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Abstract We prove the existence and asymptotic behaviour of the transition density for a large class
of subordinators whose Laplace exponents satisfy lower scaling condition at infinity. Furthermore, we
present lower and upper bounds for the density. Sharp estimates are provided if an additional upper
scaling condition on the Laplace exponent is imposed. In particular, we cover the case when the (minus)
second derivative of the Laplace exponent is a function regularly varying at infinity with regularity index
bigger than −2.
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1. Introduction

Asymptotic behaviour as well as estimates of heat kernels have been intensively studied

in the last decades. The first results obtained by Pòlya [44] and Blumenthal and Getoor

[4] for isotropic α-stable process in Rd provided the basis for studies of more complicated
processes; for example, subordinated Brownian motions [40, 49], isotropic unimodal Lévy

processes [6, 15, 21] and even more general symmetric Markov processes [11, 14]. One

may, among others, list the articles on heat kernel estimates for jump processes of finite
range [10] or with lower intensity of higher jumps [39, 51]. While a great many articles

with explicit results are devoted to symmetric processes or those which are, in appropriate

sense, similar to the symmetric ones, the nonsymmetric case is in general harder to handle
due to lack of a familiar structure. This problem was approached in many different ways;

see, for example, [7, 27, 28, 31, 32, 35, 36, 42, 43, 50]. For a more specific class of stable

processes, see [25, 46, 53]. Overall, one has to impose some control on the nonsymmetry in

order to obtain estimates in an easy-to-handle form. This idea was applied in the recent
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paper [22] where the authors considered the case of the Lévy measure being comparable to

some unimodal Lévy measure. The methods developed in [22, 23] contributed significantly

to this article. See also [32, 42] and the references therein.
In this article the central object is a subordinator; that is, a one-dimensional Lévy

process with nondecreasing paths starting at 0; see Section 2 for the precise definition.

The abstract introduction of the subordination dates back to 1950s and is due to Bochner
[5] and Philips [41]. In the language of the semigroup theory, for a Bernstein function φ and

a bounded C0-semigroup
(
e−tA : t≥ 0

)
with −A being its generator on some Banach space

X , via Bochner integral one can define an operator B= φ(A) such that −B also generates
a bounded C0-semigroup

(
e−tB : t≥ 0

)
on X . The semigroup

(
e−tB : t≥ 0

)
is then said to

be subordinated to
(
e−tA : t≥ 0

)
, and although it may be very different from the original

one, its properties clearly follow from properties of both the parent semigroup and the

involved Bernstein function. See, for example, [18] and the references therein. From a
probabilistic point of view, due to positivity and monotonicity, subordinators naturally

appear as random time change functions of Lévy processes or, more generally, Markov

processes. Namely, if (Xt : t ≥ 0) is a Markov process and (Tt : t ≥ 0) is an independent
subordinator, then Yt =XTt

is again a Markov process with a transition function given

by

Px(Yt ∈A) =

∫
[0,∞)

Px(Xs ∈A)P(Tt ∈ ds).

The procedure just described is called a subordination of a Markov process and can

be interpreted as a probabilistic form of the equality B = φ(A). Here A and B are

(minus) generators of semigroups associated to processes Xt and Yt, respectively. From

an analytical point of view, the transition density of Yt (the integral kernel of e−tB) can
be obtained as a time average of transition density of Xt with respect to distribution

of Tt. Yet another approach is driven by partial differential equations, as the transition

density is a heat kernel of a generalised heat equation. The generalisation can be twofold:
either by replacing the Laplace operator with another, possibly nonlocal operator or by

introducing a more general fractional-time derivative instead of the classical one. The

latter case was recently considered in [9, 12, 38]. Here the solutions are expressed in
terms of corresponding (inverse) subordinators and thus their analysis is essential.

By taking A=−Δ and changing the time of (i.e., subordinating) Brownian motion one

can obtain a large class of subordinated Brownian motions. A principal example here is an

α-stable subordinator with the Laplace exponent φ(λ) = λα, α ∈ (0,1), which gives rise to
the symmetric, rotation-invariant α-stable process and corresponds to the special case of

fractional powers of semigroup
(
e−tAα

: t≥ 0
)
. For this reason, distributional properties of

subordinators were often studied with reference to heat kernel estimates of subordinated
Brownian motions (see, e.g., [16, 33]). In [24] Hawkes investigated the growth of sample

paths of a stable subordinator and obtained the asymptotic behaviour of its distribution

function. Jain and Pruitt [30] considered tail probability estimates for subordinators and,
in the discrete case, nondecreasing random walks. In a more general setting some related

results were obtained in [17, 26, 42, 52]. In [8] new examples of families of subordinators

with explicit transition densities were given. Finally, in the recent paper [16], the author
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derived explicit approximate expressions for the transition density of approximately stable
subordinators under very restrictive assumptions.

The result of the article is asymptotic behaviour as well as upper and lower estimates of

transition densities of subordinators satisfying scaling condition imposed on the second
derivative of the Laplace exponent φ. Our standing assumption on −φ′′ is the weak

lower scaling condition at infinity with scaling parameter α− 2, for some α > 0 (see

(2.7) for definition). It is worth highlighting that we do not state our assumptions and

results in terms of the Laplace exponent φ, as one could suspect, but in terms of its
second derivative and related function ϕ(x) = x2(−φ′′(x)) (see Theorems 3.3, 4.7 and

4.8). Usually the transition density of a Lévy process is described by the generalised

inverse of the real part of the characteristic exponent ψ−1(x) (e.g., [23], [36]), but in our
setting one can show that the lower scaling property implies that ϕ−1(x) ≈ ψ−1(x) for

x sufficient large (see Proposition 4.3). In some cases, however, ϕ may be significantly

different from the Laplace exponent φ. However, if one assumes additional upper scaling
condition with scaling parameter β− 2 for β strictly between 0 and 1, then these two

objects are comparable (see Proposition 4.6).

The main results of this article are covered by Theorems 3.3, 4.7, 4.8, 4.11 and 4.17.

Theorem 3.3 is essential for the whole article because it provides not only the existence of
the transition density but also its asymptotic behaviour, which is later used in derivation

of upper and lower estimates. The key argument in the proof is the lower estimate on

the holomorphic extension of the Laplace exponent φ (see Lemma 3.1), which justifies
the inversion of the Laplace transform and allows us to perform the saddle point type

approximation. In Theorem 3.3 we only use the weak lower scaling property on the second

derivative of the Laplace exponent. In particular, we do not assume the absolute continuity
of ν(dx). Furthermore, the asymptotic is valid in some region described in terms of both

space and time variables. By freezing one of them, we obtain as corollaries the results

similar to [16]; see, for example, Corollary 3.6. It is also worth highlighting that we obtain

a version of the upper estimate on the transition density with no additional assumptions
on the Lévy measure ν(dx); see Theorem 4.7. Clearly, putting some restrictions on ν(dx)

results in sharper estimates (Theorem 4.8), but it is interesting that the scaling property

alone is enough to get some information. Our starting point and the main object to work
with is the Laplace exponent φ. However, in many cases the primary object is the Lévy

measure ν(dx) and results are presented in terms of or require its tail decay. Therefore, it

would be convenient to have a connection between those two objects. In Proposition 3.8
we prove that one can impose scaling conditions on the tail of the Lévy measure ν((x,∞))

instead, as they imply the scaling condition on −φ′′.
We also note that the main results of the article hold true when −φ′′ is a function

regularly varying at infinity with regularity index α−2, where α> 0. This follows easily by
Potter bounds for regularly varying functions (see [3, Theorem 1.5.6]), which immediately

imply both lower and upper scaling properties. Moreover, if additionally α < 1, then, by

Karamata’s theorem and monotone density theorem, regular variation of −φ′′ with index
α−2 is equivalent to regular variation of φ with index α. This is not the case for the case

α= 1 where, in general, only the first direction holds true.
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Below we present the special case when global upper and lower scaling conditions are
imposed with 0< α≤ β < 1; see Theorem 4.17.

Theorem A. Let T be a subordinator with the Laplace exponent φ. Suppose that for
some 0< α≤ β < 1, the functions

(0,∞) � x �→ x−αφ(x), and (0,∞) � x �→ x−βφ(x)

are almost increasing and almost decreasing, respectively. We also assume that the Lévy

measure ν(dx) has an almost monotone density ν(x). Then the probability distribution of

Tt has a density p(t, · ). Moreover, for all t ∈ (0,∞) and x > 0,

p(t,x)≈
{(

t
(
−φ′′(w)

))−1/2
exp
{
−t
(
φ(w)−wφ′(w)

)}
, if 0< xφ−1(1/t)≤ 1,

tx−1φ(1/x), if 1< xφ−1(1/t),

where w = (φ′)−1(x/t).

We note that a similar result to Theorem A appeared in [13] in around the same

time as our preprint. Our assumptions, however, are weaker, as we assume almost

monotonicity of the Lévy density instead of monotonicity of the function t �→ tν(t).

Moreover, our estimates are genuinely sharp; that is, the constants appearing in the
exponential factors are the same on both sides of the estimate, while estimates obtained in

[13] are qualitatively sharp; that is, the constants in the exponential factors are different.

As a corollary, under the assumption of Theorem A, we obtain a global two-sided
estimate on the Green function. Namely, for all x > 0,

G(x)≈ 1

xφ(1/x)
.

See Section 5 and Theorem 5.8 for details.

The article is organised as follows: In Section 2 we introduce our framework and

collect some facts concerning Bernstein functions and their scaling properties. Section
3 is devoted to the proof of Theorem 3.3 and its consequences. In Section 4 we provide

both upper and lower estimates on the transition density and discuss when these estimates

coincide. Some applications of our results to subordination beyond the familiar Rd setting

and Green function estimates are presented in Section 5.

Notation

By C1,c1,C2,c2, . . . we denote positive constants which may change from line to line.
For two functions f,g : (0,∞) → [0,∞) we write f(x) � g(x) if there is c > 0 such that

f(x) ≥ cg(x) for all x > 0. An analogous rule is applied to the symbol �. We also have

f(x)≈ g(x) if there exists C ≥ 1 such that C−1f(x)≤ g(x)≤Cf(x) for all x > 0. Finally,
we set a∧ b=min{a,b} and a∨ b=max{a,b}.

2. Preliminaries

Let (Ω,F,P) be a probability space. Let T= (Tt : t≥ 0) be a subordinator; that is, a Lévy

process in R with nondecreasing paths. Recall that a Lévy process is a càdlàg stochastic
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process with stationary and independent increments such that T0 =0 almost surely. There
is a function ψ : R→C, called the Lévy–Khintchine exponent of T, such that for all t≥ 0

and ξ ∈ R,

E
(
eiξTt

)
= e−tψ(ξ).

Moreover, there are b≥ 0 and σ-finite measure ν on (0,∞) satisfying∫
(0,∞)

min{1,s}ν(ds)<∞, (2.1)

such that for all ξ ∈ R,

ψ(ξ) =−iξb−
∫
(0,∞)

(
eiξx−1

)
ν(dx)

=−iξ

(
b+

∫
(0,1)

xν(dx)

)
−
∫
(0,∞)

(
eiξx−1− iξx1{x<1}

)
ν(dx),

(2.2)

which is valid thanks to (2.1). By φ : [0,∞)→ [0,∞) we denote the Laplace exponent of

T, namely,

E
(
e−λTt

)
= e−tφ(λ)

for all t≥ 0 and λ≥ 0. Let ψ∗ be the symmetric continuous and nondecreasing majorant
of �ψ; that is,

ψ∗(r) = sup
|z|≤r

�ψ(z), r > 0.

Notice that

ψ∗(ψ−1(s)
)
= s, and ψ−1

(
ψ∗(s)

)
≥ s,

where ψ−1 is the generalised inverse function defined as

ψ−1(s) = sup
{
r > 0: ψ∗(r) = s

}
.

To study the distribution function of the subordinator T, it is convenient to introduce

two concentration functions K and h. They are defined as

K(r) =
1

r2

∫
(0,r)

s2 ν(ds), r > 0, (2.3)

and

h(r) =

∫
(0,∞)

min
{
1,r−2s2

}
ν(ds), r > 0. (2.4)

Notice that h(r)≥K(r). Moreover, by the Fubini–Tonelli theorem, we get

h(r) = 2

∫ ∞

r

K(s)s−1 ds. (2.5)
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In view of [20, Lemma 4], we have

1

24
h(r−1)≤ ψ∗(r)≤ 2h(r−1). (2.6)

A function f : [0,∞)→ [0,∞) is regularly varying at infinity of index α, if for all λ≥ 1,

lim
x→∞

f(λx)

f(x)
= λα.

Analogously, f is regular varying at the origin of index α if for all λ≥ 1,

lim
x→0+

f(λx)

f(x)
= λα.

If α= 0, the function f is called slowly varying.

We next introduce a notion of scaling conditions frequently used in this article. We say

that a function f : [0,∞)→ [0,∞) has the weak lower scaling property at infinity if there
are α ∈ R, c ∈ (0,1] and x0 ≥ 0 such that for all λ≥ 1 and x > x0,

f(λx)≥ cλαf(x). (2.7)

We denote it briefly as f ∈WLSC(α,c,x0). Observe that if α > α′ then WLSC(α,c,x0)�

WLSC(α′,c,x0). Analogously, f has the weak upper scaling property at infinity if there

are β ∈ R, C ≥ 1, and x0 ≥ 0 such that for all λ≥ 1 and x > x0,

f(λx)≤ Cλβf(x). (2.8)

In this case we write f ∈WUSC(β,C,x0).

We say that a function f : [0,∞) → [0,∞) has doubling property on (x0,∞) for some

x0 ≥ 0 if there is C ≥ 1 such that for all x > x0,

C−1f(x)≤ f(2x)≤ Cf(x).

Notice that a nonincreasing function with the weak lower scaling has a doubling property.

Analogously, a nondecreasing function with the weak upper scaling.

A function f : [0,∞)→ [0,∞) is almost increasing on (x0,∞) for some x0 ≥ 0 if there is
c ∈ (0,1] such that for all y ≥ x > x0,

cf(x)≤ f(y).

It is almost decreasing on (x0,∞) if there is C ≥ 1 such that for all y ≥ x > x0,

Cf(x)≥ f(y).

In view of [6, Lemma 11], f ∈WLSC(α,c,x0) if and only if the function

(x0,∞) � x �→ x−αf(x)

is almost increasing. Similarly, f ∈WUSC(β,C,x0) if and only if the function

(x0,∞) � x �→ x−βf(x)
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is almost decreasing. For a function f : [0,∞)→ C its Laplace transform is defined as

Lf(λ) =
∫ ∞

0

e−λxf(x)dx.

2.1. Bernstein functions

In this section we recall some basic facts about Bernstein functions. A general reference

here is the book [48].
A function f : (0,∞)→ [0,∞) is completely monotone if it is smooth and

(−1)nf (n) ≥ 0

for all n ∈ N0. Next, a function φ is a Bernstein function if it is a nonnegative smooth

function such that φ′ is completely monotone.

Let φ be a Bernstein function. In view of [29, Lemma 3.9.34], for all n ∈ N we have

φ(λ)≥ (−1)n+1

n!
λnφ(n)(λ), λ > 0. (2.9)

Since φ is concave, for each λ≥ 1 and x > 0 we have

φ(λx)≤ φ′(x)(λ−1)x+φ(x);

thus, by (2.9),

φ(λx)≤ λφ(x). (2.10)

By [48, Theorem 3.2], there are two nonnegative numbers a and b and a Radon measure
μ on (0,∞) satisfying ∫

(0,∞)

min{1,s}μ(ds)<∞

and such that

φ(λ) = a+ bλ+

∫
(0,∞)

(
1− e−λs

)
μ(ds). (2.11)

A Bernstein function φ is called a complete Bernstein function if the measure μ has a
completely monotone density with respect to the Lebesgue measure.

Proposition 2.1. Let f be a completely monotone function. Suppose that f has a doubling

property on (x0,∞) for some x0 ≥ 0. Then there is C > 0 such that for all x > x0,

f(x)≥ Cx|f ′(x)|.

Proof. Without loss of generality, we can assume f 
≡ 0. Clearly,

f(x)−f(x/2) =

∫ x

x/2

f ′(s)ds≤ 1
2xf

′(x).

Since f is completely monotone, it is a positive function and

f(x/2)≥ 1
2x|f

′(x)|,

https://doi.org/10.1017/S1474748021000360 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000360


1126 T. Grzywny et al.

which, together with the doubling property, gives

f(x)≥ Cx|f ′(x)|

for x > 2x0. Hence, we obtain our assertion in the case x0 = 0. If x0 > 0, we observe that
the function

[x0,2x0] � x �→ x|f ′(x)|
f(x)

is continuous and positive and thus bounded. This completes the proof.

Proposition 2.2. Let f be a completely monotone function. Suppose that −f ′ ∈
WLSC(τ,c,x0) for some c ∈ (0,1], x0 ≥ 0 and τ ≤−1. Then f ∈WLSC(1+ τ,c,x0).
Analogously, if −f ′ ∈ WUSC(τ,C,x0) for some C ≥ 1, x0 ≥ 0 and τ ≤ −1, then (f −

f(∞)) ∈WUSC(τ,C,x0).

Proof. Let λ > 1. For y > x > x0, we have

f(λx)−f(λy) =−
∫ λy

λx

f ′(s)ds=−λ

∫ y

x

f ′(λs)ds

≥−cλ1+τ

∫ y

x

f ′(s)ds= cλ1+τ (f(x)−f(y));

thus,

f(λx)≥ cλ1+τf(x)+f(λy)− cλ1+τf(y).

Since f is nonnegative and nonincreasing, we can take y approaching infinity to get

f(λx)≥ cλ1+τf(x)+
(
1− cλ1+τ

)
lim
y→∞

f(y)

≥ cλ1+τf(x),

where in the last inequality we have also used that 1 ≥ cλ1+τ . The second part of the

proposition can be proved in much the same way.

Proposition 2.3. Let φ be a Bernstein function with φ(0) = 0. Then φ ∈WLSC(α,c,x0)
for some c ∈ (0,1], x0 ≥ 0 and α > 0 if and only if φ′ ∈ WLSC(α− 1,c′,x0) for some

c′ ∈ (0,1]. Furthermore, if φ∈WLSC(α,c,x0), then there is C ≥ 1 such that for all x> x0,

xφ′(x)≤ φ(x)≤ Cxφ′(x). (2.12)

Proof. Assume first that φ′ ∈ WLSC(α− 1,c,x0). Without loss of generality, we can

assume φ′ 
≡ 0. We claim that (2.12) holds true. In view of (2.9), it is enough to show that

there is C ≥ 1 such that for all x > x0,

φ(x)≤ Cxφ′(x).

First, let us observe that, by the weak lower scaling property of φ′,

φ(x)−φ(x0) =

∫ x

x0

φ′(s)ds
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≤ c−1φ′(x)

∫ x

x0

(
s/x
)−1+α

ds

≤ 1

cα
xφ′(x). (2.13)

Thus, we get the assertion in the case x0 = 0. If x0 > 0, it is enough to show that there

is C > 0 such that for all x > x0,

xφ′(x)≥ C. (2.14)

Since φ′ ∈WLSC(α−1,c,x0), the function

(x0,∞) � x �→ xφ′(x)

is almost increasing. Hence, for x≥ 2x0 we have

xφ′(x)≥ c2x0φ
′(2x0).

To conclude (2.14), we notice that φ′(x) is positive and continuous in [x0,2x0]. Now, by

(2.14) we get

xφ′(x)≥ Cφ(x0)

for all x > x0, which, together with (2.13), implies (2.12) and the scaling property of φ

follows.
Now assume that φ ∈WLSC(α,c,x0). By monotonicity of φ′, for 0< s < t,

φ(tx)−φ(sx)

φ(x)
≤ x(t−s)φ′(sx)

φ(x)
.

For s= 1, by the lower scaling we get

x(t−1)φ′(x)

φ(x)
≥ φ(tx)

φ(x)
−1≥ ctα−1,

for all x > x0. Thus, for t = 21/αc−1/α, we obtain that xφ′(x) � φ(x) for all x > x0.
Invoking (2.9), we conclude (2.12). In particular, φ′ has the weak lower scaling property.

This completes the proof.

Proposition 2.4. Let φ be a Bernstein function. Suppose that −φ′′ ∈WUSC(β−2,C,x0)

for some C ≥ 1, x0 ≥ 0 and β < 1. Then for all x > x0,

φ′(x)≤ C

1−β
x(−φ′′(x))+ b,

where b is the drift term from the integral representation (2.11) of φ.

Proof. Without loss of generality, we can assume φ′′ 
≡ 0. By the scaling property, for

x > x0 we have

φ′(x)− b

x(−φ′′(x))
=

∫ ∞

x

t

x

(−φ′′(t))

(−φ′′(x))

dt

t
≤ C

∫ ∞

x

(
t

x

)−1+β
dt

t
= C

1

1−β
,

which concludes the proof.

https://doi.org/10.1017/S1474748021000360 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000360


1128 T. Grzywny et al.

Remark 2.5. Let φ be a Bernstein function such that φ(0) = 0. Suppose that −φ′′ ∈
WLSC(α− 2,c,x0), for some c ∈ (0,1], x0 ≥ 0 and α ∈ (0,1]. Since φ′ is completely

monotone, by Proposition 2.2, φ′ ∈ WLSC(α− 1,c,x0). Therefore, by Proposition 2.3,
we conclude that φ ∈WLSC(α,c1,x0) for some c1 ∈ (0,1].

Proposition 2.6. Let f be a completely monotone function. Suppose that

f ∈WLSC(α−1,c,x0)∩WUSC(β−1,C,x0)

for some c ∈ (0,1], C ≥ 1, x0 ≥ 0 and 0< α≤ β < 1. Then

−f ′ ∈WLSC(α−2,c′,x0)∩WUSC(β−2,C ′,x0)

for some c′ ∈ (0,1] and C ′ ≥ 1.

Proof. By monotonicity of −f ′, for 0< s < t,

−x(t−s)f ′(tx)

f(x)
≤ f(sx)−f(tx)

f(x)
≤ −x(t−s)f ′(sx)

f(x)
. (2.15)

Taking s= 1 in the second inequality, the weak upper scaling property yields

−x(t−1)f ′(x)

f(x)
≥ 1− f(tx)

f(x)
≥ 1− ctβ−1,

for all x > x0. By selecting t > 1 such that ctβ−1 ≤ 1
2 , we obtain x

(
− f ′(x)

)
� f(x) for

x > x0. Similarly, taking t= 1 in the first inequality in (2.15), by the weak lower scaling

property we get

−x(1−s)f ′(x)

f(x)
≤ f(sx)

f(x)
−1≤ c−1sα−1−1,

for all x > x0/s. By selecting 0< s < 1 such that sα−1 ≥ 2c, we obtain x
(
−f ′(x)

)
� f(x)

for x > x0/s. Hence,

f(x)≈ x
(
−f ′(x)

)
, (2.16)

for all x > x0/s. Therefore, lower and upper scaling properties follow from (2.16) and the

scaling properties of f. This finishes the proof for the case x0 = 0. If x0 > 0, we notice that
both f ad −f ′ are positive and continuous; thus, at the possible expense of worsening the

constants, we get (2.16) for all x > x0.

Now, by combining Propositions 2.3 and 2.6, we immediately get the following corollary.

Corollary 2.7. Let φ be a Bernstein function such that φ(0) = 0. Suppose that

φ ∈WLSC(α,c,x0)∩WUSC(β,C,x0)

for some c ∈ (0,1], C ≥ 1, x0 ≥ 0 and 0< α≤ β < 1. Then

−φ′′ ∈WLSC(α−2,c′,x0)∩WUSC(β−2,C ′,x0)

for some c′ ∈ (0,1] and C ′ ≥ 1.
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Lemma 2.8. Let φ be a Bernstein function. Suppose that −φ′′ ∈WLSC(α−2,c,x0) for

some c ∈ (0,1], x0 ≥ 0 and α > 0. There is a constant C > 0 such that for all x > x0,

C(−φ′′(x))≤
∫
(0,1/x)

s2μ(ds).

Moreover, the constant C depends only on α and c.

Proof. Let f : (0,∞)→ R be a function defined as

f(t) =

∫
(0,t)

s2 μ(ds).

We observe that, by the Fubini–Tonelli theorem, for x > 0 we have

Lf(x) =
∫ ∞

0

e−xt

∫
(0,t)

s2 μ(ds)dt

=

∫
(0,∞)

s2
∫ ∞

s

e−xt dtμ(ds) = x−1(−φ′′(x)).

Since f is nondecreasing, for any s > 0,

−φ′′(x) = xLf(x)≥
∫ ∞

s

e−tf
(
t/x
)
dt

≥ e−sf
(
s/x
)
.

Hence, for any u > 2,

−φ′′(x) =

∫ u

0

e−sf
(
s/x
)
ds+

∫ ∞

u

e−sf
(
s/x
)
ds

≤ f
(
u/x
)
+

∫ ∞

u

e−s/2(−φ′′(x/2))ds.

Therefore, setting x= λu > 2x0, by the weak lower scaling property of −φ′′,

f(1/λ)≥−φ′′(uλ)−2e−u/2(−φ′′(uλ/2))

≥
(
2α−2c−2e−u/2

)
(−φ′′(uλ/2)).

At this stage, we select u > 2 such that

2α−2c−2e−u/2 ≥ 2−2c.

Then again, by the weak lower scaling property of −φ′′, for λ > x0,

f(1/λ)≥ c2−2(−φ′′(uλ/2))≥ c22−αuα−2(−φ′′(λ)),

which ends the proof.
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Lemma 2.9. Let φ be a Bernstein function. Suppose that −φ′′ ∈WLSC(α−2,c,x0) for

some c ∈ (0,1], x0 ≥ 0 and α > 0. Then there exists a complete Bernstein function f such

that f ≈ φ for x > 0 and −f ′′ ≈−φ′′ for x > x0.

Proof. Let us define

f(λ) = a+ bλ+

∫ ∞

0

λu

λu+1
μ(du).

By [48, Theorem 6.2 (vi)] the function f is a complete Bernstein function. Since for y > 0,

y

y+1
≈
(
1− e−y

)
,

we get f(λ)≈ φ(λ). Moreover,

f ′′(λ) =−2

∫ ∞

0

u2

(λu+1)3
μ(du).

Hence, by Lemma 2.8 we obtain −f ′′(λ)≈−φ′′(λ) for λ > x0.

3. Asymptotic behaviour of densities

Let T = (Tt : t ≥ 0) be a subordinator with the Lévy–Khintchine exponent ψ and the

Laplace exponent φ. Since φ is a Bernstein function, it admits the integral representation
(2.11). As it may be easily checked (see, e.g., [48, Proposition 3.6]), we have μ= ν, a= 0

and ψ(ξ) = φ(−iξ). In particular, φ(0) = 0.

In this section we study the asymptotic behaviour of the probability density of Tt. In

the whole section we assume that φ′′ 
≡ 0; otherwise, Tt = bt is deterministic. The main
result is Theorem 3.3. Let us start by showing an estimate on the real part of the complex

extension φ.

Lemma 3.1. Suppose that −φ′′ ∈WLSC(α−2,c,x0) for some c∈ (0,1], x0 ≥ 0 and α> 0.
Then there exists C > 0 such that for all w > x0 and λ ∈ R,

�
(
φ(w+ iλ)−φ(w)

)
≥ Cλ2

(
−φ′′(|λ|∨w)

)
.

Proof. By the integral representation (2.11), for λ ∈ R we have

�
(
φ(w+ iλ)−φ(w)

)
=

∫
(0,∞)

(
1− cos(λs)

)
e−ws ν(ds).

In particular,

�
(
φ(w+ iλ)−φ(w)

)
= �
(
φ(w− iλ)−φ(w)

)
.

Thus, it is sufficient to consider λ > 0. We can estimate

�
(
φ(w+ iλ)−φ(w)

)
≥
∫
(0,1/λ)

(
1− cos(λs)

)
e−ws ν(ds)

� λ2

∫
(0,1/λ)

s2e−ws ν(ds). (3.1)
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Due to Lemma 2.8, we obtain, for λ≥ w,

�
(
φ(w+ iλ)−φ(w)

)
� λ2

∫
(0,1/λ)

s2 ν(ds) � λ2(−φ′′(λ)).

If w > λ > 0, then, by (3.1), we have

�
(
φ(w+ iλ)−φ(w)

)
� λ2

∫
(0,1/w)

s2e−wsν(ds)

≥ e−1λ2

∫
(0,1/w)

s2ν(ds),

which, by Lemma 2.8, completes the proof.

Remark 3.2. Suppose that −φ′′ ∈WLSC(α−2,c,x0) for some c∈ (0,1], x0 ≥ 0 and α> 0.

Since

K(1/x)≤ ex2(−φ′′(x)),

by Lemma 2.8 we obtain

Cx2(−φ′′(x))≤K(1/x)≤ ex2(−φ′′(x))

for all x > x0.

Theorem 3.3. Let T be a subordinator with the Laplace exponent φ. Suppose that −φ′′ ∈
WLSC(α−2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and α > 0. Then the probability distribution
of Tt is absolutely continuous for all t > 0. If we denote its density by p(t, · ), then for

each ε > 0 there is M0 > 0 such that∣∣∣p(t,tφ′(w)
)√

2πt(−φ′′(w))exp
{
t
(
φ(w)−wφ′(w)

)}
−1
∣∣∣≤ ε,

provided that w > x0 and tw2(−φ′′(w))>M0.

Proof. Let x= tφ′(w) and M > 0. We first show that

p(t,x) =
1

2π
· e−tΦ(x/t,0)√

t(−φ′′(w))

∫
R

exp

{
− t

(
Φ

(
x

t
,

u√
t(−φ′′(w))

)
−Φ

(
x

t
,0

))}
du, (3.2)

provided that w > x0 and tw2(−φ′′(w))>M , where for λ ∈ R we have set

Φ
(
x/t,λ

)
= φ(w+ iλ)− x

t
(w+ iλ). (3.3)

To do so, let us recall that

E
(
e−λTt

)
= e−tφ(λ), λ≥ 0.

Thus, by Mellin’s inversion formula, if the limit

lim
L→∞

1

2πi

∫ w+iL

w−iL

e−tφ(λ)+λx dλ exists, (3.4)
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then the probability distribution of Tt has a density p(t, · ) and

p(t,x) = lim
L→∞

1

2πi

∫ w+iL

w−iL

e−tφ(λ)+λx dλ.

Therefore, our task is to justify the statement (3.4). For L > 0, we write

1

2πi

∫ w+iL

w−iL

e−tφ(λ)+λx dλ=
1

2π

∫ L

−L

e−tΦ(x/t,λ) dλ.

By the change of variables

λ=
u√

t(−φ′′(w))
,

we obtain∫ L

−L

e−tΦ(x/t,λ) dλ= e−tΦ(x/t,0)

∫ L

−L

exp
{
− t
(
Φ
(
x/t,λ

)
−Φ
(
x/t,0

))}
dλ

=
e−tΦ(x/t,0)√
t(−φ′′(w))

×

∫ L
√

t(−φ′′(w))

−L
√

t(−φ′′(w))

exp

{
− t

(
Φ

(
x

t
,

u√
t(−φ′′(w))

)
−Φ

(
x

t
,0

))}
du.

Let us note here that −φ′′ is nonincreasing and integrable at infinity; thus, we in fact

have α≤ 1. We claim that there is C > 0 not depending on M, such that for all u ∈ R,

t�
(
Φ

(
x

t
,

u√
t(−φ′′(w))

)
−Φ

(
x

t
,0

))
≥ C

(
u2∧ (|u|αM1−α/2)

)
, (3.5)

provided that w>x0 and tw2(−φ′′(w))>M . Indeed, by (3.3) and Lemma 3.1, for w>x0

we get

t�
(
Φ

(
x

t
,

u√
t(−φ′′(w))

)
−Φ

(
x

t
,0

))
� |u|2

φ′′(w)
φ′′
(

|u|√
t(−φ′′(w))

∨w

)
. (3.6)

We next estimate the right-hand side of (3.6). If |u| ≤ w
√

t(−φ′′(w)), then

|u|2

φ′′(w)
φ′′
(

|u|√
t(−φ′′(w))

∨w

)
= |u|2.

Otherwise, since −φ′′ ∈WLSC(α−2,c,x0), we obtain

|u|2

φ′′(w)
φ′′
(

|u|√
t(−φ′′(w))

∨w

)
≥ c|u|2

(
|u|√

tw2(−φ′′(w))

)−2+α

= c|u|α
(
tw2(−φ′′(w))

)1−α/2

≥ cM1−α/2|u|α.
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Hence, we deduce (3.5). To finish the proof of (3.4), we invoke the dominated convergence

theorem. Consequently, by Mellin’s inversion formula we obtain (3.2).

Our next task is to show that for each ε > 0 there is M0 > 0 such that∣∣∣∣∣
∫
R

exp

{
− t

(
Φ

(
x

t
,

u√
t(−φ′′(w))

)
−Φ

(
x

t
,0

))}
du−

∫
R

e−
1
2u

2

du

∣∣∣∣∣≤ ε, (3.7)

provided that w > x0 and tw2(−φ′′(w)) > M0. In view of (3.5), by taking M0 > 1

sufficiently large, we get∣∣∣∣∣
∫
|u|≥M

1/4
0

exp

{
− t

(
Φ

(
x

t
,

u√
t(−φ′′(w))

)
−Φ

(
x

t
,0

))}
du

∣∣∣∣∣≤
∫
|u|≥M

1/4
0

e−C|u|α du≤ ε

(3.8)

and ∫
|u|≥M

1/4
0

e−
1
2u

2

du≤ ε. (3.9)

Next, we claim that there is C > 0 such that∣∣∣∣t(Φ(x

t
,

u√
t(−φ′′(w))

)
−Φ

(
x

t
,0

))
− 1

2
|u|2
∣∣∣∣≤ C|u|3M− 1

2
0 . (3.10)

Indeed, since

∂λΦ
(x
t
,0
)
= 0,

by Taylor’s formula, we get∣∣∣∣t(Φ(x

t
,

u√
t(−φ′′(w))

)
−Φ

(
x

t
,0

))
− 1

2
|u|2
∣∣∣∣= ∣∣∣∣12∂2

λΦ
(x
t
,ξ
) |u|2

−φ′′(w)
− 1

2
|u|2
∣∣∣∣

=
|u|2

2|φ′′(w)|
∣∣φ′′(w+ iξ)−φ′′(w)

∣∣, (3.11)

where ξ is some number satisfying

|ξ| ≤ |u|√
t(−φ′′(w))

. (3.12)

Observe that ∣∣φ′′(w+ iξ)−φ′′(w)
∣∣≤ ∫

(0,∞)

s2e−ws
∣∣e−iξs−1

∣∣ν(ds)
≤ 2|ξ|

∫
(0,∞)

s3e−ws ν(ds) = 2|ξ|φ′′′(w).

Since −φ′′ is a nonincreasing function with the weak lower scaling property, it is doubling.
Thus, by Proposition 2.1, for w > x0,

−φ′′(w) � wφ′′′(w),
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which together with (3.12) give∣∣φ′′(w+ iξ)−φ′′(w)
∣∣≤ C

|u|√
t(−φ′′(w))

· −φ′′(w)

w

≤ CM
− 1

2
0 |u|(−φ′′(w)), (3.13)

whenever tw2(−φ′′(w))>M0. Now, (3.10) easily follows by (3.13) and (3.11).
Finally, since for any z ∈ C, ∣∣ez −1

∣∣≤ |z|e|z|,

by (3.10) we obtain∣∣∣∣∣
∫
|u|≤M

1/4
0

exp

{
− t

(
Φ

(
x

t
,

u√
t(−φ′′(w))

)
−Φ

(
x

t
,0

))}
− e−

1
2 |u|

2

du

∣∣∣∣∣
≤ CM

− 1
2

0

∫
|u|≤M

1/4
0

exp

{
− 1

2 |u|
2
+CM

− 1
2

0 |u|3
}
|u|3 du≤ ε,

provided that M0 is sufficiently large, which, together with (3.8) and (3.9), completes the

proof of (3.7) and the theorem follows.

Remark 3.4. If x0 = 0, then the constant M0 in Theorem 3.3 depends only on α and c.

If x0 > 0, it also depends on

sup
x∈[x0,2x0]

xφ′′′(x)

−φ′′(x)
.

By Theorem 3.3, we immediately get the following corollaries.

Corollary 3.5. Suppose that −φ′′ ∈ WLSC(α− 2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and

α > 0. Then there is M0 > 0 such that

p(t,x)≈ 1√
t(−φ′′(w))

exp
{
− t
(
φ(w)−wφ′(w)

)}
,

uniformly on the set{
(t,x) ∈ R+×R : tb < x < tφ′(x+

0 ) and tw2(−φ′′(w))>M0

}
,

where w = (φ′)−1(x/t).

Corollary 3.6. Suppose that −φ′′ ∈ WLSC(α− 2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and
α > 0. Assume also that b= 0. Then for any x > 0,

lim
t→∞

p(t,x)
√
t(−φ′′(w))exp

{
t
(
φ(w)−wφ′(w)

)}
= (2π)−1/2,

where w = (φ′)−1(x/t).

By imposing on −φ′′ an additional condition of the weak upper scaling, we can further

simplify the description of the set where the sharp estimates on p(t,x) hold.
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Corollary 3.7. Suppose that φ ∈ WLSC(α,c,x0)∩WUSC(β,C,x0) for some c ∈ (0,1],

C ≥ 1, x0 ≥ 0 and 0< α≤ β < 1. Assume also that b= 0. Then there is δ > 0 such that

p(t,x)≈ 1√
t(−φ′′(w))

exp
{
− t
(
φ(w)−wφ′(w)

)}
,

uniformly on the set{
(t,x) ∈ R+×R : 0< xφ−1(1/t)< δ, and 0≤ tφ(x0)≤ 1

}
, (3.14)

where w = (φ′)−1(x/t).

Proof. By Proposition 2.3, there is C1 ≥ 1 such that for all u > x0,

φ(u)≤ C1uφ
′(u);

thus, for (t,x) belonging to the set (3.14),

x

t
< δ

1

tφ−1(1/t)
= δ

φ
(
φ−1(1/t)

)
φ−1(1/t)

≤ C1δφ
′(φ−1(1/t)

)
. (3.15)

By Proposition 2.3, φ′ ∈WLSC(−1+α,c,x0); hence, for all D ≥ 1,

φ′(Dφ−1(1/t)
)
≥ cD−1+αφ′(φ−1(1/t)

)
.

By taking δ sufficiently small, we get

D =

(
c

C1δ

) 1
1−α

≥ 1;

thus, by (3.15), we obtain

x

t
< φ′(Dφ−1(1/t)

)
,

which implies that

w = (φ′)−1(x/t)>Dφ−1(1/t). (3.16)

In particular, w > x0. On the other hand, by Propositions 2.3 and 2.4, there is c1 ∈ (0,1]

such that

tw2(−φ′′(w))≥ c1tφ(w).

By Remark 2.5, φ ∈WLSC(α,c2,x0) for some c2 ∈ (0,1]. Therefore,

tφ(w) =
φ(w)

φ
(
φ−1(1/t)

) ≥ c2

(
w

φ−1(1/t)

)α

,

which, together with (3.16), gives

tw2(−φ′′(w)) � δ−
α

1−α >M0

for δ sufficiently small. Hence, by Corollary 3.5, we conclude the proof.
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The following proposition provides a sufficient condition on the measure ν that entails
the weak lower scaling property of −φ′′ and allows us to apply Theorem 3.3.

Proposition 3.8. Suppose that there are x0 ≥ 0, C ≥ 1 and α > 0 such that for all

0< r < 1/x0 and 0< λ≤ 1,

ν
(
(r,∞)

)
≤ Cλαν

(
(λr,∞)

)
. (3.17)

Then −φ′′ ∈WLSC(α−2,c,x0) for some c ∈ (0,1].

Proof. Let us first notice that by the Fubini–Tonelli theorem,

h(r) = r−2

∫
(0,∞)

min
{
r2,s2

}
ν(ds)

= r−2

∫ r

0

tν
(
(t,∞)

)
dt.

Thus, by (3.17), for all 0< r < 1/x0 and 0< λ≤ 1,

Cλαh(λr) =
2Cλα

r2

∫ r

0

tν
(
(λt,∞)

)
dt

≥ 2

r2

∫ r

0

tν
(
(t,∞)

)
dt

= h(r). (3.18)

Hence, by [23, Lemma 2.3], there is C ′ ≥ 1 such that for all 0< r < 1/x0,

K(r)≤ h(r)≤ C ′K(r). (3.19)

The integral representation of φ entails that

e−1x−2K(1/x)≤−φ′′(x)≤ e22−2x−2h(1/x), x > 0;

thus, by (3.19), we obtain

−φ′′(x)≈ x−2h(1/x)

for all x> x0. Now, the weak lower scaling property of −φ′′ is a consequence of (3.18).

4. Estimates on the density

Let T = (Tt : t ≥ 0) be a subordinator with the Lévy–Khintchine exponent ψ and the

Laplace exponent φ. In this section we always assume that −φ′′ ∈ WLSC(α− 2,c,x0)

for some c ∈ (0,1], x0 ≥ 0 and α ∈ (0,1]. In particular, by Theorem 3.3, the probability
distribution of Tt has a density p(t, · ). To express the majorant on p(t, · ), it is convenient
to set

ϕ(x) = x2(−φ′′(x)), x > 0.
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Obviously, ϕ ∈ WLSC(α,c,x0). Let ϕ−1 denote the generalised inverse function defined

as

ϕ−1(x) = sup
{
r > 0: ϕ∗(r) = x

}
where

ϕ∗(r) = sup
0<x≤r

ϕ(x).

We start by showing comparability between the two concentration functions K and h

defined in (2.3) and (2.4), respectively.

Proposition 4.1. Suppose that −φ′′ ∈WLSC(α−2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and
α > 0. Then there is C ≥ 1 such that for all 0< r < 1/x0,

K(r)≤ h(r)≤ CK(r).

Proof. Since h(r)≥K(r), it is enough to show that for some C ≥ 1 and 0< r < 1/x0,

h(r)≤ CK(r).

In view of (2.5), we have

h(r) = 2

∫ ∞

r

K(s)
ds

s
= 2

∫ 1/x0

r

K(s)
ds

s
+2

∫ ∞

1/x0

K(s)
ds

s
. (4.1)

Let us consider the first term on the right-hand side of (4.1). By Remark 3.2 we have

K(r)≈ ϕ(1/r), for 0< r < 1/x0, which implies∫ 1/x0

r

K(s)
ds

s
� K(r), 0< r < 1/x0.

This finishes the proof in the case x0 = 0. If x0 > 0, then, for 1/(2x0)≤ r < 1/x0, we have

K(r) � ϕ(1/r) � ϕ(x0)> 0.

Hence, K(r) � 1 for all 0 < r < 1/x0. Since the second term on the right-hand side of

(4.1) is constant, the proof is completed.

Let us notice that by (2.6), Proposition 4.1 and Remark 3.2, we have

ψ∗(x)≈ h(1/x)≈K(1/x)≈ ϕ(x) (4.2)

for all x > x0. In particular, there is c1 ∈ (0,1] such that ψ∗ ∈WLSC(α,c1,x0). Moreover,

ψ∗(x) � K(1/x) = x2

∫
(0,1/x)

s2 ν(ds)

�
∫
(0,1/x)

(
1− cossx

)
ν(ds);

thus, for all x > x0,

ψ∗(x) � �ψ(x). (4.3)

https://doi.org/10.1017/S1474748021000360 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000360


1138 T. Grzywny et al.

Since for λ≥ 1 and x > 0,

ϕ(λx)≤ λ2ϕ(x), (4.4)

we get

ϕ∗(λx)≤ λ2ϕ∗(x). (4.5)

Proposition 4.2. Suppose that −φ′′ ∈WLSC(α−2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and
α > 0. Then for all r > 2h(1/x0),

1

h−1(r)
≈ ψ−1(r). (4.6)

Furthermore, there is C ≥ 1 such that for all λ≥ 1 and r > 2h(1/x0),

ψ−1(λr)≤ Cλ1/αψ−1(r).

Proof. Using (2.6), we immediately get

1

h−1(r/2)
≤ ψ−1(r)≤ 1

h−1(24r)

for all r > 0. On the other hand, by Proposition 4.1 and [23, Lemma 2.3], there is C ≥ 1

such that for all λ≥ 1 and r > h(1/x0),

1

h−1(λr)
≤ Cλ1/α 1

h−1(r)
. (4.7)

Hence, for r > 2h(1/x0),

C−12−1/α 1

h−1(r)
≤ ψ−1(r)≤ C(24)1/α

1

h−1(r)
, (4.8)

proving (4.6). The weak upper scaling property of ψ−1 is a consequence of (4.7) and
(4.8).

Proposition 4.3. Suppose that −φ′′ ∈WLSC(α−2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and
α > 0. Then for all x > x0,

ψ∗(x)≈ ϕ∗(x), (4.9)

and for all r > ϕ(x0),

ψ−1(r)≈ ϕ−1(r). (4.10)

Furthermore, there is C ≥ 1 such that for all λ≥ 1 and r > ϕ(x0),

ϕ−1(λr)≤ Cλ1/αϕ−1(r).

Proof. We start by showing that there is C ≥ 1 such that for all x > x0,

C−1ψ∗(x)≤ ϕ∗(x)≤ Cψ∗(x). (4.11)
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The first inequality in (4.11) immediately follows from (4.2). If x0 = 0, then the second

inequality is also the consequence of (4.2). In the case x0 > 0, we observe that for x > x0,

we have

ϕ∗(x) = max
{

sup
0<y≤x0

ϕ(y), sup
x0≤y≤x

ϕ(y)
}

� max
{
ϕ∗(x0),ψ

∗(x)
}

≤
(
1+

ϕ∗(x0)

ψ∗(x0)

)
ψ∗(x),

proving (4.11).

Now, using (4.11), we easily get

ψ−1(C−1r)≤ ϕ−1(r)≤ ψ−1(Cr)

for all r > Cψ∗(x0). Hence, by Proposition 4.2,

ϕ−1(r)≈ ψ−1(r)

for r > Cmax
{
ψ∗(x0),2h(1/x0)

}
. Finally, since both ψ−1 and ϕ−1 are positive and

continuous, at the possible expense of worsening the constant, we can extend the area of
comparability to conclude (4.10). Now, the scaling property of ϕ−1 follows by (4.10) and

Proposition 4.2.

Remark 4.4. Note that, alternatively, one can define the (left-sided) generalised inverse

ϕ−1(x) = inf{r > 0: ϕ∗(r) = x},

where

ϕ∗(r) = inf
r≤x

ϕ(x).

In such a case we have

ϕ∗
(
ϕ−1(s)

)
= s, and ϕ−1

(
ϕ∗(s)

)
≤ s.

Clearly, for all x > 0,

ϕ∗(x)≤ ϕ(x)≤ ϕ∗(x).

Let u > x0 and set

r0 = inf{r > 0: ϕ∗(r) = u}.

By Proposition 4.3, ϕ∗ ∈WLSC(α,c,x0) for some c∈ (0,1] and x0 ≥ 0. Thus, for λ> c−1/α,
we get ϕ∗(λr0)> ϕ∗(r0). It follows that for all u > x0,

sup{r > 0: ϕ∗(r) = u} ≤ λ inf{r > 0: ϕ∗(r) = u}
≤ λ inf{r > 0: ϕ∗(r) = u}.

Thus, for all r > x0,

ϕ−1
(
ϕ∗(r)

)
� r.
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Corollary 4.5. Suppose that −φ′′ ∈ WLSC(α− 2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and

α > 0. Then there is C > 0 such that for all x > x0,(
φ(x)−xφ′(x)

)
≤ Cϕ(x). (4.12)

Proof. Suppose x0 > 0. We have(
φ(x)−xφ′(x)

)
−
(
φ(x0)−x0φ

′(x+
0 )
)
=

∫ x

x0

ϕ(u)
du

u
=

∫ 1

x0/x

ϕ(xu)
du

u
,

where

φ′(x+
0 ) = lim

x→x+
0

φ′(x).

By the weak lower scaling property of ϕ, for any x0/x < u≤ 1, we have

ϕ(x)≥ cu−αϕ(xu);

thus, (
φ(x)−xφ′(x)

)
−
(
φ(x0)−x0φ

′(x+
0 )
)

� ϕ(x)

∫ 1

0

uα−1 du.

We denote c1 = φ(x0)−x0φ
′(x+

0 ). Using the scaling property of ϕ, we conclude that

c1 =
c1

ϕ(x0)
·ϕ(x0)≤

c1
ϕ(x0)

c−1

(
x0

x

)α

ϕ(x)≤ c1c
−1

ϕ(x0)
·ϕ(x),

provided that x > x0, which proves (4.12) if x0 > 0. For x0 = 0 it is enough to observe
that (2.9) implies that limx→0+ xφ′(x) = 0, and the claim follows.

Proposition 4.6. Suppose that −φ′′ ∈WLSC(α−2,c,x0)∩WUSC(β−2,C,x0) for some

c ∈ (0,1], C ≥ 1, x0 ≥ 0 and 0< α≤ β < 1. Assume also that b= 0. Then for all x > x0,

ϕ∗(x)≈ φ(x), (4.13)

and for all r > ϕ(x0),

ϕ−1(r)≈ φ−1(r). (4.14)

Furthermore, there is c′ ∈ (0,1] such that for all λ≥ 1 and r > ϕ(x0),

ϕ−1(λr)≥ c′λ1/βϕ−1(r). (4.15)

Proof. Let us observe that, by (2.9), Proposition 2.3 and Proposition 2.4, there is c1 ∈
(0,1] such that for all x > x0,

2φ(x)≥ ϕ(x)≥ c1φ(x). (4.16)

Now the proof of the lemma is similar to the proof of Proposition 4.3 and is therefore

omitted.
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4.1. Estimates from above

In this section we show the upper estimates on p(t, · ). Before embarking on the proof, let

us introduce some notation. Given a set B ⊂ R, we define

δ(B) = inf
{
|x| : x ∈B

}
and

diam(B) = sup
{
|x−y| : x,y ∈B

}
.

Let

br = b+

∫
(0,r)

sν(ds), r > 0.

In view of (2.2), the above definition of br is in line with the usual one (see, e.g., [32,

formula (4)] or [23, formula (1.2)]). Let us define ζ : [0,∞)→ [0,∞],

ζ(s) =

⎧⎪⎨⎪⎩
∞ if s= 0,

ϕ∗(1/s) if 0< s≤ x−1
0 ,

Aφ(1/s) if x−1
0 < s,

where A= ϕ∗(x0)/φ(x0) ∈ (0,2].

Theorem 4.7. Let T be a subordinator with the Lévy–Khintchine exponent ψ and the

Laplace exponent φ. Suppose that −φ′′ ∈WLSC(α−2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and

α > 0. Then the probability distribution of Tt has a density p(t, · ). Moreover, there is

C > 0 such that for all t ∈ (0,1/ϕ(x0)) and x ∈ R,

p
(
t,x+ tb1/ψ−1(1/t)

)
≤ Cϕ−1(1/t) ·min

{
1,tζ(|x|)

}
. (4.17)

In particular, for all t ∈ (0,1/ϕ(x0)) and x≥ 2etφ′(ψ−1(1/t)),

p(t,x+ tb)≤ Cϕ−1(1/t) ·min
{
1,tζ(x)

}
. (4.18)

Proof. Without loss of generality, we can assume b= 0. Indeed, otherwise it is enough to

consider a shifted process T̃t = Tt− tb. Next, let us observe that for any Borel set B ⊂R,
we have

ν(B) �
∫
(δ(B),∞)

(
1− e−s/δ(B)

)
ν(ds)

≤ φ
(
1/δ(B)

)
. (4.19)

Furthermore, for δ(B)< 1/x0, by Proposition 4.1 and Remark 3.2,

ν(B)≤ h(δ(B))

� ϕ∗(1/δ(B)).

Thus, ν(B)� ζ(δ(B)). We claim that ζ has doubling property on (0,∞). Indeed, since −φ′′

is nonincreasing function with the weak lower scaling property, it has doubling property
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on (x0,∞); thus, for 0< s < x−1
0 ,

ζ
(
1
2s
)
≈ 4s−2(−φ′′(2/s)) � s−2(−φ′′(1/s)) � ζ(s).

This completes the argument in the case x0 = 0. If x0 > 0, then by (2.10), for s > 2x−1
0

we have

ζ
(
1
2s
)
=Aφ(2/s)≤ 2Aφ(1/s)≤ 2ζ(s).

Lastly, the function [
1
2x0,x0] � x �→ ϕ∗(2x)

φ(x)

is continuous and thus it is bounded.

Next, for s > 0 and x ∈ R,

s∨|x|− 1
2 |x| ≥

1
2s;

thus, by motonicity and the doubling property of ζ, we get

ζ
(
s∨|x|− 1

2 |x|
)

� ζ(s).

Hence, by (2.4) and (4.2), for r > 0,∫
(r,∞)

ζ
(
s∨x− 1

2x
)
ν(dx) � ζ(s)h(r)

� ζ(s)ψ∗(1/r). (4.20)

Since ψ∗ has the weak lower scaling property and satisfies (4.3), by [23, Proposition 3.4]

together with Proposition 4.2, there are C > 0 and t1 ∈ (0,∞] such that for all t ∈ (0,t1),∫
R

e−t	ψ(ξ)|ξ|dξ ≤ C
(
ψ−1(1/t)

)2
. (4.21)

If x0 = 0, then t1 = ∞. If t1 < 1/ϕ(x0), we can expand the above estimate for t1 ≤ t <

1/ϕ(x0) using positivity of the right-hand side and monotonicity of the left-hand side.
In view of (4.19), (4.20) and (4.21), by [32, Theorem 1] with γ = 0, there are C1,C2,C3 >

0 such that for all t ∈ (0,1/ϕ(x0)) and x ∈ R,

p
(
t,x+ tb1/ψ−1(1/t)

)
≤ C1ψ

−1(1/t) ·min

{
1,tζ
(
1
4 |x|
)
+exp

{
−C2|x|ψ−1(1/t) log

(
1+C3|x|ψ−1(1/t)

)}}
.

Let us consider x > 0 and t ∈ (0,1/ϕ(x0)) such that tζ(x)≤ 1. We claim that

exp
{
−C2xψ

−1(1/t) log
(
1+C3xψ

−1(1/t)
)}

� tζ(x). (4.22)

First suppose that x > x−1
0 . Let us observe that the function

[0,∞) � u �→ uexp
{
−C2u log

(
1+C3u

)}
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is bounded. Therefore,

exp
{
−C2xψ

−1(1/t) log
(
1+C3xψ

−1(1/t)
)}

� 1

xψ−1(1/t)
. (4.23)

Since xφ−1(1/t)≥ 1, by (2.10), we have

tφ(1/x) =
φ(1/x)

φ
(
xφ−1(1/t) ·1/x

) ≥ 1

xφ−1(1/t)
. (4.24)

Next, in light of (2.9), for all y > 0,

1
2ϕ

∗(y)≤ φ(y);

hence, by the monotonicity of φ−1,

φ−1(1/t) = φ−1
(
1
2ϕ

∗(ϕ−1(2/t))
)

≤ φ−1
(
φ(ϕ−1(2/t))

)
= ϕ−1(2/t)

≤ Cψ−1(1/t), (4.25)

where in the last step we have used Proposition 4.3. Putting (4.23), (4.24) and (4.25)

together, we obtain (4.22) as claimed.

Now let 0< x≤ x−1
0 . Observe that the function

[0,∞) � u �→ u2 exp
{
−C2u log

(
1+C3u

)}
is also bounded. Hence,

exp
{
−C2xψ

−1(1/t) log
(
1+C3xψ

−1(1/t)
)}

� 1(
xψ−1(1/t)

)2 . (4.26)

Since xϕ−1(1/t)≥ 1, using (4.5) we get

tϕ∗(1/x) =
ϕ∗(1/x)

ϕ∗
(
xϕ−1(1/t) ·1/x

) ≥ 1(
xϕ−1(1/t)

)2 . (4.27)

Hence, putting together (4.26) and (4.27) and invoking Proposition 4.2, we again obtain

(4.22).

Finally, using doubling property of ζ we get

ζ
(
1
4x
)

� ζ(x);

thus, another application of Proposition 4.3 leads to (4.17).
For the proof of (4.18), we observe that

φ′(λ) =

∫
(0,∞)

xe−λx ν(dx)≥ e−1

∫
(0,1/λ)

xν(dx).
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Thus,

b1/ψ−1(1/t) =

∫
(0,1/ψ−1(1/t))

xν(dx)≤ eφ′(ψ−1(1/t)).

Hence, by monotonicity and the doubling property of ζ, for x> 2etφ′(ψ−1(1/t)), we obtain

ζ
(
x− tb1/ψ−1(1/t)

)
≤ ζ

(
x

2

)
� ζ(x),

and the theorem follows.

Now we define η : [0,∞)→ [0,∞],

η(s) = s−1ζ(s) =

⎧⎪⎨⎪⎩
∞ if s= 0,

s−1ϕ∗(1/s) if 0< s≤ x−1
0 ,

As−1φ(1/s) if x−1
0 < s,

where A= ϕ∗(x0)/φ(x0) ∈ (0,2]. Notice that, by (2.9), if 2tζ(|x|)≤ 1, then tϕ∗(1/|x|)≤ 1,
and so

η(|x|) = |x|−1
ζ(|x|)

≤ ϕ−1(1/t)ζ(|x|).

Therefore,

min
{
ϕ−1(1/t),tη(|x|)

}
≤ 4ϕ−1(1/t) ·min

{
1,tζ(|x|)

}
.

Theorem 4.8. Let T be a subordinator with the Lévy–Khintchine exponent ψ and the

Laplace exponent φ. Suppose that −φ′′ ∈WLSC(α−2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and

α > 0. We also assume that the Lévy measure ν has an almost monotone density ν(x).
Then the probability distribution of Tt has a density p(t, · ). Moreover, there is C > 0 such

that for all t ∈ (0,1/ϕ(x0)) and x ∈ R,

p
(
t,x+ tb1/ψ−1(1/t)

)
≤ Cmin

{
ϕ−1(1/t),tη(|x|)

}
. (4.28)

In particular, for all t ∈ (0,1/ϕ(x0)) and x≥ 2etφ′(ψ−1(1/t)),

p(t,x+ tb)≤ Cmin
{
ϕ−1(1/t),tη(x)

}
. (4.29)

Proof. Without loss of generality, we can assume b= 0. Let us observe that for any λ> 0,

φ(λ)≥
∫ 1/λ

0

(
1− e−λs

)
ν(s)ds � ν(1/λ)λ−1

and

−φ′′(λ)≥
∫ 1/λ

0

s2e−λsν(s)ds � ν(1/λ)λ−3.
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Hence,

ν(x) � η(x) for all x > 0. (4.30)

Since η is nonincreasing, for any Borel subset B ⊂ R,

ν(B) �
∫
B∩(0,∞)

η(x)dx � η
(
δ(B)

)
diam(B). (4.31)

Arguing as in the proof of Theorem 4.7, we conclude that η has a doubling property on

(0,∞). Using that and monotonicity of η, for s > 0 and x ∈ R,

η
(
s∨x− 1

2x
)
≤ η
(
1
2s
)

� η(s).

Therefore, by (4.2), for r > 0,∫ ∞

r

η
(
s∨x− 1

2x
)
ν(x)dx � η(s)ψ∗(1/r). (4.32)

Since ψ∗ has the weak lower scaling property and satisfies (4.3), by [23, Theorem 3.1] and
Proposition 4.2, there are C > 0 and t1 ∈ (0,∞] such that for all t ∈ (0,t1),∫

R

e−t	ψ(ξ) dξ ≤ Cψ−1(1/t). (4.33)

If x0 = 0, then t1 =∞. If t1 < 48/ϕ(x0), we can expand the above estimate for t1 ≤ t <

48/ϕ(x0) using positivity of the right-hand side and monotonicity of the left-hand side.
In view of (4.31), (4.32) and (4.33), by [22, Theorem 2.1], there is C > 0 such that for

all t ∈ (0,1/ϕ(x0)) and x ∈ R,

p
(
t,x+ tb1/ψ−1(1/t)

)
≤ Cψ−1(1/t) ·min

{
1,t
(
ψ−1(1/t)

)−1
η(|x|)+

(
1+ |x|ψ−1(1/t)

)−3
}
.

We claim that

ψ−1(1/t)(
1+ |x|ψ−1(1/t)

)3 � tη(|x|) (4.34)

whenever tη(|x|)≤ A
2 ϕ

−1(1/t).

First, let us show that for any ε ∈ (0,1], the condition tη(|x|)≤ Aε
2 ϕ−1(1/t) implies that

tϕ∗
(

1

|x|

)
≤ ε|x|ϕ−1

(
1

t

)
. (4.35)

Indeed, by (2.9), we have |x|η(|x|)≥ A
2 ϕ

∗(1/|x|); thus,

ε|x|ϕ−1

(
1

t

)
≥ 2

A
t|x|η(|x|)≥ tϕ∗

(
1

|x|

)
.

Notice also that ε1/3|x|ϕ−1(1/t)≥ 1 since otherwise, by (4.5),

1< tϕ∗
(

1

ε1/3|x|

)
<

1

ε2/3
tϕ∗
(

1

|x|

)
,
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which entails that ε2/3 < tϕ∗(1/|x|); that is, ε1/3|x|ϕ−1(1/t) < ε−2/3tϕ∗(1/|x|), contrary
to (4.35).

To show (4.34), let us suppose that tη(|x|)≤ A
2 ϕ

−1(1/t); thus, |x|ϕ−1(1/t)≥ 1. By (4.5),

we have

tϕ∗(1/|x|) = ϕ∗(1/|x|)
ϕ∗
(
|x|ϕ−1(1/t) ·1/|x|

) ≥ 1

(|x|ϕ−1(1/t))2
,

which, by Proposition 4.3, gives

t|x|η(|x|)≥ A
2 tϕ

∗(1/|x|) � |x|ψ−1(1/t)

(1+ |x|ψ−1(1/t))3
,

proving (4.34), and (4.28) follows. The inequality (4.29) holds by the same argument as
in the proof of Theorem 4.7.

Remark 4.9. In statements of Theorems 4.7 and 4.8, we can replace b1/ψ−1(1/t) by

b1/ϕ−1(1/t). Indeed, let us observe that if 0< r1 ≤ r2 < 1/x0, then∣∣br1 − br2
∣∣≤ ∫

(r1,r2]

sν(ds)

≤ r−1
1 r22h(r2)

� r−1
1 r22ψ

∗(1/r2), (4.36)

where in the last estimate we have used (4.2). Hence, by (4.9), we get∣∣br1 − br2
∣∣� r−1

1 r22ϕ
∗(1/r2). (4.37)

Therefore, by (4.36), (4.37) and Proposition 4.3, there is C ≥ 1 such that∣∣∣b1/ψ−1(1/t)− b1/ϕ−1(1/t)

∣∣∣≤ C
1

tϕ−1(1/t)
, (4.38)

provided that 0< t < 1/ϕ(x0). Now, let us suppose that 8C2tζ
(
|x|
)
≤ 1. Then, by (2.10)

and (4.5),

1

t
≥ 8C2ζ

(
|x|
)
≥ 4C2ϕ∗

(
1

|x|

)
≥ ϕ∗

(
2C

|x|

)
;

that is,

|x| ≥ 2C

ϕ−1(1/t)
. (4.39)

Hence, by (4.38),∣∣∣x+ t
(
b1/ψ−1(1/t)− b1/ϕ−1(1/t)

)∣∣∣≥ |x|− C

ϕ−1(1/t)
≥ |x|

2
,

which, together with monotonicity and the doubling property of ζ, gives

ζ
(∣∣x+ t

(
b1/ψ−1(1/t)− b1/ϕ−1(1/t)

)∣∣)� ζ
(
|x|
)
.
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Similarly, if tη(|x|)≤ Aε
2 ϕ−1(1/t), then

|x|ϕ−1(1/t)≥ ε−1/3;

thus, by taking ε = (2C)−3, we obtain (4.39). Hence, by monotonicity and the doubling

property of η, we again obtain

η

(∣∣∣x+ t
(
b1/ψ−1(1/t)− b1/ϕ−1(1/t)

)∣∣∣)� η(|x|).

4.2. Estimates from below

In this section we develop estimates from below on the density p(t, · ). The main result
is Theorem 4.11. Its proof is inspired by the ideas from [42], see also [23]. Thanks to

Theorem 3.3, we can generalise results obtained in [42] to the case when −φ′′ satisfies the
weak lower scaling of index α−2 for α > 0 together with a certain additional condition.
We use the following variant of the celebrated Pruitt’s result [45, Section 3] adapted to

subordinators.

Proposition 4.10. Let T be a subordinator with the Lévy–Khintchine exponent

ψ(ξ) =−iξb−
∫
(0,∞)

(
eiξx−1

)
ν(dx).

Then there is an absolute constant c > 0 such that for all λ > 0 and t > 0,

P
(

sup
0≤s≤t

∣∣Ts−sbλ
∣∣≥ λ

)
≤ cth(λ).

Proof. We are going to apply the estimates [45, (3.2)]. To do so, we need to express the

Lévy–Khintchine exponent of Ts−sbλ in the form used in [45, Section 3], namely,

ψ̃(ξ) = ψ(ξ)+ iξbλ

=−iξ

(
b− bλ+

∫
(0,∞)

y

1+ |y|2 ν(dy)
)
−
∫
(0,∞)

(
eiξy −1− iyξ

1+ |y|2
)
ν(dy).

Since∫
(0,λ]

y|y|2
1+ |y|2 ν(dy)−

∫
(λ,∞)

y

1+ |y|2 ν(dy) =
∫
(0,λ]

y ν(dy)−
∫
(0,∞)

y

1+ |y|2 ν(dy),

we have

M(λ) =
1

λ

∣∣∣∣b− bλ+

∫
(0,∞)

y

1+ |y|2 ν(dy)+
∫
(0,λ]

y|y|2
1+ |y|2 ν(dy)−

∫
(λ,∞)

y

1+ |y|2 ν(dy)
∣∣∣∣

=
1

λ

∣∣∣∣b− bλ+

∫
(0,λ]

y ν(dy)

∣∣∣∣= 0.

Hence, by [45, (3.2)],

P
(

sup
0≤s≤t

∣∣Ts−sbλ
∣∣≥ λ

)
≤ csh(λ),

as desired.
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Theorem 4.11. Let T be a subordinator with the Laplace exponent φ. Suppose that
−φ′′ ∈WLSC(α− 2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and α > 0, and assume that one of

the following conditions holds true:

(i) −φ′′ ∈WUSC(β−2,C,x0) for some C ≥ 1 and α≤ β < 1, or

(ii) −φ′′ is a function regularly varying at infinity with index −1. If x0 = 0 we also
assume that −φ′′ is regularly varying at zero with index −1.

Then there is M0 > 1 such that for each M ≥ M0 there exists ρ0 > 0, so that for all

0< ρ1 < ρ0, 0< ρ2 there is C > 0 such that for all t ∈ (0,1/ϕ(x0)) and all x > 0 satisfying

− ρ1
ϕ−1(1/t)

≤ x− tφ′(ϕ−1(M/t)
)
≤ ρ2

ϕ−1(1/t)
,

we have

p(t,x)≥ Cϕ−1(1/t). (4.40)

Remark 4.12. From the proof of Theorem 4.11 it stems that if x0 = 0, one can obtain

the same statement under the condition that −φ′′ is (−1)-regular at infinity and satisfies

upper scaling at 0 with α≤ β < 1. Alternatively, one can assume that −φ′′ satisfies upper
scaling at infinity with α ≤ β < 1 and varies regularly at zero with index −1. The same
remark applies to Proposition 4.14.

Proof. First let us observe that it is enough to prove that (4.40) holds true for all

t ∈ (0,1/ϕ(x0)) and all x > 0 satisfying

− ρ1
ϕ−1(M/t)

≤ x− tφ′(ϕ−1(M/t)
)
≤ ρ2

ϕ−1(M/t)
.

Indeed, since ϕ−1 is nondecreasing and has upper scaling property (see Proposition 4.3), it

has a doubling property. Hence, the lemma will follow immediately with possibly modified
ρ0.

Without loss of generality, we can assume that b = 0. Let λ > 0, whose value will be

specified later. We decompose the Lévy measure ν(dx) as follows: Let ν1(dx) be the

restriction of 1
2ν(dx) to the interval (0,λ] and

ν2(dx) = ν(dx)−ν1(dx).

We set

φ1(u) =

∫
(0,∞)

(
1− e−us

)
ν1(ds), φ2(u) =

∫
(0,∞)

(
1− e−us

)
ν2(ds).

Let us denote by T(j) the subordinator having the Laplace exponent φj , for j ∈ {1,2}.
Let ψj(ξ) = φj(−iξ). Notice that 1

2ν ≤ ν2 ≤ ν; thus,

1
2φ≤ φ2 ≤ φ,

and for every n ∈ N,

1
2 (−1)n+1φ(n) ≤ (−1)n+1φ

(n)
2 ≤ (−1)n+1φ(n). (4.41)
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Therefore, for all u > 0,

1
2ϕ(u)≤ ϕ2(u)≤ ϕ(u). (4.42)

Next, by Theorem 3.3, the random variables T
(2)
t and Tt are absolutely continuous. Let

us denote by p(2)(t, · ) and p(t, · ) the densities of T
(2)
t and Tt, respectively.

Let M ≥ 2M0+1, where M0 is determined in Corollary 3.5 for the process T(2). For
0< t < 1/ϕ(x0), we set

xt = tφ′
2

(
ϕ−1(M/t)

)
.

Since ϕ−1(M/t)> x0, we have

xt

t
= φ′

2

(
ϕ−1(M/t)

)
≤ φ′

2(x0).

Let

w2 = (φ′
2)

−1(xt/t) = ϕ−1(M/t).

Then, by (4.42) we get

ϕ2(w2)≥
1

2
ϕ
(
ϕ−1(M/t)

)
=

M

2t
≥ M0

t
.

Moreover, by Corollary 4.5 together with (4.42) we get

t
(
φ2(w2)−w2φ

′
2(w2)

)
� tϕ2

(
w2

)
� 1.

Hence, by Corollary 3.5,

p(2)(t,xt) � 1√
t(−φ′′

2)(w2)
. (4.43)

Notice that, by (4.41) and Remark 3.4, the implied constant in (4.43) is independent of
t and λ. Since

(−φ′′
2)(w2)≤ (−φ′′)

(
ϕ−1(M/t)

)
=

M

t
(
ϕ−1(M/t)

)2 ,
by (4.43) and monotonicity of ϕ−1, we get

p(2)(t,xt)≥ C1ϕ
−1(1/t), (4.44)

for some constant C1 > 0.

Next, by the Fourier inversion formula

sup
x∈R

∣∣∂xp(2)(t,x)∣∣� ∫
R

e−t	ψ2(ξ)|ξ|dξ

�
∫
R

e−
t
2	ψ(ξ)|ξ|dξ;
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thus, by [23, Proposition 3.4] and Propositions 4.2 and 4.3 we see that there is C2 > 0

such that for all t ∈ (0,1/ϕ(x0)),

sup
x∈R

∣∣∂xp(2)(t,x)∣∣≤ C2

(
ϕ−1(1/t)

)2
.

By the mean value theorem, for y ∈ R, we get∣∣p(2)(t,y+xt)−p(2)(t,xt)
∣∣≤ C2|y|

(
ϕ−1(1/t)

)2
.

Hence, for y ∈ R satisfying

|y| ≤ C1

2C2ϕ−1(1/t)
,

by (4.44), we get

p(2)(t,y+xt)≥ p(2)(t,xt)−C2|y|
(
ϕ−1(1/t)

)2
≥ C1

2
ϕ−1(1/t).

Therefore,

p(t,x) =

∫
R

p(2)(t,x−y)P
(
T

(1)
t ∈ dy

)
≥ C1

2
ϕ−1(1/t) ·P

(∣∣x−xt−T
(1)
t

∣∣≤ C0

ϕ−1(1/t)

)
≥ C1

2
ϕ−1(1/t) ·P

(∣∣x−xt−T
(1)
t

∣∣≤ C0

ϕ−1(M/t)

)
=

C1

2
ϕ−1(1/t) ·P

(∣∣∣x− x̃t−
(
1
2 tbλ− (x̃t−xt)

)
−
(
T

(1)
t − 1

2 tbλ
)∣∣∣≤ C0

ϕ−1(M/t)

)
,

where we have set C0 = C1(2C2)
−1 and

x̃t = tφ′(ϕ−1(M/t)
)
.

Let ρ0 =
1
2C0 and

λ=
1

ϕ−1(M/t)
. (4.45)

We have

1

2
tbλ− (x̃t−xt) =

1

2
tbλ− tφ′

1(1/λ)

=
t

2

∫
(0,λ]

s
(
1− e−s/λ

)
ν(ds).

Thus, 1
2 tbλ− (x̃t−xt) is nonnegative, and in view of (4.2) and (4.45),

1
2 tbλ− (x̃t−xt)≤ C3tλϕ(1/λ)

=
C3M

ϕ−1(M/t)
, (4.46)
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for some constant C3 > 0. Next, setting

ρ(t) = λ−1
(

1
2 tbλ− (x̃t−xt)

)
,

we get

inf
t∈(0,1/ϕ(x0))

{
P

(∣∣∣x− x̃t−λρ(t)−
(
T

(1)
t − 1

2 tbλ
)∣∣∣≤ C0λ

)
: x≥ 0,−ρ1λ≤ x− x̃t ≤ ρ2λ

}
≥ inf

t∈(0,1/ϕ(x0))

{
P
(∣∣∣y−λ−1

(
T

(1)
t − 1

2 tbλ
)∣∣∣≤ C0

)
: −ρ1−ρ(t)≤ y ≤ ρ2

}
.

(4.47)

Hence, the problem is reduced to showing that the infimum above is positive. Let us
consider a collection {Yt : t ∈ (0,1/ϕ(x0))} of infinitely divisible nonnegative random

variables Yt = λ−1
(
T

(1)
t − 1

2 tbλ
)
. The Lévy measure corresponding to Yt is

μt(B) = tν1
(
λB
)

(4.48)

for any Borel subset B ⊂ R. Since for each R> 1,

b
(1)
Rλ =

∫
(0,Rλ]

y ν1(dy)

=
1

2

∫
(0,λ]

y ν(dy) =
1

2
bλ,

by Proposition 4.10,

P
(
|Yt| ≥R

)
= P
(∣∣∣T (1)

t − 1
2 tbλ

∣∣∣≥Rλ
)

� t

∫
(0,∞)

min
{
1,R−2λ−2s2

}
ν1(ds);

thus,

P
(
|Yt| ≥R

)
� tλ−2R−2

∫
(0,λ]

s2 ν(ds)

� tR−2h(λ)

� tR−2ϕ(1/λ),

where in the last estimate we have used (4.2). Therefore, recalling (4.45), we conclude that
the collection is tight. Next, let

(
(Ytn,yn) : n ∈ N

)
be a sequence realising the infimum in

(4.47). By the Prokhorov theorem, we can assume that (Ytn : n ∈N) is weakly convergent

to the random variable Y0. We note that Ytn has the probability distribution supported
in
[
− 1

2 tnλ
−1
n bλn

,∞
)
where λn is defined as λ corresponding to tn.

Suppose that (tn : n ∈ N) contains a subsequence convergent to t0 > 0. Then Y0 = Yt0

and the support of its probability distribution equals
[
− 1

2 t0λ
−1
0 bλ0

,∞
)
. Since ρ(t0) ≤

1
2 t0λ

−1
0 bλ0

, we easily conclude that the infimum in (4.47) is positive.

Hence, it remains to investigate the case when (tn : n∈N) has no positive accumulation

points. If zero is the only accumulation point, then (λn : n ∈ N) has a subsequence
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convergent to zero. Otherwise, (tn) diverges to infinity; thus, x0 = 0 and (λn) contains a

subsequence diverging to infinity. In view of (4.46), ρ(t) is uniformly bounded in t. Thus,

after taking a subsequence, we may and do assume that there exists a limit

ρ̃= lim
n→∞

ρ(tn).

By compactness we can also assume that (yn : n ∈ N) converges to y0 ∈ [−ρ1 − ρ̃, ρ2].

Consequently, to prove that the infimum in (4.47) is positive, it is sufficient to
show that

P
(
|y0−Y0| ≤ 1

2C0

)
> 0. (4.49)

Observe that (4.49) is trivially satisfied if the support of the probability distribution of
Y0 is the whole real line. Therefore, we can assume that Y0 is purely non-Gaussian. In

view of [47, Theorem 8.7], it is also infinitely divisible.

Given w : R→ R a continuous function satisfying∣∣w(x)−1
∣∣≤ C ′|x|, and

∣∣w(x)∣∣≤ C ′|x|−1
, (4.50)

we write the Lévy–Khintchine exponent of Ytn in the form

ψn(ξ) =−iξγn−
∫
(0,∞)

(
eiξs−1− iξsw(s)

)
μtn(ds),

where

γn =

∫
(0,∞)

sw(s)μtn(ds)− 1
2λ

−1
n tnbλn

.

Since (Ytn : n ∈ N) converges weakly to Y0, there are γ0 ∈ R and σ-finite measure μ0 on

(0,∞) satisfying ∫
(0,∞)

min
{
1,s2
}
μ0(ds)<∞,

such that the Lévy–Khintchine exponent of Y0 is

ψ0(ξ) =−iξγ0−
∫
(0,∞)

(
eiξs−1− iξsw(s)

)
μ0(ds),

where

γ0 = lim
n→∞

γn. (4.51)

Moreover, for any bounded continuous function f : R→ R vanishing in a neighbourhood

of zero, we have

lim
n→∞

∫
(0,∞)

f(s)μtn(ds) =

∫
(0,∞)

f(s)μ0(ds). (4.52)

Next, let us fix w satisfying (4.50) which equals 1 on [0,1]. In view of (4.48) and the

definition of ν1, the support of μtn is contained in [0,1]. Hence, γn = 0 for every n ∈ N

and, consequently, γ0 = 0. We also conclude that suppμ0 ⊂ [0,1].
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At this stage we consider the cases (i) and (ii) separately. In (ii) we need to distinguish

two possibilities: if (tn) tends toward zero, then (λn) also approaches zero, and we impose

that −φ′′ is a function regularly varying at infinity with index −1; otherwise, (tn) tends
toward infinity as well as (λn), and thus x0 = 0, and we additionally assume that −φ′′ is a
function regularly varying at zero with index −1. For the sake of clarity of presentation, we

restrict attention to the first possibility only. In the second one the reasoning is analogous.
We show that the support of the probability distribution of Y0 is the whole real line. By

[47, Theorem 24.10], the latter can be deduced from∫
(0,∞)

min{1,s}μ0(ds) =∞. (4.53)

Since suppμ0 ⊂ [0,1], for each ε ∈ (0,1) we can write∫
(0,∞)

min{1,s}μ0(ds)≥
∫
(ε/2,1]

sμ0(ds);

thus, to conclude (4.53), it is enough to show that∫
(ε/2,1]

sμ0(ds) � log ε−1. (4.54)

For the proof, for any ε ∈ (0,1) we define the following bounded continuous function:

fε(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if s < ε/2,

2s− ε, if ε/2≤ s < ε,

s if ε≤ s < 1,

1 if s≥ 1.

(4.55)

We have, in view of (4.52),∫
(ε/2,1]

sμ0(ds)≥
∫
(0,1]

fε(s)μ0(ds) = lim
n→∞

∫
(0,1]

fε(s)μtn(ds)≥ liminf
n→∞

∫
(ε,1]

sμtn(ds).

(4.56)

Let us estimate the last integral. We write∫
(ε,1]

sμt(ds) = tλ−1

∫
(λε,λ]

sν1(ds)

= 1
2 tλ

−1

∫
(λε,λ]

sν(ds).

By the Fubini–Tonelli theorem, we get∫
(λε,λ]

sν(ds) =

∫ λ

λε

u−2

∫
(0,u]

s2 ν(ds)du+λK(λ)−λεK(λε).

Thus,

2

∫
(ε,1]

sμt(ds) = tλ−1

∫ λ

λε

K(u)du+ tK(λ)− tεK(λε). (4.57)
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Setting z = 1/λ, by (4.2) and (4.45), we obtain

tK(λ)≈ tϕ(z)≈ 1.

Moreover, since ϕ is a 1-regularly varying function at infinity, we have

tεK(λε)≈ tεϕ(z/ε) =Mε
ϕ(z/ε)

ϕ(z)
→M,

as z tends to infinity. Therefore, it remains to estimate the integral in (4.57). Using (4.2)

we get

tλ−1

∫ λ

λε

K(u)du≈ z

ϕ(z)

∫ z−1

εz−1

ϕ
(
u−1
)
du

=
z

ϕ(z)

∫ ε−1z

z

u−2ϕ(u)du

=
φ′(z)−φ′(ε−1z

)
z
(
−φ′′(z)

) .

Since −φ′′(s) = s−1�(s) for a certain function � slowly varying at infinity, by [3, Theorem

1.5.6],

φ′(z)−φ′(ε−1z
)

z
(
−φ′′(z)

) =

∫ ε−1

1

�(zt)

�(z)

dt

t
→ log ε−1,

as z tends to infinity. Hence,

liminf
n→∞

∫
(ε,1]

sμtn(ds) � log ε−1,

which by (4.56) implies (4.54).

Next, let us consider the case (i); that is, when −φ′′ ∈WUSC(β−2,C,x0) with C ≥ 1

and α≤ β < 1. We claim that for all ε ∈ (0,1),∫
(0,ε)

s2 μ0(ds)> 0. (4.58)

To see this, it is enough to show that there is C > 0 such that for all ε ∈ (0,1] and

t ∈ (0,1/ϕ(x0)), ∫
(0,ε)

s2 μt(ds)≥ Cε2−α. (4.59)

For the proof, we select a continuous function on R such that

1(−1,1) ≤ η ≤ 1(−2,2),

and for each τ > 0 set

ητ (x) = η(τ−1x).
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Since for 0< 2τ < ε,∫
(0,∞)

s2
(
ηε(s)−ητ (s)

)
μt(ds)+

∫
(0,2τ)

s2ητ (s)μt(ds)≥
∫
(0,ε)

s2 μt(ds),

by (4.59) and (4.52),∫
(0,∞)

s2
(
ηε(s)−ητ (s)

)
μ0(ds)+ limsup

n→∞

∫
(0,∞)

s2ητ (s)μtn(ds)≥ Cε2−α.

Since Ytn and Y0 are purely non-Gaussian, by [47, Theorem 8.7(2)],

lim
τ→0+

limsup
n→∞

∫
(−τ,τ)

s2 μtn(ds) = 0;

thus, ∫
(0,ε)

s2 μ0(ds)≥ Cε2−α,

which entails (4.58).

We now turn to showing (4.59). We have∫
(0,ε)

s2 μt(ds) = tλ−2

∫
(0,λε)

s2 ν1(ds)

= 1
2 tλ

−2

∫
(0,λε)

s2 ν(ds)

= 1
2 tε

2K(λε);

thus, by (4.2) and the weak lower scaling property of ϕ,∫
(0,ε)

s2 μt(ds) � tε2ϕ
(
ε−1λ−1

)
� tε2−αϕ(1/λ),

which, together with the definition of λ, implies (4.59).

Since the support of the probability distribution of Y0 is not the whole real line, by [42,
Lemma 2.5], the inequality (4.58) implies that∫

(0,∞)

min{1,s}μ0(ds)<∞ (4.60)

and the support of Y0 equals [χ,∞) where

χ= γ0−
∫
(0,∞)

sw(s)μ0(ds) =−
∫
(0,1]

sμ0(ds). (4.61)
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To conclude (4.49), it is enough to show that χ≤−ρ̃. Since ρ(tn)≤ 1
2 tnλ

−1
n bλn

, the latter

can be deduced from

χ=− lim
n→∞

1

2
tnλ

−1
n bλn

=− lim
n→∞

∫
(0,1]

sμtn(ds),
(4.62)

where the last equality is a consequence of (4.48) since∫
(0,1]

sμt(ds) = tλ−1

∫
(0,λ]

sν1(ds)

= 1
2 tλ

−1

∫
(0,λ]

sν(ds). (4.63)

Therefore, the problem is reduced to showing (4.62). By the monotone convergence

theorem and (4.52), we have

χ=− lim
ε→0+

∫
(0,1]

fε(s)μ0(ds)

=− lim
ε→0+

lim
n→∞

∫
(0,1]

fε(s)μtn(ds)

(4.64)

and

lim
ε→0+

∫
(0,1]

fε(s)μtn(ds) =

∫
(0,1]

sμtn(ds), (4.65)

where fε is as in (4.55). Hence, we just need to justify the change in the order of limits.

In view of the Moore–Osgood theorem [19, Chapter VII], it is enough to show that the

limit in (4.65) is uniform with respect to n ∈ N.
We write∣∣∣∣∫

(0,1]

sμt(ds)−
∫
(0,1]

fε(s)μt(ds)

∣∣∣∣≤ ∫
(0,ε/2]

sμt(ds)+

∫
(ε/2,ε]

(ε−s)μt(ds)

≤
∫
(0,ε]

sμt(ds).

By (4.63) and the Fubini–Tonelli theorem, we have

2t−1λ

∫
(0,ε]

sμt(ds) =

∫
(0,λε]

sν(ds) =

∫ λε

0

u−2

∫
(0,u]

s2 ν(ds)du+λεK(λε)

≈
∫ λε

0

ϕ
(
u−1
)
du+λεϕ

(
λ−1ε−1

)
.

By almost monotonicity of ϕ,∫
(0,ε]

sμt(ds)≈ tλ−1

∫ λε

0

ϕ
(
u−1
)
du+ tεϕ

(
λ−1ε−1

)

https://doi.org/10.1017/S1474748021000360 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000360


Transition densities of subordinators of positive order 1157

≈ tλ−1

∫ λε

0

ϕ
(
u−1
)
du. (4.66)

Now, setting z = ϕ−1(M/t), by (4.45), we get

tλ−1

∫ λε

0

ϕ
(
u−1
)
du= tϕ−1(M/t)

∫ ε/ϕ−1(M/t)

0

ϕ
(
u−1
)
du

≈ z

ϕ(z)

∫ εz−1

0

ϕ
(
u−1
)
du

=
z

ϕ(z)

∫ ∞

ε−1z

u−2ϕ(u)du

=
φ′(ε−1z

)
z
(
−φ′′(z)

) . (4.67)

In view of Proposition 2.4, by the upper scaling of −φ′′, there is c > 0 such that for all

z > x0,

φ′(ε−1z
)

z
(
−φ′′(z)

) ≤ cε1−β .

Hence, the limit in (4.65) is uniform with respect to n ∈ N, which justifies (4.62). This

completes the proof of (4.49) and the theorem follows.

Theorem 4.13. Let T be a subordinator with the Laplace exponent φ. Suppose that
φ ∈WLSC(α,c,x0)∩WUSC(β,C,x0) for some c ∈ (0,1], C ≥ 1, x0 ≥ 0 and 0<α≤ β < 1.

We also assume that b = 0. Then for all 0 < χ1 < χ2 there is C ′ ≥ 1 such that for all

t ∈ (0,1/ϕ(x0)) and x > 0 satisfying

χ1 ≤ xφ−1(1/t)≤ χ2,

we have

C
′−1φ−1(1/t)≤ p(t,x)≤ C ′φ−1(1/t). (4.68)

Proof. First let us notice that Corollary 2.7 implies that −φ′′ ∈ WLSC(α− 2,c,x0)∩
WUSC(β−2,C,x0). Therefore, the hypothesis of Theorem 4.11 is satisfied.

It is enough to show the first inequality in (4.68) since the latter is an easy consequence
of (4.28) and Proposition 4.6. For t ∈ (0,1/ϕ(x0)) and M ≥ 1, we set

xt = tφ′(ϕ−1(M/t)
)
.

By Proposition 4.6, the function ϕ−1 possesses the weak lower scaling property. Moreover,

there is C1 ≥ 1 such that for all r > ϕ(x0),

C−1
1 ϕ−1(r)≤ φ−1(r)≤ C1ϕ

−1(r). (4.69)

Hence, by Proposition 2.4, there is C2 ≥ 1, such that

xt ≤ C2M
1−1/β 1

ϕ−1(1/t)
. (4.70)
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We select M ≥ 1 satisfying

C1C2M
1−1/β < χ1.

Let ρ1 = ρ0/2 where ρ0 is determined in Theorem 4.11. Then, by (4.69) and (4.70), we

have

xt−
ρ1

ϕ−1(1/t)
≤ C1C2M

1−1/β 1

φ−1(1/t)

<
χ1

φ−1(1/t)
. (4.71)

Now set ρ2 = C1χ2. Then, by (4.69), we have

xt+
ρ2

ϕ−1(1/t)
>

ρ2
C1φ−1(1/t)

=
χ2

φ−1(1/t)
. (4.72)

Putting (4.72) and (4.71) together, we conclude that[
χ1

φ−1(1/t)
,

χ2

φ−1(1/t)

]
⊆
(
xt−

ρ1
ϕ−1(1/t)

,xt+
ρ2

ϕ−1(1/t)

)
.

Therefore, by Theorem 4.11, for all t ∈ (0,1/ϕ(x0)) and x > 0 satisfying

χ1 ≤ xφ−1(1/t)≤ χ2,

we have

p(t,x) � ϕ−1(1/t).

In view of (4.69), this completes the proof of the theorem.

Proposition 4.14. Let T be a subordinator with the Laplace exponent φ. Suppose that

−φ′′ ∈WLSC(α− 2,c,x0) for some c ∈ (0,1], x0 ≥ 0 and α > 0, and assume that one of

the following conditions holds true:

(i) −φ′′ ∈WUSC(β−2,C,x0) for some C ≥ 1 and α≤ β < 1, or

(ii) −φ′′ is a function regularly varying at infinity with index −1. If x0 = 0, we also

assume that −φ′′ is regularly varying at zero with index −1.

We also assume that the Lévy measure ν(dx) has an almost monotone density ν(x). Then

the probability distribution of Tt has a density p(t, · ). Moreover, there are M0 > 1, ρ0 > 0
and C > 0 such that for all t ∈ (0,1/ϕ(x0)) and

x≥ 2tφ′(ϕ−1(M0/t)
)
+

2ρ0
ϕ−1(1/t)

,

we have

p(t,x)≥ Ctν(x).

Proof. Let λ > 0. We begin by decomposing the Lévy measure ν(dx). Let ν1(dx) =

ν1(x)dx and ν2(dx) = ν2(x)dx where

ν1(x) = ν(x)−ν2(x) and ν2(x) =
1
2ν(x)1[λ,∞)(x).
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For u > 0, we set

φ1(u) = bu+

∫
(0,∞)

(
1− e−us

)
ν1(ds) and φ2(u) =

∫
(0,∞)

(
1− e−us

)
ν2(ds).

Let T(j) be the Lévy process having the Laplace exponent φj , for j ∈ {1,2}. Since 1
2ν ≤

ν1 ≤ ν, we have

1
2φ≤ φ1 ≤ φ,

and for all n ∈ N,

1
2 (−1)n+1φ(n) ≤ (−1)n+1φ

(n)
1 ≤ (−1)n+1φ(n). (4.73)

Thus,

1
2ϕ≤ ϕ1 ≤ ϕ,

and so for all u > 0,

ϕ−1
1 (u/2)≤ ϕ−1(u)≤ ϕ−1

1 (u). (4.74)

In particular, −φ′′
1 has the weak lower scaling property. Therefore, by Theorem 3.3, T

(1)
t

and Tt are absolutely continuous. Let us denote by p(t, · ) and p(1)(t, · ) the densities of

Tt and T
(1)
t , respectively. Observe that T(2) is a compound Poisson process with the

probability distribution denoted by Pt(dx). By [47, Remark 27.3],

Pt(dx)≥ te−tν2(R)ν2(x)dx. (4.75)

We apply Theorem 4.11 to the process T(1). For t > 0, we set

xt = tφ′
1

(
ϕ−1
1 (M0/t)

)
.

Then there are C > 0 and ρ0 > 0, such that for all t ∈ (0,1/ϕ(x0)) and x≥ 0 satisfying

xt−
ρ0

ϕ−1
1 (1/t)

≤ x≤ xt+
ρ0

ϕ−1
1 (1/t)

,

we have

p(1)(t,x)≥ Cϕ−1
1 (1/t).

Therefore, if

λ= xt+
ρ0

ϕ−1
1 (1/t)

,

then ∫ λ

0

p(1)(t,x)dx � 1. (4.76)

Next, if λ≥ ρ0/ϕ
−1(1/t), then, by (4.2),

tν2(R) =
1
2 t

∫ ∞

λ

ν(x)dx
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≤ 1
2 th
(
ρ0/ϕ

−1(1/t)
)

� th
(
1/ϕ−1(1/t)

)
� 1, (4.77)

where the penultimate inequality follows either by monotonicity of h or by [23, Lemma

2.1 (4)]. Finally, by (4.75) and (4.77), for x≥ 2λ we can compute

p(t,x) =

∫
R

p(1)(t,x−y)Pt(dy)

� t

∫
R

p(1)(t,x−y)ν2(y)dy

= 1
2 t

∫ x

λ

p(1)(t,x−y)ν(y)dy.

Hence, by the monotonicity of ν, we get

p(t,x) � tν(x)

∫ x−λ

0

p(1)(t,y)dy

≥ tν(x)

∫ λ

0

p(1)(t,y)dy

� tν(x),

where in the last estimate we have used (4.76). Using (4.73) and (4.74), we can easily

show that

λ= xt+
ρ0

ϕ−1
1 (1/t)

≤ tφ′(ϕ−1(M0/t)
)
+

ρ0
ϕ−1(1/t)

,

and the proposition follows.

4.3. Sharp two-sided estimates

In this section we present sharp two-sided estimates on the density p(t, · ) assuming both
the weak lower and upper scaling properties on −φ′′. First, following [6, Lemma 13], we

prove an auxiliary result.

Proposition 4.15. Assume that the Lévy measure ν(dx) has an almost monotone density

ν(x). Suppose that −φ′′ ∈WUSC(γ,C,x0) for some C ≥ 1, x0 ≥ 0 and γ < 0. Then there

are a ∈ (0,1] and c ∈ (0,1] such that for all 0< x < a/x0,

ν(x)≥ cx−3
(
−φ′′(1/x)

)
.

Proof. Let a ∈ (0,1]. Recall that by (4.30) we have ν(s) ≤ C1s
−3
(
−φ′′(1/s)

)
for any

s > 0. Hence, for any u > 0,

−φ′′(u) =

∫ au−1

0

s2e−usν(s)ds+

∫ ∞

au−1

s2e−usν(s)ds

≤ C1

∫ au−1

0

s−1e−us
(
−φ′′(1/s)

)
ds+C2ν(au

−1)

∫ ∞

au−1

s2e−us ds, (4.78)
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where C2 is a constant from the almost monotonicity of ν. If u > x0, then by the scaling
property of −φ′′ we obtain

C1

∫ au−1

0

s−1e−us
(
−φ′′(1/s)

)
ds≤ C

∫ au−1

0

s−1e−us(su)−γ
(
−φ′′(u)

)
ds

≤ C
(
−φ′′(u)

)∫ a

0

s−1−γe−s ds.

By selecting a ∈ (0,1] such that

2C

∫ a

0

s−1−γe−s ds≤ 1,

we get ∫ au−1

0

s−1e−us
(
−φ′′(1/s)

)
ds≤ 1

2

(
−φ′′(u)

)
.

Since ∫ ∞

au−1

s2e−us ds= u−3e−a(a2+2a+2),

by (4.78) we obtain

ν(au−1)≥ ea

2(a2+2a+2)
u3
(
−φ′′(u)

)
,

provided that u > x0. Now, by the monotonicity of −φ′′ we conclude the proof.

In view of Propositions 2.3 and 2.4, we immediately obtain the following corollary.

Corollary 4.16. Assume that the Lévy measure ν(dx) has an almost monotone density

ν(x). Suppose that b = 0 and φ ∈ WLSC(α,c,x0)∩WUSC(β,C,x0) for some c ∈ (0,1],
C ≥ 1, x0 ≥ 0 and 0< α≤ β < 1. Then there are a ∈ (0,1] and c′ ∈ (0,1] such that for all

0< x < a/x0,

ν(x)≥ c′x−1φ(1/x).

We are now ready to prove our main result in this section.

Theorem 4.17. Let T be a subordinator with the Laplace exponent φ. Suppose that

φ ∈WLSC(α,c,x0)∩WUSC(β,C,x0) for some c ∈ (0,1], C ≥ 1, x0 ≥ 0 and 0<α≤ β < 1.
We also assume that b = 0 and that the Lévy measure ν(dx) has an almost monotone

density ν(x). Then there is x1 ∈ (0,∞] such that for all t ∈ (0,1/ϕ(x0)) and x ∈ (0,x1),

p(t,x)≈
{(

t(−φ′′(w))
)− 1

2 exp
{
− t
(
φ(w)−wφ′(w)

)}
if 0< xφ−1(1/t)≤ 1,

tx−1φ(1/x) if 1< xφ−1(1/t),

where w = (φ′)−1(x/t). If x0 = 0 then x1 =∞.
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Proof. First let us note that by Corollary 2.7, −φ′′ ∈ WLSC(α− 2,c,x0)∩WUSC(β−
2,C,x0). Therefore, we are in position to apply Proposition 4.14. By Corollary 3.7, for

χ1 =min{1,δ}, we have

p(t,x)≈
(
t(−φ′′(w))

)− 1
2 exp

{
− t
(
φ(w)−wφ′(w)

)}
,

whenever 0 < xφ−1(1/t) ≤ χ1. Next, let M ′
0 be M0 determined by Proposition 4.14. By

Proposition 2.4, (4.2) and monotonicity of ϕ−1, for t ∈ (0,1/ϕ(x0)), we get

tφ′(ψ−1(1/t)
)

� 1

ψ−1(1/t)
and tφ′(ϕ−1(M ′

0/t)
)

� 1

ϕ−1(1/t)
;

thus, by Propositions 4.3 and 4.6, there is C1 > 0 such that

2etφ′(ψ−1(1/t)
)
≤ C1

1

φ−1(1/t)

and

2tφ′(ϕ−1(M ′
0/t)
)
+

2ρ′0
ϕ−1(1/t)

≤ C1
1

φ−1(1/t)

where ρ′0 is the value of ρ0 determined in Proposition 4.14. Let χ2 =max{1,C1,χ1}. By
Proposition 4.14 and Corollary 4.16, there is a ∈ (0,1] such that if xφ−1(1/t) > χ2 and
0< x < a/x0, then

p(t,x) � tν(x)

� tx−1φ(1/x).

Furthermore, by (4.29), if xφ−1(1/t)> χ2, then

p(t,x) � tη(x)

� tx−1φ(1/x),

where in the last step we have also used (4.13). Lastly, by Theorem 4.13 there is C2 ≥ 1

such that for all t ∈ (0,1/ϕ(x0)) and x > 0 satisfying

χ1 ≤ xφ−1(1/t)≤ χ2,

we have

C−1
2 φ−1(1/t)≤ p(t,x)≤ C2φ

−1(1/t). (4.79)

We next claim that the following holds true.

Claim 4.18. There exist 0 < c1 ≤ 1 ≤ c2 such that for all t ∈ (0,c1/ϕ(x0)) and x > 0
satisfying

χ1 ≤ xφ−1(1/t)≤ χ2,

we have

tφ′(φ−1(c2/t)
)
≤ x≤ tφ′(φ−1(c1/t)

)
. (4.80)
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By Proposition 4.6, there is C3 ≥ 1 such that for r > ϕ(x0),

C−1
3 ϕ−1(r)≤ φ−1(r)≤ C3ϕ

−1(r).

Let c2 = (χ1c
′C−2

3 )−β/(1−β) ∈ [1,∞), where c′ is taken from (4.15). Then

c−1
2 φ−1(c2/t)≥ C−2

3 c′c
−1+1/β
2 φ−1(1/t) = χ−1

1 φ−1(1/t).

Consequently, by Proposition 2.3,

x≥ χ1

φ−1(1/t)
≥ t

φ
(
φ−1(c2/t)

)
φ−1(c2/t)

≥ tφ′(φ−1(c2/t)
)
. (4.81)

Moreover, there is C4 ≥ 1 such that C4xφ
′(x)≥ φ(x) provided that x > x0. Therefore, if

χ2 ≤ C−1
4 , then

χ2

φ−1(1/t)
= χ2t

φ
(
φ−1(1/t)

)
φ−1(1/t)

≤ tφ′(φ−1(1/t)
)
, (4.82)

which yields (4.80) with c1 = 1. Otherwise, if χ2 > C−1
4 , then we set c1 =(

C4χ2C
2
3 (c

′)−1
)−β/(1−β) ∈ (0,1]. Hence, by Proposition 4.6, for all t ∈ (0,c1/ϕ(x0)),

C4χ2

c1
φ−1(c1/t)≤ C4χ2C

2
3 (c

′)−1c
−1+1/β
1 φ−1(1/t) = φ−1(1/t).

Therefore,

x≤ χ2

φ−1(1/t)

≤ t
χ2

c1
· φ

−1(c1/t)

φ−1(1/t)
·
φ
(
φ−1(c1/t)

)
φ−1(c1/t)

≤ tφ′(φ−1(c1/t)
)
,

which, combined with (4.81) and (4.82), implies (4.80).

Now, using Claim 4.18 and Propositions 4.3 and 4.6, we deduce that for t∈ (0,c1/ϕ(x0))
and χ1 ≤ xφ−1(1/t)≤ χ2,

w ≤ φ−1(c2/t) � φ−1(1/t) (4.83)

and

w ≥ φ−1(c1/t) � φ−1(1/t). (4.84)

Hence, twφ′(w)≈ 1 and

exp
{
− t
(
φ(w)−wφ′(w)

)}
≈ 1. (4.85)

Next, by Propositions 2.4 and 2.1,

w2
(
−φ′′(w)

)
≈ wφ′(w);
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thus, by (4.83) and (4.84), we obtain

1√
t
(
−φ′′(w)

) ≈ w√
twφ′(w)

≈ φ−1(1/t),

which, together with (4.85), implies that(
t(−φ′′(w))

)− 1
2 exp

{
− t
(
φ(w)−wφ′(w)

)}
≈ φ−1(1/t),

for t ∈ (0,c1/ϕ(x0)) and χ1 ≤ xφ−1(1/t) ≤ χ2. In view of (4.79), the theorem follows in
the case x0 = 0. Now, it remains to observe that in the case x0 > 0 we may use positivity

and continuity to conclude the claim for all t ∈ (0,1/ϕ(x0)).

5. Applications

5.1. Subordination

Let (X ,τ) be a locally compact separable metric space with a Radon measure μ having

full support on X . Assume that (Xt : t ≥ 0) is a homogeneous in time Markov process

on X with density h(t, · , · ); that is,

P(Xt ∈B|X0 = x) =

∫
B

h(t,x,y)μ(dy)

for any Borel set B ⊂ X , x ∈ X and t > 0. Assume that for all t > 0 and x,y ∈ X ,

t−
n
γ Φ1

(
τ(x,y)t−

1
γ

)
≤ h(t,x,y)≤ t−

n
γ Φ2

(
τ(x,y)t−

1
γ

)
(5.1)

where n and γ are some positive constants, Φ1 and Φ2 are nonnegative nonincreasing

function on [0,∞) such that Φ1(1)> 0 and

sup
s≥0

Φ2(s)(1+s)n+γ <∞. (5.2)

By H(t,x,y) we denote the heat kernel for the subordinate process (XTt
: t≥ 0); that is,

H(t,x,y) =

∫ ∞

0

h(s,x,y)G(t,ds),

where

G(t,s) = P
(
Tt ≥ s

)
.

Suppose that φ ∈WLSC(α,c,x0)∩WUSC(β,C,x0) for some c ∈ (0,1], C ≥ 1, x0 > 0 and
0< α≤ β < 1. We also assume that

lim
x→∞

φ′(x) = b= 0

and that the Lévy measure ν(dx) has an almost monotone density ν(x).
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Claim 5.1. For all x,y ∈ X satisfying τ(x,y)−γ > x0 and any t ∈ (0,1/ϕ(x0)),

H(t,x,y)≈
{
tφ
(
τ(x,y)−γ

)
τ(x,y)−n if 0< tφ

(
τ(x,y)−γ

)
≤ 1,(

φ−1(1/t)
)n

γ if 1≤ tφ
(
τ(x,y)−γ

)
.

By Proposition 2.3, φ′ ∈WLSC(α−1,c,x0)∩WUSC(β−1,C,x0). Let 0< r < φ′(x+
0 ). If

0< λ≤ C, then by setting

D = C
1

1−β λ− 1
1−β ,

the weak upper scaling property of φ′ implies that

λr = λφ′((φ′)−1(r)
)
≥ φ′(D(φ′)−1(r)

)
.

Therefore,

(φ′)−1(λr)≤ C
1

1−β λ− 1
1−β (φ′)−1(r). (5.3)

Analogously, we can prove the lower estimate: If 0< λ≤ c, then by setting

D = c
1

1−αλ− 1
1−α ,

we obtain

λr = λφ′((φ′)−1(r)
)
≤ φ′(D(φ′)−1(r)

)
and, consequently,

(φ′)−1(λr)≥ c
1

1−αλ− 1
1−α (φ′)−1(r). (5.4)

Since (φ′)−1 is nonincreasing, the last inequality is valid for all 0< λ≤ 1. Let

H(t,x,y) =

⎛⎝∫ 1

φ−1(1/t)

0

+

∫ ∞

1

φ−1(1/t)

⎞⎠h(s,x,y)G(t,ds)

= I1(t,x,y)+ I2(t,x,y).

By Theorem 4.17,

I1 ≈
1

φ−1(1/t)

∫ 1

0

h

(
u

φ−1(1/t)
,x,y

)
1√

t(−φ′′(w))
exp
(
− t
(
φ(w)−wφ′(w)

))
du (5.5)

where

w = (φ′)−1

(
u

tφ−1(1/t)

)
.

Recall that, by Proposition 2.3, for all r > x0 we have

rφ′(r)≤ φ(r)≤ C1rφ
′(r). (5.6)

We can assume that

tφ
(
2(CC1)

1
1−β x0

)
< 1.
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By (5.6) and the weak upper scaling of φ′, we get

φ′
(
φ−1(1/t)

)
≤ 1

tφ−1(1/t)
≤ C1φ

′(φ−1(1/t)
)

≤ φ′
(
(CC1)

− 1
1−β φ−1(1/t)

)
;

thus,

(φ′)−1

(
1

tφ−1(1/t)

)
≈ φ−1(1/t).

Hence, by (5.3) and (5.4), we obtain

u− 1
1−αφ−1(1/t) � w � u− 1

1−β φ−1(1/t), u ∈ (0,1]. (5.7)

Moreover, since w > x0, by (5.6) and Proposition 4.6,

wφ′(w) � φ(w)−wφ′(w) =

∫ w

0

ϕ(u)
du

u

≥
∫ w

x0

ϕ(u)
du

u
� wφ′(w).

Thus, (5.7) entails that

u− α
1−α � t

(
φ(w)−wφ′(w)

)
� u− β

1−β , u ∈ (0,1]. (5.8)

Next, by Proposition 4.6 and (5.6), we get

1√
t(−φ′′(w))

≈ w√
tφ(w)

≈
√
u−1φ−1(1/t)w.

Therefore, by (5.7),

u− 2−α
2(1−α)φ−1(1/t) � 1√

t(−φ′′(w))
� u− 2−β

2(1−β)φ−1(1/t), u ∈ (0,1]. (5.9)

Now, by (5.5) and (5.1) together with (5.8) and (5.9), we can estimate

I1 �
(
φ−1(1/t)

)n
γ

∫ 1

0

Φ2

(
u− 1

γ A
1
γ

)
u−n

γ − 2−β
2(1−β) exp

(
−C ′′u− α

1−α

)
du (5.10)

and

I1 �
(
φ−1(1/t)

)n
γ

∫ 1

0

Φ1

(
u− 1

γ A
1
γ

)
u−n

γ − 2−α
2(1−α) exp

(
−C ′u− β

1−β

)
du, (5.11)

where

A= τ(x,y)γφ−1(1/t).

Suppose that A ≤ 1. Since Φ1 and Φ2 are nonincreasing, by (5.10) and (5.11), we easily

see that

I1 ≈
(
φ−1(1/t)

)n
γ .
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We also have

I2 �
∫ ∞

1

φ−1(1/t)

s−
n
γ p(t,s)ds �

(
φ−1(1/t)

)n
γ .

Therefore,

H(t,x,y)≈
(
φ−1(1/t)

)n
γ .

We now turn to the case A> 1. By (5.2) and (5.10),

I1 �
(
φ−1(1/t)

)n
γ A−n

γ −1

∫ 1

0

u− β
2(1−β) exp

(
−C ′′u− α

1−α

)
du

� A−1τ(x,y)−n. (5.12)

It remains to estimate I2. Let us observe that for all r > x0, if u ≥ 1, then by the weak

upper scaling of φ, we have

φ(r)≤ φ(ru)≤ Cuβφ(r).

On the other hand, if 0< u≤ 1, then by (2.10) and the monotonicity of φ, we get

uφ(r)≤ φ(ru)≤ φ(r).

Therefore, for all u > 0 and r > x0,

min{1,u}φ(r)≤ φ(ru)≤ Cmax{1,uβ}φ(r). (5.13)

Since τ(x,y)−γ > x0, by Theorem 4.17, (5.1) and estimates (5.13), we get

I2 � tφ
(
τ(x,y)−γ

)
τ(x,y)−n

∫ ∞

1/A

Φ2

(
u− 1

γ

)
u−n

γ −1max
{
1,u−β

}
du

and

I2 � tφ
(
τ(x,y)−γ

)
τ(x,y)−n

∫ ∞

1/A

Φ1

(
u− 1

γ

)
u−n

γ −1min{1,u}du.

By (5.2), we have ∫ 1

0

Φ2

(
u− 1

γ

)
u−n

γ −β−1 du �
∫ 1

0

u−β du <∞;

thus,

I2 ≈ tφ
(
τ(x,y)−γ

)
τ(x,y)−n.

Finally, since A> 1, by (2.10), we have

tφ
(
τ(x,y)−γ

)
= tφ

(
A−1φ−1(1/t)

)
≥A−1;

hence, by (5.12),

I1 � tφ
(
τ(x,y)−γ

)
τ(x,y)−n,

proving the claim.
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Example 5.2. Let (X ,τ) be a nested fractal with the geodesic metric on X . Let dw
and df be the walk dimension and the Hausdorff dimension of X , respectively. Let

(Xt : t≥ 0) be the diffusion on X constructed in [2, Section 7]. By [2, Theorem 8.18], the
corresponding heat kernel satisfies (5.1) with n= df , γ = dw, and

Φ1(s) = Φ2(s) = exp
(
−s

γ
γ−1

)
.

Let T be a subordinator with the Laplace exponent

φ(s) = sα logσ(2+s),

where α ∈ (0,1) and σ ∈ R. Then, by Claim 5.1, the process (XTt
: t ≥ 0) has density

H(t,x,y) such that for all x,y ∈ X and t > 0,

•. if t > τ(x,y)αγ log−σ (2+ τ(x,y)−γ), then

H(t,x,y)≈ t−
n
αγ log−

σn
αγ
(
2+ t−1

)
,

•. if t < τ(x,y)αγ log−σ (2+ τ(x,y)−γ), then

H(t,x,y)≈ tτ(x,y)−αγ−n logσ
(
2+ τ(x,y)−γ

)
.

Example 5.3. Let (X ,τ) be a complete manifold without boundary, having nonnegative

Ricci curvature. Then by [37], the heat kernel corresponding to the Laplace–Beltrami

operator on X satisfies estimates (5.1) with

Φ1(s) = e−C1s
2

, Φ2(s) = e−C2s
2

.

Now, one can take T with a Lévy–Khintchine exponent regularly varying at infinity with

index α∈ (0,1) and apply Claim 5.1 to obtain the asymptotic behaviour of the subordinate
process.

5.2. Green function estimates

Let T= (Tt : t≥ 0) be a subordinator with the Laplace exponent φ. If −φ′′ has the weak

lower scaling property of index α−2 for some α > 0, then the probability distribution of
Tt has a density p(t, ·); see Theorem 3.3. In this section we want to derive sharp estimates

on the Green function based on Sections 3 and 4. Let us recall that the Green function is

G(x) =

∫ ∞

0

p(t,x)dt, x > 0.

We set

f(x) =
ϕ(x)

φ′(x)
, x > 0.

Let us denote by f−1 the generalised inverse of f ; that is,

f−1(x) = sup{r > 0: f∗(r) = x}

where

f∗(r) = sup
0<x≤r

f(x).
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Notice that by (2.9) and Proposition 2.3, for all x > x0,

f∗(x) � x. (5.14)

In view of (4.2) and Proposition 4.3, the function ϕ is almost increasing; thus, by
monotonicity of φ′, f is almost increasing as well. Therefore, there is c0 ∈ (0,1] such

that for all x > x0,

c0f
∗(x)≤ f(x)≤ f∗(x). (5.15)

Moreover, f has the doubling property on (x0,∞). Since ϕ belongs to WLSC(α,c,x0),

by monotonicity of φ′, we conclude that f belongs to WLSC(α,c,x0). It follows that

f−1 ∈ WUSC(1/α,C,f∗(x0)) for some C ≥ 1 and since f−1 is increasing, we infer that

f−1 also has doubling property on (f∗(x0),∞).

Proposition 5.4. Suppose that b = 0 and −φ′′ ∈WLSC(α− 2,c,x0) for some c ∈ (0,1],
x0 ≥ 0 and α> 0. Then for each A> 0 and M > 0 there is C ≥ 1 so that for all x<A/x0,

C−1 1

xφ(1/x)
≤
∫ ∞

x

φ′(f−1(M/x))

p(t,x)dt≤ C
1

xφ(1/x)
.

In particular, for each A> 0 there is C > 0 such that for all x < A/x0,

G(x)≥ C
1

xφ(1/x)
.

Proof. For M > 0 and x > 0 we set

IM (x) =

∫ ∞

x

φ′(f−1(M/x))

p(t,x)dt.

Let us first show that for each M > 0 there are AM > 0 and C ≥ 1 such that for all

x < AM/x0,

C−1 1

xφ(1/x)
≤
∫ ∞

x

φ′(f−1(M/x))

p(t,x)dt≤ C
1

xφ(1/x)
. (5.16)

Let

AM =min
{
M,c−1

0 M0

}
·min

{
1,

x0

f∗(x0)

}
where M0 is determined in Corollary 3.5, and c0 is taken from (5.15). We claim that the

following holds true.

Claim 5.5. For each M > 0 there is C ≥ 1 so that for all x < AM/x0,

C−1 1

φ′
(
f−1(1/x)

) ≤ IM (x)≤ C
1

φ′
(
f−1(1/x)

) . (5.17)
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Suppose that

t >
x

φ′
(
f−1(M1/x)

) (5.18)

with M1 = c−1
0 M0. Notice that for x < AM/x0, we have x < M1/f

∗(x0). Hence, x0 ≤
f−1
(
M1/x

)
; thus, by monotonicity of φ′, we obtain

x

t
≤ φ′(f−1(M1/x)

)
≤ φ′(x0). (5.19)

Moreover, for w = (φ′)−1(x/t), the condition (5.18) implies that

f∗(w)≥M1/x,

which together with (5.15) gives

tϕ(w) = xf(w)≥ c0xf
∗(w)

≥M0. (5.20)

Now, to justify the claim, let us first consider M ≥M1. In view of (5.19) and (5.20), we
can apply Corollary 3.5 to get

IM (x)≈
∫ ∞

x

φ′(f−1(M/x))

1√
t(−φ′′(w))

exp
{
− t
(
φ(w)−wφ′(w)

)}
dt.

Since by Proposition 4.1 and Remark 3.2, for all w > x0,

φ(w)−wφ′(w)≈ h(1/w)

≈K(1/w)

≈ w2
(
−φ′′(w)

)
,

after the change of variables t= x/φ′(s), we can find C2 ≥ 1 such that for all x <AM/x0,∫ ∞

f−1(M/x)

exp{−C2xf(s)}
√

xf(s)
ds

sφ′(s)
� IM (x)

�
∫ ∞

f−1(M/x)

exp{−C−1
2 xf(s)}

√
xf(s)

ds

sφ′(s)
.

(5.21)

Recall that f−1 has the doubling property on (f∗(x0),∞). Using now Proposition 2.3 and
(5.15), we get

IM (x) �
∫ 2f−1(M/x)

f−1(M/x)

exp{−C2xf
∗(s)}

√
xf∗(s)

ds

φ(s)

� 1

φ
(
f−1(M/x)

)f−1(M/x)

� 1

φ′
(
f−1(M/x)

), (5.22)
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where the implicit constants may depend on M. Therefore, by monotonicity of f−1 and

φ′, the estimate (5.22) gives

IM (x) � 1

φ′
(
f−1(1/x)

) . (5.23)

This proves the first inequality in (5.17).

We next observe that (5.14) entails that f−1(s) � s for s > f∗(x0); thus, by (5.23),

G(x)≥ IM1
(x) � 1

φ′(1/x)

� 1

xφ(1/x)
(5.24)

where the last estimate follows by Proposition 2.3.
We next show the second inequality in (5.17). By (5.21), Proposition 2.3 and

monotonicity of φ,

IM (x) �
∫ ∞

f−1(M/x)

exp
{
−C−1

2 xf(s)
}√

xf(s)
ds

φ(s)

≤ 1

φ
(
f−1(M/x)

) ∫ ∞

f−1(M/x)

exp
{
−C−1

2 xf(s)
}√

xf(s)ds

≤ 1

φ
(
f−1(M/x)

) ∫ ∞

f−1(M/x)

exp
{
− 1

2C2
xf(s)

}
ds

where in the last inequality we have used

exp
{
−C−1

2 xf(s)
}√

xf(s)≤ exp
{
− 1

2C2
xf(s)

}
.

Since ϕ ∈WLSC(α,c,x0), by [6, Lemma 16],∫
R

exp
{
−C−1

2 xf(|s|)
}
ds � f−1

(
M1/x

)
.

Finally, the doubling property of f−1, monotonicity of φ and Proposition 2.3 give

IM (x) � 1

φ
(
f−1(M/x)

)f−1
(
M1/x

)
� 1

φ′
(
f−1(1/x)

)
where the implied constant may depend on M. This finishes the proof of (5.17) for M ≥
M1.

We next consider 0<M <M1. By monotonicity, the lower estimate remains valid for

all M > 0. Therefore, it is enough to show that for each 0<M <M1, there is C ≥ 1 such
that for all x < AM/x0,∫ x

φ′(f−1(M1/x))

x

φ′(f−1(M/x))

p(t,x)dt≤ C
1

φ′
(
f−1(1/x)

) .
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By [23, Theorem 3.1], there is t0 > 0 such that for all 0< t < t0,

p(t,x) � ϕ−1(1/t).

If x0 = 0, then t0 =∞. Since ϕ is almost increasing we have

x

φ′
(
f−1(M1/x)

) ≤ M1

ϕ
(
f−1(M1/x)

)
� M1

ϕ
(
f−1(M1x0/A)

) .
Hence, by continuity and positivity of p(t,x) and ϕ−1(1/t), we can take

t0 ≥
x

φ′
(
f−1(M1/x)

) .
Therefore, by the change of variables t= x/φ′(s) we get∫ x

φ′(f−1(M1/x))

x

φ′(f−1(M/x))

p(t,x)dt �
∫ x

φ′(f−1(M1/x))

x

φ′(f−1(M/x))

ϕ−1(1/t)dt

= x

∫ f−1(M1/x)

f−1(M/x)

ϕ−1

(
φ′(s)

x

)
f(s)

ds

s2φ′(s)
.

Next, by monotonicity and the doubling property of f−1 and φ′, we obtain∫ x

φ′(f−1(M1/x))

x

φ′(f−1(M/x))

p(t,x)dt � 1(
f−1(M/x)

)2 · 1

φ′
(
f−1(M1/x)

) ∫ f−1(M1/x)

f−1(M/x)

ϕ−1

(
φ′(s)

x

)
ds

� 1(
f−1(1/x)

)2 · 1

φ′
(
f−1(1/x)

) ∫ f−1(M1/x)

f−1(M/x)

ϕ−1

(
φ′(s)

x

)
ds.

(5.25)

Since by (5.15) for s≥ f−1(M/x) we have

φ′(s)

x
=

ϕ(s)

xf(s)
� ϕ∗(s),

by monotonicity of ϕ−1, Proposition 4.3, Remark 4.4 and the doubling property of f−1

and ϕ−1, we get ∫ f−1(M1/x)

f−1(M/x)

ϕ−1

(
φ′(s)

x

)
ds �

(
f−1(1/x)

)2
,

which together with (5.25) gives (5.17) for 0 < M < M1. This completes the proof of

Claim 5.5.

Our next task is to deduce (5.16) from Claim 5.5. By Lemma 2.9 and Proposition 2.3,
there is a complete Bernstein function φ̃ such that φ̃≈ φ and

f(x)≈ f̃(x) =
x2
(
− φ̃′′(x)

)
φ̃′(x)
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for all x > x0. Let T̃ be a subordinator with the Laplace exponent φ̃. By p̃(t, · ) we denote
the density of the probability distribution of T̃t. We set

G̃(x) =

∫ ∞

0

p̃(t,x)dt

and

ĨM (x) =

∫ ∞

x

φ̃′(f̃−1(M/x))

p̃(t,x)dt.

Fix M > 0. By Claim 5.5, there is AM > 0 such that for all x < AM/x0,

ĨM (x)≈ 1

φ̃′
(
f̃−1(1/x)

)
≈ 1

φ′
(
f−1(1/x)

) . (5.26)

On the other hand, since φ̃ is the complete Bernstein function, by (5.24) and [34, Corollary

2.6], there is C3 ≥ 1 such that

C−1
3

1

xφ̃(1/x)
≤ ĨM (x)≤ G̃(x)≤ C3

1

xφ̃(1/x)
.

Therefore, by (5.26), for x < AM/x0,

1

φ′
(
f−1(1/x)

) ≈ ĨM (x)≈ 1

xφ̃(1/x)

≈ 1

xφ(1/x)
,

(5.27)

and (5.16) follows for all A≤AM . Let us now consider A>AM . Observe that the functions[
AM

x0
,
A

x0

]
� x �→ 1

xφ(1/x)

and [
AM

x0
,
A

x0

]
� x �→

∫ ∞

x

φ′(f−1(M/x))

p(t,x)dt

are both positive and continuous; thus, they are bounded for each A. Therefore, at the

possible expense of worsening the constant, we can conclude the proof of the proposition.

Proposition 5.6. Suppose that b=0, −φ′′ ∈WLSC(α−2,c,x0) for some c∈ (0,1], x0 ≥ 0

and α > 0 and that the Lévy measure ν(dx) is absolutely continuous with respect to the
Lebesgue measure with a monotone density ν(x). Then there is ε ∈ (0,1) such that for

each A> 0, there is C ≥ 1 such that for all x < A/x0,∫ x

φ′(f−1(1/x))
ε

0

p(t,x)dt≤ C
1

xφ(1/x)
.
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Proof. In view of (5.27), it is enough to show that for some ε ∈ (0,1) and all A> 0 there

is C ≥ 1, such that for all x < A/x0,∫ x

φ′(f−1(1/x))
ε

0

p(t,x)dt≤ C
1

φ′
(
f−1(1/x)

) . (5.28)

Let ε ∈ (0,1) and

A=min

{
1,

x0

f∗(x0)

}
.

Suppose that

t≤ x

φ′
(
f−1(1/x)

) ε; (5.29)

that is,

t≤ 1

ϕ∗
(
f−1(1/x)

)ε.
Hence, by monotonicity of ϕ−1 and φ′,

x≥ 1

f∗
(
ϕ−1(ε/t)

) = t

ε
φ′(ϕ−1(ε/t)

)
≥ t

ε
φ′(ϕ−1(1/t)

)
.

By Proposition 4.3 and the scaling property of φ′, there are c ∈ (0,1] and C ≥ 1 such that

x≥ t

ε
φ′(Cψ−1(1/t)

)
≥ t

ε
cCα−1φ′(ψ−1(1/t)

)
.

Therefore, by taking ε= (2e)−1cCα−1, we get

x≥ 2etφ′(ψ−1(1/t)
)
.

Since ν(x) is the monotone density of ν(dx), by Theorem 4.8 we get∫ x

φ′(f−1(1/x))
ε

0

p(t,x)dt � ϕ(1/x)

x

(
x

φ′
(
f−1(1/x)

))2

.

By (5.14), f−1(s) � s for s > f∗(x0); thus, using (4.4),

xϕ(1/x)

φ′
(
f−1(1/x)

) ≤ ϕ(1/x)

ϕ
(
f−1(1/x)

) � 1,

which entails (5.28). The extension to arbitrary A follows by continuity and positivity
argument as in the proof of Proposition 5.4.

It is possible to get the same conclusion as in Proposition 5.6 without imposing the

existence of the monotone density of ν(dx); however, instead we need to assume the weak

upper scaling property in −φ′′.
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Proposition 5.7. Suppose that b= 0 and −φ′′ ∈WLSC(α−2,c,x0)∩WUSC(β−2,C,x0)

for some c ∈ (0,1], C ≥ 1, x0 ≥ 0 and 1
2 < α≤ β < 1. Then there is ε ∈ (0,1) such that for

each A> 0, there is C1 ≥ 1, so that for all x < A/x0,∫ x

φ′(f−1(1/x))
ε

0

p(t,x)dt≤ C1
1

xφ(1/x)
. (5.30)

Proof. Let

A=min

{
1,

x0

f∗(x0)

}
.

By repeating the same reasoning as in the proof of Proposition 5.6, we can see that the

condition

t≤ x

φ′(f−1(1/x))
ε

implies

x≥ 2etφ′(ψ−1(1/t)
)
,

for ε= (2e)−1cCα−1. Therefore, we can apply Theorem 4.7 to get∫ x

φ′(f−1(1/x))
ε

0

p(t,x)dt � ϕ(1/x)

∫ x

φ′(f−1(1/x))
ε

0

tϕ−1(1/t)dt, (5.31)

where the implied constant may depend on ε. Since α> 1
2 , by Proposition 4.3, [1, Theorem

3] and the doubling property of ϕ−1, we obtain∫ x

φ′(f−1(1/x))
ε

0

tϕ−1(1/t)dt �
(

x

φ′
(
f−1(1/x)

))2

ϕ−1

(
φ′(f−1(1/x)

)
εx

)
�
(

x

φ′
(
f−1(1/x)

))2

ϕ−1

(
φ′(f−1(1/x)

)
x

)
. (5.32)

In view of (5.15), we have

φ′(f−1(1/x)
)

x
=

ϕ∗(f−1(1/x)
)

xf∗
(
f−1(1/x)

)
� ϕ∗(f−1(1/x)

)
;

thus, by Proposition 4.3 and Remark 4.4,

ϕ(1/x)x2

φ′
(
f−1(1/x)

)ϕ−1

(
φ′(f−1(1/x)

)
x

)
� ϕ∗(1/x)x2

φ′
(
f−1(1/x)

)f−1(1/x)

= xf−1(1/x)
ϕ∗(1/x)

ϕ∗
(
f−1(1/x)

) .
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In view of Propositions 2.3 and 4.6, we have f(s) ≈ s for s > x0; thus, f
−1(s) ≈ s, for

s > f∗(x0). Hence,

ϕ(1/x)x2

φ′
(
f−1(1/x)

)ϕ−1

(
φ′(f−1(1/x)

)
x

)
� 1.

Therefore, by (5.31) and (5.32), we conclude that∫ x

φ′(f−1(1/x))
ε

0

p(t,x)dt � 1

φ′
(
f−1(1/x)

),
which, by Proposition 5.4 and (5.27), entails (5.30). The extension to arbitrary A follows

by positivity and continuity argument.

Theorem 5.8. Let T be a subordinator with the Laplace exponent φ. Suppose that

φ ∈WLSC(α,c,x0)∩WUSC(β,C,x0)

for some c ∈ (0,1], C ≥ 1, x0 ≥ 0 and 0<α≤ β < 1. We assume that one of the following

conditions holds:

(i) The Lévy measure ν(dx) is absolutely continuous with respect to the Lebesgue

measure with monotone density ν(x), or

(ii) α > 1
2 .

Then for each A> 0 there is C1 ≥ 1 such that for all x < A/x0,

C−1
1

1

xφ(1/x)
≤G(x)≤ C1

1

xφ(1/x)
.

Proof. By Corollary 2.7, −φ′′ ∈WLSC(α−2,c,x0)∩WUSC(β−2,C,x0). Let p(t, ·) be the
transition density of Tt. In view of Propositions 5.4, 5.6 and 5.7 and (5.27), it is enough
to show that for each A> 0 and ε ∈ (0,1) there is C1 > 0 such that for all x < A/x0,∫ x

φ′(f−1(1/x))

x

φ′(f−1(1/x))
ε

p(t,x)dt≤ C1
1

φ′
(
f−1(1/x)

) . (5.33)

By [23, Theorem 3.1], there is t0 > 0 such that for all t ∈ (0,t0),

p(t,x) � ϕ−1(1/t).

If x0 = 0, then t0 =∞. We can take

t0 ≥
x

φ′
(
f−1(1/x)

) .
Therefore, by monotonicity of ϕ−1, we get∫ x

φ′(f−1(1/x))

x

φ′(f−1(1/x))
ε

p(t,x)dt �
∫ x

φ′(f−1(1/x))

x

φ′(f−1(1/x))
ε

ϕ−1(1/t)dt

≤ x

φ′
(
f−1(1/x)

)ϕ−1

(
φ′(f−1(1/x)

)
εx

)
.
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By the doubling property of ϕ−1, definition of f and Remark 4.4,

ϕ−1

(
φ′(f−1(1/x)

)
εx

)
� ϕ−1

(
φ′(f−1(1/x)

)
x

)
≤ f−1(1/x)

� 1

x
,

since by the weak upper scaling property of −φ′′, f(s)≈ s for all s> f∗(x0). Consequently,

we obtain (5.33) and the theorem follows.

Acknowledgements. We thank Professor Jerzy Zabczyk for drawing our attention to

the problem considered in this article. The main results of this article were presented
at the XV Probability Conference held from 21 to 25 May 2018 in Będlewo, Poland,
and at the Semigroups of Operators: Theory and Applications Conference held from 30

September to 5 October 2018 in Kazimierz Dolny, Poland. We thank the organisers for
the invitations. The authors were partially supported by the National Science Centre

(Poland) (Grant No. 2016/23/B/ST1/01665).

Competing Interest. None.

References
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processes, Potential Anal. 41(1) (2014), 1–29.

[21] T. Grzywny, M. Ryznar and B. Trojan, Asymptotic behaviour and estimates of slowly
varying convolution semigroups, Int. Math. Res. Not. IMRN 2019(23) (2019), 7193–7258.

[22] T. Grzywny and K. Szczypkowski, Estimates of heat kernels of non-symmetric Lévy
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jump Lévy processes, J. Math. Anal. Appl. 431(1) (2015), 260–282.

[33] P. Kim and A. Mimica, Estimates of Dirichlet heat kernels for subordinate Brownian
motions, Electron. J. Probab. 23 (2018), Paper No. 64, 45.

[34] P. Kim, R. Song and Z. Vondraček, Potential theory of subordinate Brownian motions
revisited, in Stochastic Analysis and Applications to Finance, Vol. 13 of Interdiscip. Math.
Sci. (World Sci. Publ., Hackensack, NJ, (2012), 243–290.

[35] V. Knopova, Compound kernel estimates for the transition probability density of a Lévy
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[47] K.-i. Sato, Lévy Processes and Infinitely Divisible Distributions, Vol. 68 of Cambridge
Studies in Advanced Mathematics (Cambridge University Press, Cambridge, 1999).
Translated from the 1990 Japanese original, Revised by the author.

[48] R. L. Schilling, R. Song and Z. Vondraček, Bernstein Functions: Theory and
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