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Abstract

The paper considers a statistical concept of causality in continuous time between filtered probability
spaces, based on Granger’s definition of causality. This causality concept is connected with the
preservation of the martingale representation property when the filtration is getting smaller. We also give
conditions, in terms of causality, for every martingale to be a continuous semimartingale, and we consider
the equivalence between the concept of causality and the preservation of the martingale representation
property under change of measure. In addition, we apply these results to weak solutions of stochastic
differential equations. The results can be applied to the economics of securities trading.
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1. Introduction

In this paper we consider a martingale representation. The representation property says
that every martingale of an underlying filtration can be written uniquely as a stochastic
integral with respect to a local martingale, for a suitable predictable process.

In Section 2, we give some definitions and basic properties of the causality concept
(see [4, 12]) and the martingale representation property (see [15]), which will be used
later.

The given causality concept is shown to be equivalent to a generalisation of the
notion of weak uniqueness for weak solutions of stochastic differential equations
(see [11]). In [12], it is shown that the causality concept is closely connected to the
extremality of measures and the martingale problem. It is equivalent to orthogonality
of local martingales (see [18]) and to stable subspaces of Hp which contain right-
continuous modifications of martingales (see [13]).

Some new results are given in Section 3. We prove equivalence between the given
concept of causality and the preservation of the martingale representation property
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when (Gt) is a subfiltration of (Ft), which is not true in general. Also, we give a
generalisation of [1, Proposition 9], concerned with the characterisation of martingales
which have the representation property. Further, in this section we give a generalisation
of results introduced in [15], where the decomposition of a (Gt)-martingale as a
continuous (Ft)-semimartingale is given. An extension of the Girsanov theorem,
concerning the representation property for the continuous local martingale X and the
Girsanov transform of X, is given in [17]. We give necessary and sufficient conditions,
in terms of causality, for the preservation of the representation property under change
of measure.

We also investigate a connection between weak solutions of stochastic differential
equations and the martingale representation property. We consider an equation of the
form dXt = ut(X) dZt,

X0 = 0
(1.1)

(introduced in [5]), where Z is a semimartingale (with Z0 = 0) and ut(X) is an (F Z,X
t )-

predictable process. For a weak solution of (1.1), the concept of causality is closely
connected with the martingale representation. As the most important example, we
consider the stochastic differential equation driven by the process of Brownian motion
and its martingale representation.

In the last section we give some examples and implications of our new results in
finance (for details, see [2, 7, 16]).

2. Preliminaries and notation

The study of Granger causality has been mostly concerned with time series. But
many of the systems to which it is natural to apply tests of causality take place in
continuous time, so we will consider continuous-time processes.

A probabilistic model for a time-dependent system is described by (Ω,F ,Ft, P),
where (Ω,F , P) is a probability space and {Ft, t ∈ I} is a ‘framework’ filtration, that
is, (Ft) are all events in the model up to and including time t and (Ft) is a subset
of F . We suppose that the filtration (Ft) satisfies the usual conditions, which means
that {Ft, t ∈ I} is right continuous and each is such that (Ft) is complete.

An analogous notation will be used for filtrations H = {Ht}, G = {Gt} and F = {Ft}.
A family of σ-algebras induced by a stochastic process X = {Xt, t ∈ I} is given by

FX = {F X
t , t ∈ I}, where (F X

t ) = σ{Xu, u ∈ I, u ≤ t}, being the smallest σ-algebra with
respect to which the random variables Xu, u ≤ t, are measurable. The process Xt is
(Ft)-adapted if (F X

t ) ⊆ (Ft) for each t.
The intuitively plausible notion of causality is given in [3] and generalised in [10]

for families of Hilbert spaces. We now consider causality between arbitrary filtrations
H, G and F. We can say that ‘G causes H within F’ if

H∞ ⊥ Ft |Gt (2.1)
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because the essence of (2.1) is that all information about (H∞) that gives (Ft) comes
via (Gt) for arbitrary t; equivalently, (Gt) contains all information from (Ft) needed for
predicting (H∞). Thus, it is natural to introduce the following definition of causality
between filtrations.

Definition 2.1 (compare with [10]). We say that G causes H within F relative to P
(and we write H |< G; F; P) if (H∞) ⊆ (F∞) and G ⊆ F, and if (H∞) is conditionally
independent of (Ft) given (Gt) for each t. If there is no doubt about P, we omit ‘relative
to P’.

If G and H are such that G |< G; H, we shall say that G is its own cause within H
(compare with [9]).

This definition can be applied to a stochastic process: it will be said that stochastic
processes are in a certain relationship if and only if the corresponding induced
filtrations are in this relationship. For example, an (Ft)-adapted stochastic process
Xt is its own cause if FX = (F X

t ) is its own cause within F = (Ft), that is, if

FX |< FX; F; P.

The process X which is its own cause is completely described by its behaviour
relative to FX .

Proposition 2.2 [12]. Brownian motion W = (Wt, t ∈ I) on a filtered probability space
(Ω,F ,Ft, P) is its own cause within F = {Ft, t ∈ I} relative to probability P.

The assertion G |< G; F; P implies that Gt = Ft ∩ G∞ for every t ≥ 0. Also, (Gt) is
a filtration generated by continuous martingales of the form Mt = P(A | Ft), A ∈ G∞
(see [1]). Let us mention that E(Y | Ft) admits a right-continuous progressively
measurable version for all Y ∈ L1(P) (see [17]).

It is easy to see that the following result holds.

Proposition 2.3. Let (Ω, F , Ft, P) be a filtered probability space and let (Gt)
be generated by continuous martingales. Then from G |< G; F; P it follows that
E(Mt | Ft) = E(Mt | G∞).

The question of martingale representation is surprisingly important in applications
such as stochastic control and filtering theory, and it is particularly interesting in
finance, for example.

Definition 2.4 [15]. The continuous local martingale Xt has the representation
property if for any (F X

t )-local martingale Mt there is an (F X
t )-predictable process H

such that

Mt = M0 +

∫ t

0
Hs dXs. (2.2)
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LetH be the set of probability measures on (Ω,F ) such that X is a local martingale.
If P ∈ H , (Ft,P) is the smallest right-continuous filtration complete for measure P and
such that (F X

t ) ⊂ (Ft). The representation property is a property of measure P: any
(Ft,P)-local martingale M may be written as M = H · X, where H is (Ft,P)-predictable
and the stochastic integration is taken with respect to P. Suppose that K is the subset
ofH of those probability measures for which X is a martingale.

Definition 2.5 [15]. A probability measure P ofK (respectively,H) is called extremal
if, whenever P = αP1 + (1 − α)P2 with 0 < α < 1 and P1, P2 ∈ K (respectively, H),
then P = P1 = P2.

So, the following theorem holds.

Theorem 2.6 [15]. The probability measure P is extremal in K if and only if P has the
representation property and (F0, P) is trivial.

This theorem can be extended from K toH (see [15, Theorem 4.7]).
We now introduce the generalisation of this notion, introduced in [6, 14].

Suppose that on (Ω,F ,Ft, P) there is defined a semimartingale Z = {Zt | t ∈ I} with
characteristics (A,C, ν), relative to some truncation function h, Zc is a continuous part
of Z and µ = µZ is defined in [6].

Definition 2.7 [6]. We say that a local martingale M has the representation property
relative to Z if it has the form

M = M0 + H · Zc + W ∗ (µ − ν), (2.3)

where H is a predictable process and the right integral is a stochastic integral with
respect to random measure (defined in [6]).

3. Causality and representation property

In this section we study the preservation of the representation property when the
filtration is getting smaller.

On a given probability space (Ω,F ,P), let (Gt) and (Ft) be two (different) filtrations,
such that, for all t, (Gt) ⊂ (Ft) ⊂ (F ), which satisfies the usual conditions and M is a
continuous (Ft)-local martingale adapted to (Gt).

In this paper we are mainly concerned with the characterisation of martingales
which have a martingale representation. If Xt has a representation property with
respect to (Ft), then there is an (Ft)-local martingale Mt which can be represented as

Mt = a +

∫ t

0
Hu dXu,

where a ∈ R and H is an (Ft)-predictable process. Similarly, if Xt has a representation
property with respect to (Gt), then the (Gt)-local martingale Nt can be represented as

Nt = b +

∫ t

0
Ku dXu,
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where b ∈ R and K is a (Gt)-predictable process. It is important here to know whether
this representation property is relative to filtration (Ft) or (Gt). There are plenty
of examples where Xt has the representation property with respect to (Gt), but not
with respect to (Ft). Thus, it is natural to ask about the converse statement: if
Xt has the representation property with respect to (Ft), is it also true with respect
to (Gt)? The general answer is negative. The next theorem gives conditions when this
statement holds and establishes equivalence between the concept of causality and the
representation property.

Theorem 3.1. Suppose that an (Ft)-local martingale Xt has a representation property
with respect to (Ft). Then Xt has a representation property with respect to (Gt) if and
only if G is its own cause within F, that is, G |< G; F; P.

Proof. Suppose that Xt has a representation property with respect to filtrations (Gt)
and (Ft). By [1, Proposition 9], we have that all (Gt)-local martingales are (Ft)-
local martingales. (The martingale property is not preserved when the filtration is
getting larger, in general.) Since Xt has a representation property, there is a (Gt)-local
martingale Nt of the form

Nt = E(N∞ | Gt) = b +

∫ t

0
Ku dXu.

Then there exists a sequence {Tn} of stopping times relative to G for which {Nt∧Tn}

is a sequence of (Gt)-martingales. The sequence {Tn} of stopping times relative to G
is a sequence of stopping times relative to F, too. Because Xt has a representation
property with respect to (Ft), {Nt∧Tn} is a sequence of (Ft)-martingales, too. By
[11, Theorem 4.1],

G |< G; F; P

holds.
Conversely, suppose that the local martingale Xt has the (Ft) representation property

and G |< G; F; P holds, that is,

∀A ∈ G∞, P(A | Gt) = P(A | Ft).

Then there exists an (Ft)-local martingale Nt of the form

Nt = b +

∫ t

0
Ku dXu,

where Kt is an (Ft)-predictable process. For a sequence {Tn} of stopping times
relative to F, {Nt∧Tn} is a sequence of (Ft)-martingales. From G |< G; F; P, it
follows that Gt = Ft ∩ G∞ and GT = FT ∩ G∞ for the (Ft)-stopping time T , so, by
consequence (c.1) of [1, Theorem 3], {Tn} is a sequence of (Gt)-stopping times, too. By
[11, Theorem 4.1], {Nt∧Tn} is a sequence of (Gt)-martingales. So, Nt is a (Gt)-local
martingale and can be represented as

Nt = b +

∫
Ku dXu. (3.1)
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Also, by consequence (c.2) of [1, Theorem 3], Kt is a (Gt)-predictable process if and
only if it is an (Ft)-predictable process, such that, for all t, Kt is (G∞)-measurable and
if G |< G; F; P holds. Moreover, if Kt is bounded then it is (Ft)-predictable and a (Gt)-
predictable projection cannot be distinguished from its ‘predictable’ projection on the
constant filtration (G∞). So, the assertion is proved, because Nt in representation (3.1)
is a (Gt)-local martingale for a (Gt)-predictable process Kt. �

The following equivalence may be useful.

Theorem 3.2. Suppose that Xt has the representation property with respect to (Ft).
Then every (Gt)-martingale is a continuous (Ft)-semimartingale if and only if (Gt) is
its own cause within (Ft), that is, G |< G; F; P holds.

Proof. Let Nt be a (Gt)-martingale and a continuous (Ft)-semimartingale. By
assumption, Nt may be written as

Nt = c +

∫ t

0
ϕs dXs + At,

where c ∈ R, ϕ is an (Ft)-predictable process and A an (Ft)-adapted, continuous
process with finite variation.

Then, as X is continuous, the process [N, X]t =
∫ t

0 ϕs d〈X, X〉s is continuous and
(Gt)-adapted. Thus, ϕ = d[N, X]/d〈X, X〉 may be chosen to be (Gt)-predictable. So,
Nt − (c +

∫ t
0 ϕs dXs) is a continuous (Gt)-martingale, equal to At, a process with finite

variation. This implies that A ≡ 0. So, Xt has the representation property with respect
to (Ft) and (Gt). Then, by Theorem 3.1, it follows that (Gt) is its own cause, that is,

G |< G; F; P.

Conversely, suppose that Xt has the representation property with respect to (Ft) and
G |< G; F; P holds. Because (Gt) is its own cause within (Ft),

∀A ∈ G∞, P(A | Gt) = P(A | Ft). (3.2)

Suppose that Nt is a (Gt)-martingale. Then, by [11, Theorem 4.1], Nt is an (Ft)-
martingale. By Theorem 3.1, Xt has the representation property with respect to (Gt).
Then every (Gt)-martingale Nt may be written as

Nt = E(N∞ | Gt) = c +

∫ t

0
ϕu dXu,

where c ∈ R and ϕ is predictable with respect to (Gt). Obviously, Nt may be written as
a stochastic integral with respect to X, so it is a continuous (Ft)-martingale. Therefore,
it is a continuous (Ft)-semimartingale. �

Let Q be any probability measure on (Ω,F ), absolutely continuous with respect
to P. The P-martingale Lt = dQ/dP denotes the Radon–Nikodym derivative. The next
theorem gives necessary and sufficient conditions for the preservation of the martingale
representation property under change of measure.
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Theorem 3.3. Suppose that (Gt) and (Ft) are filtrations in the measurable space (Ω,F )
and P and Q are probability measures on (Ft) satisfying Q� P with dQ/dP as (G∞)-
measurable. Let G |< G; F; P hold; then X has a representation property with respect
to (Ft, P) if and only if X has a representation property with respect to (Ft,Q).

Proof. Suppose that G |< G; F; P holds and Xt has the representation property with
respect to (Ft, P). According to Theorem 3.1,

Mt = EP(M∞ | Ft) = x0 +

∫ t

0
Hu dP(Xu).

Because Q is absolutely continuous relative to P (Q � P), the Radon–Nikodym
derivative L∞ = dQ/dP, which is (G∞)-measurable, can be defined. Define Lt as a
right-continuous version of EP(L∞ | Ft), t ≥ 0. Then

MtLt = EP(M∞ | Ft)EP(L∞ | Ft) = EP(M∞L∞ | Ft).

So, for Lt , 0,

Mt =
1
Lt

EP

(
M∞

dQ
dP

∣∣∣∣∣Ft

)
= EQ(M∞ | Ft) = x0 +

∫ t

0
Hu dQ(Xu).

Based on the last assertion, Xt has the representation property relative to (Ft,Q).
Conversely, suppose that G |< G; F; P holds and Xt has the representation property

relative to (Ft,Q). From G |< G; F; P,

∀A ∈ G∞, P(A | Gt) = P(A | Ft).

Also, Xt has the representation property with respect to (Ft,Q), or

Mt = EQ(M∞ | Ft) = x0 +

∫ t

0
Hu dQ(Xu).

Then, for Lt , 0,

Mt = EQ(M∞ | Ft) =
1
Lt

E
(
M∞

dQ
dP

∣∣∣∣∣Ft

)
=

1
Lt

E
(
M∞

dQ
dP

∣∣∣∣∣Gt

)
.

The last step holds because of supposed causality, where M∞ and dQ/dP are (G∞)-
measurable. So,

Mt =
1
Lt

E(L∞ | Gt)E(M∞ | Gt) =
1
Lt

E(L∞ | Ft)E(M∞ | Ft)

= E(M∞ | Ft) = x0 +

∫ t

0
Hu dP(Xu).

Obviously, Xt has the representation property with respect to (Ft, P) and the theorem
holds. �
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The martingale representation property can also be connected with weak solutions
of stochastic differential equations. First, we consider equations driven with a process
of Brownian motion, the most important example of the martingale representation
property.

Consider the stochastic differential equationdXt = at(X)dt + bt(X) dWt,

X0 = η,
(3.3)

where W is a Brownian motion and at, bt are causal functionals.

Proposition 3.4. Let (Ω,F ,Ft,P,Xt,Wt) be a weak solution of (3.3). Then a process Xt
has a representation property if and only if Xt is its own cause, that is, FX |< FX; F; P.

Proof. Let (Ω,F ,Ft, P, Xt,Wt) be a weak solution of (3.3). If Xt has a representation
property, then there exists an (F X

t )-martingale Mt, which can be represented as

Mt =

∫ t

0
Hs dXs + M0, (3.4)

where Hs is an (F X
t )-predictable process. Then the induced measure P of the process

Xt has a representation property. So, by Theorem 2.6, the measure P defined on (F X
∞ )

is extremal in the set MX (the set of all probability measures on (Ω,F ) such that the
process Xt is a local martingale on (Ω,F ,Ft, P)). According to [12, Theorem 4.4], the
weak solution (Ω,F ,Ft, P, Xt,Wt) of (3.3) is weakly unique and, by [9, Proposition
4.1], Xt is its own cause, that is, FX |< FX; F; P holds.

Conversely, suppose that Xt is its own cause, that is, FX |< FX; F; P holds for (3.3).
The weak solution of (3.3) is of the form (Ω,F ,Ft, P, Xt,Wt) and, since Xt is its own
cause, by [9, Proposition 4.1] it follows that this solution is weakly unique. So, by [12,
Theorem 4.4], the measure P on (F X

∞ ) is extremal among all measures for which Xt
is a solution of (3.3). By Theorem 2.6, the measure P has the representation property
on (F X

∞ ) or the solution process Xt has the representation property and may be written
M = H · X, where H is an (F X

t , P)-predictable process and the stochastic integral is
taken with respect to P, or

Mt =

∫ t

0
Hs dXs + M0,

where M0 = 0. So, by Definition 2.4, Xt has the representation property. �

Probabilists have long been interested in problems of extremality of measure.
The relation between extremality and martingale representation was discovered by
Dellacherie (see [8]) and was taken further and given its definite form by Jacod and
Yor (see [8]).

Now we consider a more general equation, a stochastic differential equation driven
with semimartingales (see [5]), dXt = ut(X) dZt,

X0 = 0,
(3.5)
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where Z is a continuous semimartingale (with Z0 = 0), ut(X) is an (F Z,X
t )-predictable

process and X is a solution process. In [5, 9], a definition of weak solution for (3.3) is
given.

The driving process Zt of (3.5) is a semimartingale and the solution process Xt is
also a semimartingale (see [5]) relative to the filtration (F Z,X

t ). So, the process Xt can
be represented as

Xt = Nt + Bt, (3.6)

where Nt is a local martingale and Bt is the process of finite variation.

Proposition 3.5. Let (Ω,F ,Ft, P, Xt, Zt) be a weak solution of (3.5). Then the process
Nt from the decomposition (3.6) has a representation property relative to the filtration
(F Z,X

t ) if and only if (Zt, Xt) is its own cause, that is, FZ,X |< FZ,X; F; P.

Proof. Suppose that (Ω,F ,Ft, P, Xt, Zt) is a weak solution of (3.5) and the process
Xt is a solution process. Also, by assumption, the process Nt has the representation
property relative to (F Z,X

t ):

Mt = M0 +

∫ t

0
Hs dNs,

where Mt is an (F Z,X
t )-local martingale and Ht a suitable (F Z,X

t )-predictable process.
Then the measure P defined on (F Z,X

∞ ), relative to which the stochastic integration is
taken, has the representation property, too. By Theorem 2.6, P is an extremal measure
on the set of measures which defines the martingales of the form Mt = P(A | F Z,X

t ).
Such a martingale allows a right-continuous modification. Let us denote such a set
by K . The filtration generated by the continuous processes Mt is (F Z,X

t ) and (F Z,X
∞ )

is the minimal filtration on which the solution of (3.5) is defined. Namely, for
Mt ∈ (F Z,X

t ),

E(M∞ | F
Z,X

t ) = E(P(A | F Z,X
∞ ) | F Z,X

t ) = E(E(1A | F
Z,X
∞ ) | F Z,X

t )

= E(1A | F
Z,X
∞ ∩ F

Z,X
t ) = P(A | F Z,X

t ) = Mt,

so Mt is an (F Z,X
t )-martingale. According to [12, Theorems 4.3 and 4.4], P is a weakly

unique solution of (3.5) and (Zt, Xt) is its own cause, that is,

FZ,X |< FZ,X; F; P.

Conversely, suppose that FZ,X |< FZ,X; F; P holds. Then, by [12, Theorems 4.3 and
4.4], the weak solution (Ω,F ,Ft, P, Xt,Zt) of (3.5) is weakly unique on (F Z,X

∞ ) and the
measure P is extremal on every weak solution. From FZ,X |< FZ,X; F; P, that is,

∀A ∈ F Z,X
∞ , P(A | F Z,X

t ) = P(A | Ft),

and from F Z,X
t = Ft ∩ F

Z,X
∞ , it follows that (F Z,X

t ) is generated by processes of the
form Mt = P(A | Ft), which are martingales. The measure P is extremal and defined
on (F Z,X

∞ ), so, according to Theorem, 2.6 P has the representation property on (F Z,X
∞ ) or

any (F Z,X
t , P)-local martingale M may be written as M = H · N, where H is (F Z,X

t , P)-
predictable and the stochastic integration is taken with respect to P. So, Nt has the
representation property relative to filtration (F Z,X

t ). �
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4. Some examples and their application to finance

The martingale representation says that every martingale of the underlying filtration
can be written uniquely as a stochastic integral with respect to a local martingale, for
a suitable predictable process. This property has found application in, for example,
stochastic control, filtering and more recently in economics of securities trading. The
interpretation in finance is that the risk-minimising hedging strategy of a contingent
claim in an incomplete market has ‘smooth’ regular sample paths.

In Section 3, we have already seen the most important example of martingale
representation, that of Brownian motion. Here, we give some examples which are
local martingales with jumps, and which have the representation property.

Example 4.1. We consider Emery’s structure equation

[X, X]t − t =

∫ t

0
Hs dXs (4.1)

(see [14]), for which X0 = 0 and the compensator of [X, X]t is At = t. Consider (4.1)
given in a form resembling a differential equation:

d[X, X]t = dt + φ(Xt−) dXt. (4.2)

Since no probability space is specified, the only reasonable interpretation of (4.2)
is that of a weak solution. This means that there exist a filtered probability space
(Ω,F ,Ft,P), satisfying the usual hypothesis, and the local martingale X which satisfies
(4.2). If the solution is weakly unique, which means that if X and Y are solutions
of (4.2), then X and Y have the same distributions as the processes. Then, by
[12, Theorem 4.3], the process X is its own cause.

From (4.2), if we set φ(x) = α + βx, β = 0,

d[X, X]t = dt + α dXt (4.3)

and, when α = 0, the process X is a standard Brownian motion, it is its own cause and,
by Proposition 3.4, it has a martingale representation.

For α = 1 and β = 0, (4.2) is

[X, X]t = t + (Xt − X0) = t + xt. (4.4)

Hence, X is a finite variation martingale, ∆Xt = 1, so X only jumps up, with jumps
always of size 1. Let Xt = Nt − t be the compensated Poisson process. Then X satisfies
the equation, because of weak uniqueness, it is its own cause and a compensated
standard Poisson process, by Proposition 3.4, has a representation property with
respect to its natural filtration.

Example 4.2. Consider an economy that puts at our disposal a number of assets
St = (S (1)

t , . . . , S (n)
t ), so that S (i)

t is the price at time t of the ith asset. Thus, at any
time t, an agent of the wealth at time t holds a portfolio Ht = (H(1)

t , . . . ,H(n)
t ), where

H(i)
t is the number of i-assets held at time t.
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The wealth of the portfolio Vt at time t is therefore

Vt = KtBt + Ht · St, (4.5)

where Kt is the number of the 0-assets held at time t, Bt is the value at time t of one
unit of money invested in the deposit account at time zero and KtBt is the wealth not
invested in S.

But, because any value kept in the deposit account grows at some positive rate, it is
more useful to express asset prices in terms of B, writing VB

t = Vt/Bt,SB
t = St/Bt. The

wealth equation (4.5) then becomes

VB
t = Kt + Ht · SB

t . (4.6)

The consequence of φ being self-financing is then that dVB
t = Ht dS B

t , so

VB
t = V0 +

∫ t

0
Hu · dSB

u , (4.7)

so that the discounted wealth is the integral of the portfolio holdings against the
discounted asset price process.

The fundamental theorem of asset pricing, formalised by Harrison and Pliska,
states that arbitrage is excluded if and only if there is some equivalent martingale
measure under which the discounted asset price processes are martingales. So, by
[12, Theorem 4.3], arbitrage is excluded if and only if discounted asset price processes
are their own cause within the market. This implies that the price of the contingent
claim can be computed as the expectation in the martingale measure of the discounted
payoff of that claim. If the market is also complete, so that all claims can be replicated
perfectly, then the martingale measure (and hence the market price for any claim) is
unique. So, by Proposition 3.5, there exists a martingale representation of the trading
strategy Y = (Kt,Ht).

Now, if PB is a measure under which SB is a martingale, and h = f (S) is a contingent
claim on SB, the discounted price at time t of h, πB

t , being the price of the traded asset,
is itself a PB martingale. It follows that π has a representation as

πt = Btπ
B
t = BtEB(h/BT | Ft).

In the absence of any other condition enforcing a unique price for the claim h, there
will be potentially as many prices π for h as there are market agents. If the market is
complete, there is a price-enforcing mechanism: the price of h will be the cost Vh

0 of
setting up a portfolio worth V0(φ) = π0(h) at time zero and Vh(T ) = h at time T .

In the simple Black–Scholes model, PB as constructed above is the unique
equivalent probability measure with respect to which the price processes at the market
assets are martingales.

So, by [12, Theorem 4.3], the claim process and the price process are caused
by themselves and, by Proposition 3.5, it follows that there exists a martingale
representation of the wealth Vβ

t relative to the trading strategy φ = (Kt,Ht).
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