

(1.2) £ ' KmKnlogrmn= const. 
m,n 

(1.3) Z Kmr2m = COnst. 
m 

Here the summations cover the range 1, 2, . . . N; the prime indicates that 
m = n is omitted: Km are the strengths of the vortices; rmn is the distance 
between the vortices of strengths Km and Kn; rm is the distance of the vortex 
of strength Km from a fixed point. 

In this paper we shall be concerned solely with the configurations of the 
vortex system, understanding by configuration the geometrical figure formed 
by the vortices, without regard to rigid body displacements of that figure. 
Thus, if a system of three vortices forms a triangle with sides of fixed lengths 
throughout the motion, we say that the configuration is fixed. 

The following theorems, applicable t*o a system consisting of any number 
of vortices, are obvious from the usual equations of vortex motion, and are 
quoted here for reference. 

THEOREM 1: / / , given a configuration, the strengths of all the vortices are 
suddenly reversed, the system retraces the sequence of configurations through which 
it has come. 

THEOREM 2: Given at t = t0a configuration in which all the vortices are col-
linear, then the configurations at times t = t0éz r are reflections of one another 
for all values of r. 

THEOREM 3: A system cannot pass through more than two distinct collinear 
configurations*, the times required to pass from one collinear configuration to the 
other are all the same. 

THEOREM 4: Suppose that there are two systems of vortices, S\ and S%, each 
consisting of the same number of vortices, and the strengths of the vortices in 52 
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*Cf. Sir H. Lamb, Hydrodynamics (Cambridge, 1932), 230; H. Villat, Leçons sur la théorie 

des tourbillons (Paris, 1930), 46. 

257 

https://doi.org/10.4153/CJM-1949-022-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-022-2


258 J. L. SYNGE 

being those of Si all multiplied by the same factor K2\ suppose further that initially 
the configurations are similar, without reflection, the lengths in S2 being those in 
S\ all multiplied by the factor L. Then the subsequent configuration of S2 after 
time t2 is similar, without reflection, to the configuration of Si after time h, where 

t2=h{u/m. 
As an immediate consequence of (1.2) and (1.3), we have the following 

result: 

THEOREM 5 : If the strengths of all the vortices have the same sign, their mutual 
distances are bounded above and below for all time, positive and negative. 

No further general results appear to be available, so we turn to special cases. 
The general case can be specialized in a number of ways. We might specialize 
the strengths of vortices, perhaps choosing them all of the same strength, or 
plus and minus one fixed value. On the other hand we might specialize by 
restricting the number of vortices in the system, and this is in fact the speciali­
zation we shall adopt. 

Since the case of two vortices is trivial, we turn to the case of three vortices, 
without imposing any particular a priori condition on their strengths. This 
is precisely the problem discussed by W. Grôbli2 over seventy years ago. 
However, he was interested in obtaining formal analytic solutions for the 
motion, and found it necessary at an early stage to specialize the strengths 
of the vortices. He seems to have missed the interesting fact that the motions 
may be classified according to the positive or negative character of the sum of 
the products of the strengths in pairs, K2KZ+ £3*1+ KI*2. It seems appropriate 
therefore to take up this problem again, concentrating on a qualitative classi­
fication of all possible motions rather than on the development of analytic 
solutions. The basic equations (2.5) are the same as those of Grôbli, but are 
obtained here in a simpler way. The representation of the motions by trilinear 
coordinates is believed to be new. 

2. The equations of motion and their integrals. Let KI, K2, KZ be the strengths 
of the three vortices (i.e. the circulations around them), and Ri, -R2, Rz the 
lengths of the sides of the triangle formed by them, Ri being opposite *i, and 
so on, so that, in the notation of (1.2), i?i= r23, etc. In accordance with the 
usual convention, we regard a strength as positive when it gives a counter­
clockwise circulation. It is convenient to get rid of the factor 2w by defining 
(2.1) ki= KI/2-K, & 2 = K2/2IT, & 3= KZ/2TT. 

It is assumed that none of the three strengths vanishes. 
Consider the rate of increase R\ = dR\/dt of the side R\. The motions due 

to the vortices k2 and kz at its extremities contribute nothing to R\. One end 
of Ri, viz. k2l has due to ki a velocity of magnitude ki/Rz perpendicular to Rz^ 
and the other end viz. &3, has due to ki a velocity of magnitude ki/R2 per-

2Vierteljahrschrift der naturforsehenden Gesellschaft in Zurich, vol. 22 (1877), 37-81, 129-167.. 
Grôbli also investigated certain cases of symmetry for N vortices. 
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pendicular to i?2. Let 0i, 02, 03 be the angles of the triangle formed by the 
vortices. Then, on reference to Figure 1, it is seen that 
(2.2) R\ = efei^"1 sin 0 3 - Rz"1 sin 02), 

FIG. 1 

Rate of growth of a side of the triangle. 

where e = + 1 or — 1 according as the circuit of the triangle in the order k\k2kz 
is positive or negative respectively (counter-clockwise or clockwise). Let A 
denote the area of the triangle, prefixed by a plus or minus sign according as 
the above circuit is positive or negative. Then eA is positive, and 

(2.3) eA = %R2Rz sin 0X= ^RzRi sin 02 = \RXR2 sin 03. 
We have also the formula 

(2.4) eA = [s(s - Rx)(s - R2)(s - £3)]*, 

5 = i ( * i + # 2 + Rz). 
If we substitute from (2.3) in (2.2) and the two similar equations, we get 

krlRiR\ = 2A(R2~
2- Rr2), 

(2.5) kr^R', = 2A(Rz~2- Rr2), 
kz^RzR'z = 2A(Rr2- R2~

2). 
Adding and integrating, we get 

(2.6) kf'Ri2 + k2~
lR2

2 + kz~lRz2 = a, 
where a is a constant. If we multiply (2.5) in order by Rf2, R2~

2, Rf2, add, 
and integrate, we get 
(2.7) kr1 log Rx+ k2~

l log R2+ kz~
l log Rz =* 6, 

where & is a constant. This is the same as KirchhofFs equation (1.2), and 
(2.6) is equivalent to (1.3), but more convenient for our purpose because 
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expressed in terms of the sides of the triangle. The above equations were given 
by Grôbli (loc. cit.). 

The differential equations (2.5), with their integrals (2.6) and (2.7), form 
the basis of our work. To these we shall add another equation, obtained by 
differentiating (2.4) and then substituting for i?\, i?'2, R'z. In this way we get 

(2.8) A' = f(RuRt,Rt), 
where 
(2.9) f(RhR2lRz) 

- sZhRr1^2- Rr2)(s - R2)(s - Rz). 

Here and later, 2 indicates summation over a cyclic permutation of suffixes. 

3. Fixed configurations. Let us now seek necessary and sufficient condi­
tions that the configuration of the three vortices remains fixed, so that the 
motion is a rigid body motion. If the configuration is fixed, then R\ = Rf

2=Rfz 
= 0 and so by (2.5) we must have either Rx=R2=i?3 (equilateral configuration), 
or A = 0 (collinear configuration). These are necessary conditions. Any 
equilateral configuration does remain fixed, as was pointed out by Grôbli (loc. 
cit.) y and this is a sufficient condition. But A = 0 is not a sufficient condition 
for fixity. At first sight this appears to be in conflict with (2.5). Suppose we 
take for i?i, R2, Rz any three constant values satisfying one of the equations 
(3.1) Ri= R2-\- Rz, R2= -R3+ Ru 2?s= -Ri+ R2, 
such values make A = 0 by (2.4), and hence these values constitute a formal 
solution of (2.5). However, it is a singular solution, and does not in general 
satisfy the full set of equations of vortex motion. In order that the collinear 
configuration may remain fixed, it is further necessary that A'' = 0, or 

(3.2) f(Ru Rt, Rz) = 0, 
where/is as in (2.9). We may sum up as follows: 

THEOREM 6: Necessary and sufficient conditions for a fixed configuration are 
either that the initial configuration be equilateral, or that it be collinear, satisfying 
(3.2). 

4. Variable configurations and the trilinear representation. The values of 
2?i, R2, Rz determine a configuration to within a reflection. Thus we might 
discuss changes in configuration by following a representative point in a space 
in which JRI, R2, Rz are taken as rectangular Cartesian coordinates. Since 
these quantities are essentially positive, we would be concerned only with the 
positive octant. Collision of the representative point with one of the walls 
of this octant would correspond to a collision of two of the vortices. The motion 
of the system would correspond to a curve of intersection of surfaces (2.6) and 
(2.7), the sense in which the curve is described being determined by reference 
to (2.5), with use of the fact that t increases. But the representative point is 
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further restricted since Rh R2, Rz must always satisfy the triangle inequalities 

(4.1) Rx$ R2+ Rt, R2$ Rz+ Ru Rt$ Ri+ R* 

In fact, the planes (3.1) form boundaries in the representative space which the 
representative point is forbidden to cross. If the representative point meets 
one of the planes (3.1), the configuration becomes collinear. Then, by Theorem 
2, the system passes back through the same sequence of configurations but 
with the orientation reversed ; the representative point moves back along the 
curve by which it came to the collinear configuration. 

FIG. 2 

The trilinear representation. 

However, there is another and better representation by trilinear coordinates 
in a plane, as shown in Figure 2, and that is the representation which will be 
used in this paper. P1P2-P3 is an equilateral triangle of unit height, and xu 

x2, xz are trilinear coordinates, i.e. the distances of a general point from the 
sides of the triangle P\PJPi\ these values satisfy 

(4.2) Xi+ x2+ xz = 1. 
Now put 

xi= Ri(Ri+R%+Ri)"1, 
(4.3) x2= R2(Ri+ R2+ Rz)~\ 

xz= Rz(Ri+ R2+ Rz)'1, 
and so connect the points of the representative plane with the configurations 
of the vortex system. To each configuration of the system there corresponds 
a unique x-point, with one exception: a triple collision (Ri= R2= Rz= 0) is 
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not represented. On the other hand, to a given x-point there corresponds a 
single infinity of configurations, all similar to one another, together with the 
reflections of those configurations. The centroid E of the triangle (xi = x2 = 
x3 = 1/3) corresponds to all equilateral configurations. 

Let Q1Q2Q3 be the middle points of the sides of the triangle P\P%P%. On Q2Qz 
we have %\- \ and hence Xi= x2+ xs or Rx= R2 + R%. In fact, Q2Qz corres­
ponds to the first of (3.1), and the three sides of the triangle QiQ2Qz correspond 
to the three planes (3.1) which the representative point is forbidden to cross. 
Since E is certainly permitted, the permitted region is the interior of the 
triangle QiQ2Qz. The points QiQ2Qz correspond to collisions of the vortices, 
k2 and kz colliding at Qu etc. 

All points on the sides of the triangle QiQ2Qz correspond to collinear con­
figurations. Since the configuration can change its orientation only by passing 
through a collinear configuration, we may use the two sides of the representative 
plane, all configurations with positive orientation being represented on the 
front of the plane and all configurations with negative orientation on the back. 
The sides QiQ2Qz are then cuts by which the representative point passes from 
one side of the plane to the other. We might in fact throw away all the 
diagram except the triangle QiQ2Qz, and allow the representative point to pass 
round the edges of this triangle. 

As the system moves, the representative point describes a curve C. To find 
the differential equations of C, we differentiate (4.3) and substitute from (2.5). 
This gives 
(4.4) x'x= KHu xf2= KH2, x'3 = KHz, 
where 
(4.5) K = 2ARr2R2-

2Rz-2&Ri)2, 
and 

Hi= — kiXi(x2
2— Xz2) + x{LkiXi(x2

2— x3
2), 

(4.6) H2= — k2x2(xz2— X12) + x22£iXi(x2
2— x3

2), 

Hz= — fc3x3(xi2 — oc2
2) + x32£iXi(x2

2— x3
2). 

We check that H i + H2+ Hz— 0, as of course it must be, by (4.2). 
By (4.4.) we have 

dxi dx2 dxz 
(4.7) — = — = j - = Kdt. 

i l l ±±2 -tlz 

The first two of these equations define a congruence of x-curves, and this con­
gruence defines the behaviour of the configuration, except for orientation, rate 
of change, and scale. However, orientation is determined by the side of the 
representative plane on which the point lies, and rate of change is given by 
(4.4). As regards scale, if the shape of the configuration is given, its size may 
in general be determined by (2.6) or (2.7), the values of the constants a and b 
being given by the initial configuration. There is, however, one exceptional 
case, and this we shall now discuss. 
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The integrals (2.6) and (2.7) may be written 

(4.8) krW+ k2~W+ h~W= a(Ri+ R2+ Rz)~\ 

(4.9) krl log %i+ k2~~l log x2+ kz~l log %z 

= b ~(krl+ kr'+ i r 1 ) log (Ri+ R2+ Rz). 
If a = 0 and 
(4.10) k2kz+ kzk!+ hk2= 0, 

then (i?i+ i?2+ Rz) disappears from (4.8) and (4.9). In this exceptional case, 
the values of X\, X2, XZi a, b fail to determine the values of Ru R2, Rz. We may 
state the following results. 

THEOREM 7: If the strengths of the vortices do not satisfy (4.10), and b is 
known from an initial configuration, then to each x-point there corresponds by 
(4.9) a unique configuration, except for orientation. 

FIG. 3 

Singular points. 

(Hyperbola drawn for 2k\ = — ki = — kz.) 

THEOREM 8: If the strengths of the vortices satisfy (4.10), then to each x-point 
on the conic 
(4.11) k2kzx^-\- kzk\X2

2Jr k\k2Xz*= 0 
there corresponds a single infinity of similar configurations of both orientations ; 
to each x-point lying off the conic (4.11) there corresponds by (4.8) a unique con­
figuration, except for orientation. 

It is easily seen that, under the condition (4.10), the conic (4.11) is a hyper­
bola. It passes through the centroid E, and meets two sides of the triangle 
Ç1Q2Q3, each in one point. At E the tangent to (4.11) has the direction 
given by 
(4.12) dx\: dx2: dxz = ki(k2 — kz): k2{kz— ki): ^3(^1— £2). 
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The hyperbola is shown in Figure 3 for the case 

(4.13) 2fei= - f e 2 = -H 

It is important to know that no curve C can cut a median of the triangle Q\Q2Q% 
in an infinite number of points. To show this, we consider the median P\Qu 
on which we have 

*2 = #3= | ( 1 - * l ) . 

By (4.8) and (4.9) we have at an intersection of a curve C with the median P\Q\ 

(4.14) feriXl2+(feri+ fe3-i) i ( i _ Xl)2= a / 4 5 2 t 

kr1logx1+(k2-
l+ fea-OlogKl - * i )= b -(kr1+ h~l+ h'1)log2sJ 

where, as earlier, 2s = i ? i+ R2+ i?3. If we eliminate 5, we get an equation 
in Xi, a, b] for a given curve C the constants a and b are assigned, and this 
equation determines the values of Xi corresponding to the intersections of C 
with PiQi. It is clear that in the range 0 ^ Xi^ 1 there can be at most a 
finite number of solutions, and so the result is proved. 

5. Singular points. The most powerful way of studying the congruence 
(4.7) is through its singular points, at which 

(5.1) Hi=H2= H 3 = 0. 
On account of the triangle inequalities (4.1), we are interested only in singular 
points lying inside the triangle QiQ2Qz or on its boundary. Let us first examine 
the points Qi, Q2, Qz, to see if any one of them can be singular. 

At Q\ we have Xi = 0, #2= #3= \\ hence, by (4.6), 

(5.2) tfx= 0, # 2 = - i k2+ ^ (fc*- kz), Hz = i kz+ & ( h - *s). 

These equations are consistent with (5.1) if, and only if, 

(5.3) k2+kz= 0. 
When this condition is satisfied, Q\ is a singular point. The points Q2 and Qz 
may of course be discussed in exactly the same way. 

For all points in the triangle QiQ2Qz or on its boundary, other than the 
vertices Qi, Q2l Qz, we have xi, x2, xz all different from zero. Then, if we sub­
stitute in (5.1) from (4.6), we can divide across by these factors, and obtain 

(5.4) x 2
2 - xz2= krle, xz2- xj= k2~

le, x i 2 - x2
2 = kz-% 

e = s t o w - *32). 
Addition gives 
(5.5) mr1^ 0. 
Suppose first that 6 = 0; then (5.4) give Xi= x2 = x3 = 1/3. Thus the point 
£ is a singular point, as is indeed obvious. On the other hand, if (4.10) is 
satisfied, then (5.5) is satisfied with M 0 . If we multiply (5.4) in order by 
X12, x2

2, x3
2 and add, we get 

(5.6) Sfei^xi2 = 0 
which is the same equation as (4.11). All singular points (other than Qly Q2, 
Qz, discussed above) must lie on this conic. Moreover it is easy to see that, 
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if (4.10) is satisfied, then every point on the conic (4.11) or (5.6) is a singular 
point. We have already remarked that this conic is a hyperbola. 

Let us sum up our conclusions about singular points as follows. 

THEOREM 9: The singular points of the congruence (4.7), inside or on the 
triangle QiQ2Qz, are as follows. If 
(5.7) k2kz+ jfe3fci+ hfat* 0, 
and 
(5.8) k2+ kz?£ 0, kz+ kit* 0, ki+ k2?* 0, 

then the only singular point is at E (equilateral configuration). If 

(5.9) k2kz+ kzki+ fak2 = 0, 

then (5.8) are necessarily true; the singular points make up the hyperbola (4.11), 
which passes through E. If 

(5.10) k2+ fe3= 0, kz+ ht* 0, ki+ k27* 0, 

then (5.7) is necessarily true; the only singular points are at E and Q\. Similar 
results hold on permuting suffixes in (5.10). If 

(5.11) ki= - Jfe2= - * s , 
the only singular points are at E, Q2i Q3. Similar results hold on permutation of 
suffixes. 

These results are shown in Figure 3. 

6. Behaviour of representative curves near the point E. To explore the 
curves near the point E, we put 

(6.1) xi= yi+ 1/3, x2= y2+ 1/3, x3 = yz+ 1/3, 
so that 
(6.2) yi+y2+y*= 0. 

Then (4.6) gives, to the first order in 3/1, y2, yZy 

Hx= - f ki(y%- yz) + if 2ki(y2- y8), 

(6.3) H2= - f k2(yz- yi) + & S*i(y«- ys), 

Hz= - f kiiyi- y2) + if S*i(y2- ys). 

As in (4.7) we have, as differential equations of the congruence, 

(6.4) & . & . & . M i . 
Hi ±i2 Hz 

It is convenient to define 
(6.5) z i= 3>2- y3, 22= y 3 - yi, s3 = y i - y2, 
so that, by (6.2), 

(6.6) yi= - -̂ ( s 2 - z3), 3̂ 2= - i (23- *0, ys= - i ( « i - z2). 
From (6.4) we obtain 

d%\ dz2 d%z 

Li L2 Lz 
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where 
1*1 = ~ 2" (H2— Hz)= k2Z2 — kzZz , 

(6.8) L2 = - f ( # 3 - F i ) - £323- klZl , 

L 3 = — § ( i l i— H2) = kiZi— k2z2 . 

If we put each fraction in (6.7) equal to ds, we have the equations 

dzi 

ds 
k2Z2 — kzZz, 

(6.9) = — kiZi 
dz2 

ds 

— = kiZi— k2z2. 
ds 

We have, by (6.5), 
(6.10) 21+22+23= 0, 

and so the first two of (6.9) give 

dz\ 

+ £323, 

(6.11) ds 

dz 

= &32l+ (&2+ #3)22, 

—" = —(&1+ £3)21— &322-

ds 

The solutions are of the form exp (Xs), where the eigenvalues X satisfy 
kz— X &2 + kz 

(6.12) 
— ki — kz — kz— X 

X 2 = —- 2fe2&3. 

= 0 , 

or 
(6.13) 
Three cases arise : 

Case I: 2&2&3> 0; eigenvalues pure imaginary; 

Case I I : 2k2kz< 0; eigenvalues real, one positive and one negative; 

Case I I I : 2k2kz= 0; eigenvalues both zero. 

7. Case I: k2kz+ kzk\+ kik2 > 0 . 
In Case I the curves (6.9) are closed curves, surrounding the point E. How­

ever, (6.9) is only a linear approximation to the curves C, and it does not follow 
immediately that the curves C are closed. But if a curve C is not closed, then, 
since it cannot intersect itself, it must cut a median P1Q1 in an infinite number 
of points. This we have shown earlier to be impossible. Hence all curves C 
near E are in fact closed curves (Figure 4). The sense in which such a curve is 
described depends on the initial orientation of the triangle (cf. (4.4), (4.5)). 
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If we expand the orbit (which, roughly speaking, means bringing two of the 
vortices closer together, since Qu Q2, Qz correspond to collisions), we shall reach 
an orbit Co which touches the periphery Ç1Ç2Ç3 at a point corresponding to a 
fixed collinear configuration. This configuration will be approached as a 
limit, not attained in finite time. 

F I G . 4 

Representative curves for Case I : Z&2&3>0. 

It is interesting to consider here the particular case, ki= £2= kz, which of 
course belongs to Case I. Now the figure is symmetric, and Co will touch all 
three sides of QiQiQz- Thus the system, if started on such a curve, will oscillate 
in infinite time between two fixed collinear configurations, these two configur­
ations being different. For three equal vortices, the only fixed collinear con­
figurations are those in which the vortices are equally spaced (Figure 5). Such 
a configuration, if slightly disturbed, will pass in a long time near to one of the 
configurations shown in Figure 6. Equation (2.5) tells us the lengths in Figure 
6 are the same as those in Figure 5. If the representative curve of the dis­
turbed motion does not meet Q1Q2QZ (i.e. if it belongs to the class C of Figure 
4), then all three configurations of Figures 5 and 6 will be approached one after 
another. By symmetry, the representative curve cannot belong to class G 
or class C2. If it is of class Cz, then the motion is an oscillation between a 
collinear configuration adjacent to that shown in Figure 5 and a collinear con­
figuration adjacent to one of those shown in Figure 6. These oscillations 
between configurations which differ only through interchange of vortices of 
equal strength appear rather interesting. 
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In the general case of unequal strengths, contact will be established first 
with one side of QiQ2Qs, as for Co in Figure 4. When we expand the orbit 
further to G, we get an oscillation, performed in finite time, between two 
collinear configurations which are actually the same configuration. We may 
think of the return journey as performed on the back of the representative 
plane; it has reversed orientation. 

k| Kg k3 

FIG. 5 

Fixed collinear configuration. 

(£1 = &2 — £3) 

Further expansion gives us C2, which cuts one side of QiQiQz and touches 
another. Here we have an oscillation between two different collinear con­
figurations, one of which is a fixed configuration and is not attained in finite 
time. 

kg k3 ki 

k* k, kg 

FIG. 6 

Transforms of configuration of FIG. 5. 

The final stage is C3, representing an oscillation in finite time between two 
different collinear configurations. 

This exhausts the possibilities in Case I. In this case the equilateral con­
figuration is of course stable for small disturbances. 

8. Case II: k2kz+ &3&1+ kik2< 0. 
Here the eigenvalues are ±JU, where 

(8.1) M = ( - 2k2h)*>0. 
The solutions of (6.11) are 
(8.2) 2 l = i / s + 5 i e ^ , 

z2= A2e
tis+B2e-,IS, 

where 
(8.3) ^i(/x - kz)- A2(k2+ kz) = 0, 

£ i ( - M - * » ) - B2(k2+ kz) = 0. 
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As 5 —> oo , the curve recedes asymptotically in the direction 
(8.4) Zl/z2 = Ai/At= (k2+ kz)/(ji - kz), 
and as 5 —> — oo, we have a curve coming in asymptotically from the direction 
(8.5) zi/z2= S i / 5 2 = -(fe 2+ kz)/(ji + h). 
These directions may be expressed symmetrically. They correspond to values 
of zi, z2, z% which make 

dzi dz2 dzz 
— : — : -7- = Zi : z2 : zz, 
as as as 

and so, by (6.7), they satisfy 
Xzi — k2z2 + &3Z3 = 0, 

(8.6) hzi + \z2 ~ kzzz = 0, 
"" k\Zi + k2Z2 + X23 = 0, 

«1 + 22+ 23= 0. 
If we multiply the first three of these equations in order by ku k2l &3, and add, 
and then^solve with the last of (8.6), we get 
(8.7) zi: z2: zz = X(fe2- kz) + 3k2kz — ^k2kz 

: \(kz —• fei)+ 3kzk\— lïk2kz 
: \(ki— k2)-\- 3kik2— 3ik2kz • 

We are to put X = =L M to get the two directions. Figure 7 shows such direc­
tions (Du D2} Dz, D±) and the general nature of the curves near E. 

FIG. 7 

Representative curves near E. 
Case II: S W , < 0 . 

The curves which start from E in the directions Du D2, Dz, D± must pass 
out across the periphery Q\Q2Qz since they cannot cross nor can they cut a 
median of the triangle an infinite number of times. Similarly all represent­
ative curves must cross the periphery QiQ2Qz> The general nature of the 
pattern is shown in Figure 8. 
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The curves labelled Du ^2 , Dz, D± represent motions in which the configur­
ation oscillates between the equilateral configuration and a collinear configur­
ation. The time of approach to E, or recession from it, is infinite. The other 

Q, 
FIG. 8 

Representative curves for Case II: 2&2&3<0. 

curves represent oscillations between two collinear configurations, not neces­
sarily distinct. The times involved are finite unless the collinear configur­
ation involved is a fixed configuration. There are no periodic motions which 
do not include collinear configurations. 

The equilateral configuration is unstable in this case for small disturbances. 

9. Case III: kzkz+ kzki+ feife2= 0. 
We have already seen in Theorem 8 that in this case there is a hyperbola 

(4.11) composed of singular points (Hi — H2 = Hi— 0). If the initial con­
figuration is represented by a point on this hyperbola, then by (4.4) the repre­
sentative point remains fixed. Thus the configuration remains fixed in shape. 
To see how it changes its size, we refer to (2.5), in which the right-hand sides 
are now constants. It is clear that the squares of the sides increase or decrease 
linearly with time, remaining fixed in length only if the representative point 
is at £ . 

If initially the representative point does not lie on the hyperbola (4.11), then 
both shape and size change. This hyperbola forms a barrier which the repre­
sentative point cannot cross. Hence the motion consists of an oscillation 
between collinear configurations. 
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