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Abstract We prove the existence and asymptotic behaviour of the transition density for a large class
of subordinators whose Laplace exponents satisfy lower scaling condition at infinity. Furthermore, we
present lower and upper bounds for the density. Sharp estimates are provided if an additional upper
scaling condition on the Laplace exponent is imposed. In particular, we cover the case when the (minus)
second derivative of the Laplace exponent is a function regularly varying at infinity with regularity index
bigger than —2.
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1. Introduction

Asymptotic behaviour as well as estimates of heat kernels have been intensively studied
in the last decades. The first results obtained by Polya [44] and Blumenthal and Getoor
[4] for isotropic a-stable process in R? provided the basis for studies of more complicated
processes; for example, subordinated Brownian motions [40, 49], isotropic unimodal Lévy
processes [6, 15, 21] and even more general symmetric Markov processes [11, 14]. One
may, among others, list the articles on heat kernel estimates for jump processes of finite
range [10] or with lower intensity of higher jumps [39, 51]. While a great many articles
with explicit results are devoted to symmetric processes or those which are, in appropriate
sense, similar to the symmetric ones, the nonsymmetric case is in general harder to handle
due to lack of a familiar structure. This problem was approached in many different ways;
see, for example, [7, 27, 28, 31, 32, 35, 36, 42, 43, 50]. For a more specific class of stable
processes, see [25, 46, 53]. Overall, one has to impose some control on the nonsymmetry in
order to obtain estimates in an easy-to-handle form. This idea was applied in the recent
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paper [22] where the authors considered the case of the Lévy measure being comparable to
some unimodal Lévy measure. The methods developed in [22, 23] contributed significantly
to this article. See also [32, 42] and the references therein.

In this article the central object is a subordinator; that is, a one-dimensional Lévy
process with nondecreasing paths starting at 0; see Section 2 for the precise definition.
The abstract introduction of the subordination dates back to 1950s and is due to Bochner
[5] and Philips [41]. In the language of the semigroup theory, for a Bernstein function ¢ and
a bounded Cy-semigroup (e_tA Ct> 0) with —A being its generator on some Banach space
&, via Bochner integral one can define an operator B = ¢(.A) such that —B also generates
a bounded Cy-semigroup (e~*8: ¢ >0) on 2. The semigroup (e~*%: ¢ >0) is then said to
be subordinated to (e*t““: t> 0), and although it may be very different from the original
one, its properties clearly follow from properties of both the parent semigroup and the
involved Bernstein function. See, for example, [18] and the references therein. From a
probabilistic point of view, due to positivity and monotonicity, subordinators naturally
appear as random time change functions of Lévy processes or, more generally, Markov
processes. Namely, if (X;: ¢t > 0) is a Markov process and (73: ¢ > 0) is an independent
subordinator, then Y; = X7, is again a Markov process with a transition function given
by

P*(Y; € A) :/ P*(X, € A)P(T; € ds).
[0,00)

The procedure just described is called a subordination of a Markov process and can
be interpreted as a probabilistic form of the equality B = ¢(A). Here A and B are
(minus) generators of semigroups associated to processes X; and Y;, respectively. From
an analytical point of view, the transition density of Y; (the integral kernel of e~*5) can
be obtained as a time average of transition density of X; with respect to distribution
of T;. Yet another approach is driven by partial differential equations, as the transition
density is a heat kernel of a generalised heat equation. The generalisation can be twofold:
either by replacing the Laplace operator with another, possibly nonlocal operator or by
introducing a more general fractional-time derivative instead of the classical one. The
latter case was recently considered in [9, 12, 38]. Here the solutions are expressed in
terms of corresponding (inverse) subordinators and thus their analysis is essential.

By taking A = —A and changing the time of (i.e., subordinating) Brownian motion one
can obtain a large class of subordinated Brownian motions. A principal example here is an
a-stable subordinator with the Laplace exponent ¢(\) = A%, a € (0,1), which gives rise to
the symmetric, rotation-invariant a-stable process and corresponds to the special case of
fractional powers of semigroup (e‘t““u t> 0). For this reason, distributional properties of
subordinators were often studied with reference to heat kernel estimates of subordinated
Brownian motions (see, e.g., [16, 33]). In [24] Hawkes investigated the growth of sample
paths of a stable subordinator and obtained the asymptotic behaviour of its distribution
function. Jain and Pruitt [30] considered tail probability estimates for subordinators and,
in the discrete case, nondecreasing random walks. In a more general setting some related
results were obtained in [17, 26, 42, 52]. In [8] new examples of families of subordinators
with explicit transition densities were given. Finally, in the recent paper [16], the author
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derived explicit approximate expressions for the transition density of approximately stable
subordinators under very restrictive assumptions.

The result of the article is asymptotic behaviour as well as upper and lower estimates of
transition densities of subordinators satisfying scaling condition imposed on the second
derivative of the Laplace exponent ¢. Our standing assumption on —¢” is the weak
lower scaling condition at infinity with scaling parameter « — 2, for some a > 0 (see
(2.7) for definition). It is worth highlighting that we do not state our assumptions and
results in terms of the Laplace exponent ¢, as one could suspect, but in terms of its
second derivative and related function p(z) = x2(—¢”(x)) (see Theorems 3.3, 4.7 and
4.8). Usually the transition density of a Lévy process is described by the generalised
inverse of the real part of the characteristic exponent ¢ ~!(z) (e.g., [23], [36]), but in our
setting one can show that the lower scaling property implies that ¢~!(z) ~ ~!(z) for
z sufficient large (see Proposition 4.3). In some cases, however, ¢ may be significantly
different from the Laplace exponent ¢. However, if one assumes additional upper scaling
condition with scaling parameter §—2 for g strictly between 0 and 1, then these two
objects are comparable (see Proposition 4.6).

The main results of this article are covered by Theorems 3.3, 4.7, 4.8, 4.11 and 4.17.
Theorem 3.3 is essential for the whole article because it provides not only the existence of
the transition density but also its asymptotic behaviour, which is later used in derivation
of upper and lower estimates. The key argument in the proof is the lower estimate on
the holomorphic extension of the Laplace exponent ¢ (see Lemma 3.1), which justifies
the inversion of the Laplace transform and allows us to perform the saddle point type
approximation. In Theorem 3.3 we only use the weak lower scaling property on the second
derivative of the Laplace exponent. In particular, we do not assume the absolute continuity
of v(dzx). Furthermore, the asymptotic is valid in some region described in terms of both
space and time variables. By freezing one of them, we obtain as corollaries the results
similar to [16]; see, for example, Corollary 3.6. It is also worth highlighting that we obtain
a version of the upper estimate on the transition density with no additional assumptions
on the Lévy measure v(dx); see Theorem 4.7. Clearly, putting some restrictions on v(dz)
results in sharper estimates (Theorem 4.8), but it is interesting that the scaling property
alone is enough to get some information. Our starting point and the main object to work
with is the Laplace exponent ¢. However, in many cases the primary object is the Lévy
measure v(dz) and results are presented in terms of or require its tail decay. Therefore, it
would be convenient to have a connection between those two objects. In Proposition 3.8
we prove that one can impose scaling conditions on the tail of the Lévy measure v((z,00))
instead, as they imply the scaling condition on —¢” .

We also note that the main results of the article hold true when —¢” is a function
regularly varying at infinity with regularity index av— 2, where o > 0. This follows easily by
Potter bounds for regularly varying functions (see [3, Theorem 1.5.6]), which immediately
imply both lower and upper scaling properties. Moreover, if additionally a < 1, then, by
Karamata’s theorem and monotone density theorem, regular variation of —¢"” with index
« —2 is equivalent to regular variation of ¢ with index «. This is not the case for the case
«a =1 where, in general, only the first direction holds true.
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Below we present the special case when global upper and lower scaling conditions are
imposed with 0 < a < 8 < 1; see Theorem 4.17.

Theorem A. Let T be a subordinator with the Laplace exponent ¢. Suppose that for
some 0 < a < B <1, the functions

(0,00) 32— 2~ “¢(x), and (0,00) 3 2+ x P (x)

are almost increasing and almost decreasing, respectively. We also assume that the Lévy
measure v(dzx) has an almost monotone density v(z). Then the probability distribution of
T; has a density p(t,-). Moreover, for all t € (0,00) and x> 0,

plt,z) ~ (t(_¢//(w>))—1/2€xp{—t(¢(w)—w¢’<w))}’ if0<xq§_1(1/t) <1,
) te1o(1/x), if 1 <z~ L(1/t),
where w = (¢') 1 (x/t).

We note that a similar result to Theorem A appeared in [13] in around the same
time as our preprint. Our assumptions, however, are weaker, as we assume almost
monotonicity of the Lévy density instead of monotonicity of the function t — tv(t).
Moreover, our estimates are genuinely sharp; that is, the constants appearing in the
exponential factors are the same on both sides of the estimate, while estimates obtained in
[13] are qualitatively sharp; that is, the constants in the exponential factors are different.

As a corollary, under the assumption of Theorem A, we obtain a global two-sided
estimate on the Green function. Namely, for all > 0,

1
GO oy
See Section 5 and Theorem 5.8 for details.

The article is organised as follows: In Section 2 we introduce our framework and
collect some facts concerning Bernstein functions and their scaling properties. Section
3 is devoted to the proof of Theorem 3.3 and its consequences. In Section 4 we provide
both upper and lower estimates on the transition density and discuss when these estimates
coincide. Some applications of our results to subordination beyond the familiar R? setting
and Green function estimates are presented in Section 5.

Notation

By C1,¢1,C5,ca,... we denote positive constants which may change from line to line.
For two functions f,g: (0,00) — [0,00) we write f(x) 2 g(z) if there is ¢ > 0 such that
f(z) > cg(x) for all x > 0. An analogous rule is applied to the symbol <. We also have
f(z) ~ g(z) if there exists C > 1 such that C~! f(x) < g(x) < Cf(z) for all z > 0. Finally,
we set a Ab=min{a,b} and aVb=max{a,b}.

2. Preliminaries

Let (©2,F,P) be a probability space. Let T = (T}: t > 0) be a subordinator; that is, a Lévy
process in R with nondecreasing paths. Recall that a Lévy process is a cadlag stochastic

https://doi.org/10.1017/51474748021000360 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000360

Transition densities of subordinators of positive order 1123

process with stationary and independent increments such that Ty = 0 almost surely. There
is a function ¢: R — C, called the Lévy—Khintchine exponent of T, such that for all t >0
and £ € R,

]E(eith) — (&)
Moreover, there are b > 0 and o-finite measure v on (0,00) satisfying
/ min{1,s} v(ds) < oo, (2.1)
(0,00)
such that for all £ € R,

P(€) = —ikb— /( ) )(ei5t1) v(dx)

= —i& <b+ /(0,1) xz/(dx)) — /(o,oo) (e —1 —ifxlpery) v(da),

which is valid thanks to (2.1). By ¢: [0,00) — [0,00) we denote the Laplace exponent of
T, namely,

(2.2)

E(e ) = etV

for all t > 0 and A > 0. Let ¥* be the symmetric continuous and nondecreasing majorant
of R; that is,

Y*(r) = sup R(z), r>0.

|z|<r
Notice that
V(7Hs) =5, and  TH(R(s) 28,
where ¢! is the generalised inverse function defined as
vl (s) =sup {r>0: ¢"(r) = s}.

To study the distribution function of the subordinator T, it is convenient to introduce
two concentration functions K and h. They are defined as

1
K(r)= —2/ s*v(ds), r>0, (2.3)
" Jon
and
h(r) :/ min {1,r%s*} v(ds), r>0. (2.4)
(O’Oo)

Notice that h(r) > K(r). Moreover, by the Fubini-Tonelli theorem, we get

h(r) = 2/OOK(3)S*1 ds. (2.5)
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In view of [20, Lemma 4], we have

1
ﬂh(r_l) <*(r) < 2h(r7h). (2.6)
A function f: [0,00) — [0,00) is regularly varying at infinity of index «, if for all A > 1,
lim f(Az)
z—oo f(x)
Analogously, f is reqular varying at the origin of index « if for all A > 1,

f(Az)

z—0t f(ac)

=\

=%

If a =0, the function f is called slowly varying.

We next introduce a notion of scaling conditions frequently used in this article. We say
that a function f: [0,00) — [0,00) has the weak lower scaling property at infinity if there
are @ € R, ¢ € (0,1] and x¢ > 0 such that for all A > 1 and = > xq,

f(Az) =2 A f(x). (2.7)

We denote it briefly as f € WLSC(a,c,z9). Observe that if o > o/ then WLSC(a, ¢, z)
WLSC(a/,¢,xp). Analogously, f has the weak upper scaling property at infinity if there
are f €R, C > 1, and xg > 0 such that for all A > 1 and x > x,

fOx) <CN f(). (2.8)

In this case we write f € WUSC(8,C,xo).
We say that a function f: [0,00) — [0,00) has doubling property on (xg,00) for some
o > 0 if there is C' > 1 such that for all z > zg,

“Hf(x) < f(22) < Cf(2).

Notice that a nonincreasing function with the weak lower scaling has a doubling property.
Analogously, a nondecreasing function with the weak upper scaling.

A function f: [0,00) — [0,00) is almost increasing on (xg,00) for some xg > 0 if there is
¢ € (0,1] such that for all y >z > xo,

cf(x) < f(y)-

It is almost decreasing on (x9,00) if there is C' > 1 such that for all y > = > x,

Cfw) = f(y).
In view of [6, Lemma 11], f € WLSC(a,c,z¢) if and only if the function

(zg,00) x>z~ *f(x)
is almost increasing. Similarly, f € WUSC(8,C,x¢) if and only if the function

(z0,00) 3z P f()
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is almost decreasing. For a function f: [0,00) — C its Laplace transform is defined as

LF(A) = /Oo e A f(x)da.

0

2.1. Bernstein functions

In this section we recall some basic facts about Bernstein functions. A general reference
here is the book [48].
A function f: (0,00) — [0,00) is completely monotone if it is smooth and

(=1 >0

for all n € Ny. Next, a function ¢ is a Bernstein function if it is a nonnegative smooth
function such that ¢’ is completely monotone.
Let ¢ be a Bernstein function. In view of [29, Lemma 3.9.34], for all n € N we have

(71)n+1

o) = "6 (Y), A>0. (2.9)

Since ¢ is concave, for each A > 1 and = > 0 we have
p(Ax) < ¢ (2)(A = D)z + (x);
thus, by (2.9),
P(Az) < Ap(x). (2.10)

By [48, Theorem 3.2], there are two nonnegative numbers a and b and a Radon measure
w on (0,00) satisfying

/ min{1,s} p(ds) < co
(0,00)
and such that

B(N) :a+b/\+/ (1—e %) u(ds). (2.11)

(0,00)

A Bernstein function ¢ is called a complete Bernstein function if the measure p has a
completely monotone density with respect to the Lebesgue measure.

Proposition 2.1. Let f be a completely monotone function. Suppose that f has a doubling
property on (xg,00) for some xg > 0. Then there is C >0 such that for all x> xg,

f(@) > Ca|f'(2)].
Proof. Without loss of generality, we can assume f # 0. Clearly,
flx) = f(z/2) = ) f'(s)ds < g f'(x).
x/2
Since f is completely monotone, it is a positive function and

f@/2) = 5zl f' ()],
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which, together with the doubling property, gives
f(z) > Cx|f'(x)|

for x > 2xy. Hence, we obtain our assertion in the case o = 0. If g > 0, we observe that
the function

z|f' ()]
f(=)

is continuous and positive and thus bounded. This completes the proof. O

[%0,220] D x —

Proposition 2.2. Let f be a completely monotone function. Suppose that —f' €
WLSC(t,c,xq0) for some c € (0,1], x9 >0 and 7 < —1. Then f € WLSC(1+7,¢,x0).

Analogously, if —f' € WUSC(r,C,xqg) for some C > 1, 2o >0 and 7 < —1, then (f —
f(o0)) € WUSC(1,C,xp).

Proof. Let A > 1. For y > = > x(, we have

Ay Y
FOa) —fOg) =— [ f(s)ds = / F'(As)ds

Az
Yy
2=\ [ (s)ds =N (o)~ £0)s
thus,
Fz) > e f(2) + f(Ay) — AT f(y).
Since f is nonnegative and nonincreasing, we can take y approaching infinity to get
FO2) = AT f(@) + (1- A7) lim f(y)
Y—+00
> AT f(2),

where in the last inequality we have also used that 1> ¢A\'*". The second part of the
proposition can be proved in much the same way. O

Proposition 2.3. Let ¢ be a Bernstein function with ¢(0) =0. Then ¢ € WLSC(a, ¢, x0)
for some ¢ € (0,1], zp >0 and o > 0 if and only if ¢ € WLSC(«a — 1,¢',xg) for some
c € (0,1]. Furthermore, if ¢ € WLSC(a,c,z), then there is C > 1 such that for all x > x,

x¢'(z) < p(x) < Cxd/(z). (2.12)

Proof. Assume first that ¢’ € WLSC(a — 1,¢,20). Without loss of generality, we can
assume ¢’ # 0. We claim that (2.12) holds true. In view of (2.9), it is enough to show that
there is C > 1 such that for all z > =z,

o(x) < Cxg'(x).
First, let us observe that, by the weak lower scaling property of ¢/,

()= o) = [ " (s)ds
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<c ¢ (x) /I (s/x)fHa ds

< éa:qi?'(x). (2.13)

Thus, we get the assertion in the case xg = 0. If xg > 0, it is enough to show that there
is C' > 0 such that for all x > xg,

z¢'(z) > C. (2.14)
Since ¢’ € WLSC(a — 1,¢,x0), the function
(20,00) 5 7+ 26/ ()
is almost increasing. Hence, for = > 2y we have
¢ (z) > 2z0¢’ (2x0).

To conclude (2.14), we notice that ¢’(z) is positive and continuous in [xg,2z¢]. Now, by
(2.14) we get

z¢'(x) = Cé(xo)

for all x > xg, which, together with (2.13), implies (2.12) and the scaling property of ¢
follows.
Now assume that ¢ € WLSC(a,c¢,z0). By monotonicity of ¢', for 0 < s < ¢,

¢(tx) — (sz) _ x(t—s)¢(s2)
¢l@) = @)
For s =1, by the lower scaling we get
2 =1 @) | Oltn) | e
o(x) o(x)
for all 2 > xzg. Thus, for t = 21/%c71/ we obtain that x¢'(z) > ¢(x) for all z > xg.

Invoking (2.9), we conclude (2.12). In particular, ¢’ has the weak lower scaling property.
This completes the proof. O

>

Proposition 2.4. Let ¢ be a Bernstein function. Suppose that —¢" € WUSC(8—2,C,x0)
for some C'>1, 29 >0 and < 1. Then for all x > xg,

¢'(z) < z(—¢"(x)) +0,

C
1-p
where b is the drift term from the integral representation (2.11) of ¢.

Proof. Without loss of generality, we can assume ¢ # 0. By the scaling property, for

T > 1o we have
’ _ 0o o 00 —1+8
M:/ EM@SC/ t o
o(=¢"(z)  Jo x(=¢"(x)) 1 e \% t 1-p
which concludes the proof. O
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Remark 2.5. Let ¢ be a Bernstein function such that ¢(0) = 0. Suppose that —¢” €
WLSC(a — 2,¢,xq), for some ¢ € (0,1], zop > 0 and « € (0,1]. Since ¢’ is completely
monotone, by Proposition 2.2, ¢’ € WLSC(a — 1,¢,2¢). Therefore, by Proposition 2.3,
we conclude that ¢ € WLSC(a,¢1,20) for some ¢; € (0,1].

Proposition 2.6. Let f be a completely monotone function. Suppose that
fe WLSC(a—1,¢,x0) N WUSC(B —1,C,x0)
for some c€ (0,1], C>1, 20 >0 and 0 < a« < 5 < 1. Then
—f € WLSC(a—2,c ,x0) N WUSC(B —2,C" )
for some ¢’ € (0,1] and C" > 1.

Proof. By monotonicity of —f/, for 0 < s < t,

a(t— ) (a) _ flsx)— fltz) _ —a(t— ) (s2)
R T (215)

Taking s =1 in the second inequality, the weak upper scaling property yields

ot 1f@) S e

f(z) T f(@) ’
for all z > z¢. By selecting t > 1 such that ct’~! < 1, we obtain z(— f'(z)) 2 f() for
x > xg. Similarly, taking ¢ =1 in the first inequality in (2.15), by the weak lower scaling
property we get

f(st)

_ _ !/
‘T(]' S)f (‘r) S -1 S C*lsafl o 17
f(x) /()
for all z > z0/s. By selecting 0 < s < 1 such that s*~! > 2¢, we obtain z(— f(z)) < f(z)
for x > x0/s. Hence,

f(z) zw(—f’(w)), (2.16)

for all x > xg/s. Therefore, lower and upper scaling properties follow from (2.16) and the
scaling properties of f. This finishes the proof for the case g = 0. If zy > 0, we notice that
both f ad —f’ are positive and continuous; thus, at the possible expense of worsening the
constants, we get (2.16) for all z > . O

Now, by combining Propositions 2.3 and 2.6, we immediately get the following corollary.
Corollary 2.7. Let ¢ be a Bernstein function such that ¢(0) =0. Suppose that
¢ € WLSC(a,c,zo) N WUSC(B,C,x0)
for some c€ (0,1, C>1,20>0 and 0 <a < B <1. Then
—¢" € WLSC(a—2,c ;20) N WUSC(B —2,C",xq)

for some ¢ € (0,1] and C’ > 1.
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Lemma 2.8. Let ¢ be a Bernstein function. Suppose that —¢" € WLSC(«a — 2,¢,x¢) for
some c € (0,1], kg >0 and o > 0. There is a constant C > 0 such that for all x> xy,

C(—¢"(x)) < /( L sutds)

Moreover, the constant C depends only on a and c.

Proof. Let f: (0,00) — R be a function defined as

1t) = /( #(s),

We observe that, by the Fubini-Tonelli theorem, for x > 0 we have

x)z/ e_xt/ s u(ds) dt
0 (0,t)

_ /(O)OO) § /:Oe—mt dt p(ds) = 27 (—¢" (2)).

Since f is nondecreasing, for any s > 0,

—¢"(z) =xLf(z) > /OO e 'f(t/z)dt
e *f(s/z).

Y

Hence, for any u > 2,

/ f(s/z) ds—&-/ooe_sf(s/x) ds

< Fu/a) s [ ) as
Therefore, setting z = Au > 2z, by the weak lower scaling property of —¢”,

FL/A) 2 =g/ (uh) = 2¢7/2(=¢/" (uA/2))
> (2% 2c—2e7 /%) (—¢" (uN/2)).

At this stage, we select u > 2 such that
20720 e~ u/2 > 972
Then again, by the weak lower scaling property of —¢”, for \ > x,
FO/N) = 272(=¢" (uN/2)) > 27U 72 (=¢" (N),

which ends the proof. O
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Lemma 2.9. Let ¢ be a Bernstein function. Suppose that —¢" € WLSC(a — 2,¢,xq) for
some c € (0,1], o > 0 and a > 0. Then there exists a complete Bernstein function f such
that f ~ ¢ for x>0 and —f" ~ —¢" for x > xg.

Proof. Let us define

f(A):a+b/\+/oo AU du).

0o u-+1 a
By [48, Theorem 6.2 (vi)] the function f is a complete Bernstein function. Since for y > 0,

7y+1 (1 e ),

we get f(A) =~ ¢(\). Moreover,

F1N) = -2 / h ()

Hence, by Lemma 2.8 we obtain —f”(\) = —¢”'(\) for A > x. O

3. Asymptotic behaviour of densities

Let T = (T3: t > 0) be a subordinator with the Lévy—Khintchine exponent ¢ and the
Laplace exponent ¢. Since ¢ is a Bernstein function, it admits the integral representation
(2.11). As it may be easily checked (see, e.g., [48, Proposition 3.6]), we have p=v, a =0

and (&) = ¢(—i€). In particular, ¢(0) = 0.

In this section we study the asymptotic behaviour of the probability density of T;. In
the whole section we assume that ¢” # 0; otherwise, T; = bt is deterministic. The main
result is Theorem 3.3. Let us start by showing an estimate on the real part of the complex
extension ¢.

Lemma 3.1. Suppose that —¢" € WLSC(a—2,¢,x¢) for some c € (0,1], o >0 and o > 0.
Then there exists C' >0 such that for all w >z and XA € R,

R(6(w+i)) = d(w)) = OX2(— ¢ (A V w)).

Proof. By the integral representation (2.11), for A € R we have

R(d(w+id) —p(w)) = / (1—cos(As))e™ ™ v(ds).

(0,00)

In particular,
%(é(w +iA) — ¢(w)) = %((b(w —i\) — qS(w))

Thus, it is sufficient to consider A > 0. We can estimate

R(p(w+1iX) — p(w)) > /(0 D (1—cos(As))e ™ v(ds)

e )\2/ s2e” " p(ds). (3.1
(0,1/2)
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Due to Lemma 2.8, we obtain, for A > w,

%@@H%M—¢m»zA{/ 2 u(ds) 2 X (~¢" (V)

0,1/7)

If w> A\ >0, then, by (3.1), we have

R(p(w—+i\) — p(w)) 2 )\2/ s2e” " p(ds)

(0,1/w)
> 671>\2/ s?v(ds),
(0,1/w)
which, by Lemma 2.8, completes the proof. O

Remark 3.2. Suppose that —¢” € WLSC(a—2,¢,2¢) for some c € (0,1], zg > 0 and « > 0.
Since

K(1/x) <ex®(—¢"(x)),
by Lemma 2.8 we obtain
Ca?(—¢"(z)) < K(1/z) < ex®(—¢" (x))
for all x> xq.

Theorem 3.3. Let T be a subordinator with the Laplace exponent ¢. Suppose that —¢" €
WLSC(a —2,¢,zq) for some ¢ € (0,1], zg > 0 and a > 0. Then the probability distribution
of Ty is absolutely continuous for all t > 0. If we denote its density by p(t, ), then for
each € > 0 there is My > 0 such that

[p(tt6 () v/ 27t (=" (w)yexp {t(6(w) — e (w)) } ~ 1] < ¢
provided that w > z¢ and tw?(—¢" (w)) > M.

Proof. Let x =t¢'(w) and M > 0. We first show that

p(t,x) = 1. M exp{ —t<¢><x,u> - @(w,0>> }du, (3.2)
2 (=9 (w)) Jr t/t(=¢"(w)) ¢

provided that w > zo and tw?(—¢"”(w)) > M, where for A € R we have set

xT

(2/t,)) = d(w+id) = L (w+id). (3.3)

To do so, let us recall that
E(ef)‘Tt) = eft‘i’o‘), A>0.

Thus, by Mellin’s inversion formula, if the limit

w1 L
lim L/ e PIHAT A\ exists, (3.4)
L—o0 271 w—ilL
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then the probability distribution of T} has a density p(t, -) and
1wl B
t,r)= lim — - .
p(tr) = lim o / ¢

Therefore, our task is to justify the statement (3.4). For L > 0, we write
1 w—+iL 1 L
— e~ t(N+Az )\ — 7/ e t2(@/t2) )\

27TZ w—il, 27'[' L

By the change of variables

u
A —
Vi(=¢"(w))
we obtain
L L
/ e~ t@/tX) g = =t (@/t0) / exp{ —t(®(2/t,\) ~ @(2/1,0)) } ar
—L —L
e—t<I>(ac/t70)

— X
Vo ()
L\/t(=¢" (w)) z u 2
[T Loz ) (z0))
— L/t (w)) t\/t(=¢" (w)) t
Let us note here that —¢" is nonincreasing and integrable at infinity; thus, we in fact
have o < 1. We claim that there is C' > 0 not depending on M, such that for all u € R,

R (@(f%) - @(f,o)) > C(u? A (Ju]* M —/2)), (3.5)

provided that w > zg and tw?(—¢”(w)) > M. Indeed, by (3.3) and Lemma 3.1, for w > x
we get

m<@(f’M)‘é(i’owzqﬁ’%“w( t(_';'“(w))m). (36)

We next estimate the right-hand side of (3.6). If |u| < wy/t(—¢"(w)), then

<z>|/7<|;>¢"< t(—%l”(w» ) =lf

Otherwise, since —¢”" € WLSC(a — 2,¢,¢), we obtain

|u|2 7 |u| w Cu2 L‘ T
ow)” ( o) ) 2 o ( tw2<¢"<w>>)
= clul* (tw?(—¢" (w))) '~
> M|l
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Hence, we deduce (3.5). To finish the proof of (3.4), we invoke the dominated convergence
theorem. Consequently, by Mellin’s inversion formula we obtain (3.2).
Our next task is to show that for each € > 0 there is My > 0 such that

Aexp{—t(@(j,%) —@(f,O))}du—/Re_5“2du

provided that w > zo and tw?(—¢"(w)) > My. In view of (3.5), by taking My > 1
sufficiently large, we get

/|uzM3/4 exp{ ‘t<@<f’M> _@G’O)) }du

<e (3.7)

§/ e Clul® du<e
Jul>My"*

0

(3.8)
and
/ em2% du <e. (3.9)
Ju| >0y
Next, we claim that there is C' > 0 such that
1 1
’t(cp(”,“) w(%)) ~ P <Oyt (3.10)
E\/t(=¢"(w)) t 2

Indeed, since

9, @ (%o) —0,

by Taylor’s formula, we get

(o7 )+ (50)) o

where £ is some number satisfying

127\ Ty 2

2
:Mlﬂﬁ”(ww)—d’(w)!, (3.11)

|ul

Vi(=¢"(w))

§l < (3.12)

Observe that

| (w+ i) — ¢ (w)| < / Lo e 1) u(ds)
(0,00)
< 2|¢] o )536_“’8 v(ds) = 2|¢|¢" (w).

Since —¢" is a nonincreasing function with the weak lower scaling property, it is doubling.
Thus, by Proposition 2.1, for w > xq,

—¢"(w) 2 we™ (w),
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which together with (3.12) give

" . 7 |ul —¢" (w)
w4+1£) — ¢ (w C .
|6 (w+i8) = ¢ (w)| < oe] w
< CM, ?|ul(=¢" (w)), (3.13)

whenever tw?(—¢" (w)) > My. Now, (3.10) easily follows by (3.13) and (3.11).
Finally, since for any z € C,

|ez — 1| < |z|e|z|,

by (3.10) we obtain

Lo ol oo ) oo

-5 1,2 —%,13 3
< CM, expy — 5lul"+CMy *[ul” plu|” du <k,

1/4
[ul<M,

provided that Mj is sufficiently large, which, together with (3.8) and (3.9), completes the
proof of (3.7) and the theorem follows. O

Remark 3.4. If g =0, then the constant My in Theorem 3.3 depends only on « and c.
If 29 > 0, it also depends on
X :cgb"’(x)
up .
z€[z0,2T0] _¢/I(x)

By Theorem 3.3, we immediately get the following corollaries.

Corollary 3.5. Suppose that —¢" € WLSC(a — 2,¢,x¢) for some c € (0,1], z9 > 0 and
a > 0. Then there is My > 0 such that

1 /
p(t,r) ~ mexp{ —t(p(w) —we' (w)) },

uniformly on the set
{(t,x) ER, xR: th< z < t¢/(z3) and tw?(—¢" (w)) > M0}7
where w = (¢') " (x/t).

Corollary 3.6. Suppose that —¢"” € WLSC(«a — 2,¢,x0) for some c € (0,1], z9 > 0 and
a>0. Assume also that b=0. Then for any x >0,

Jim p(ta)v/H(=a" (w))exp {t(6(w) - we!(w) } = (2m) 7172,
where w = (¢') " (x/t).

By imposing on —¢” an additional condition of the weak upper scaling, we can further
simplify the description of the set where the sharp estimates on p(¢,z) hold.
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Corollary 3.7. Suppose that ¢ € WLSC(a,c,x9) NWUSC(B,C,xo) for some ¢ € (0,1],
C>1,20>0and 0 < a< B < 1. Assume also that b=0. Then there is § > 0 such that

1 w
p(t,r) ~ mexp{ —t(P(w) —we'( ))}7

uniformly on the set
{(t,x) eR, xR: 0 <z~ (1/t) <6, and 0 < t(xo) < 1}, (3.14)
where w = (¢') " (z/t).
Proof. By Proposition 2.3, there is C; > 1 such that for all u > x,
¢(u) < Crug’(u);
thus, for (¢,2) belonging to the set (3.14),

1 s0(6711/1)
tp=*(1/1) o= (1/t)
< C168' (671 (1/1)). (3.15)
By Proposition 2.3, ¢’ € WLSC(—1+ a,¢,z¢); hence, for all D > 1,
& (D611 /1) 2 D740/ (67 (1/1).

By taking § sufficiently small, we get

~+| 8

<

1

c T—a
D=|(— >1:
(015) 7

=< (Ds7' (1)),

thus, by (3.15), we obtain

which implies that
w=(¢")" (x/t) > Do~ (1/1). (3.16)

In particular, w > . On the other hand, by Propositions 2.3 and 2.4, there is ¢; € (0,1]
such that

tw?(=¢" (w)) > ert(w).
By Remark 2.5, ¢ € WLSC(a, c2,20) for some ¢y € (0,1]. Therefore,

__dw) o (w )
) = S = 2<¢—1<1/t>> /

which, together with (3.16), gives
tw?(—¢"(w)) 2 677 > My

for § sufficiently small. Hence, by Corollary 3.5, we conclude the proof. O
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The following proposition provides a sufficient condition on the measure v that entails
the weak lower scaling property of —¢” and allows us to apply Theorem 3.3.

Proposition 3.8. Suppose that there are xg >0, C > 1 and a > 0 such that for all
O0<r<l/xgand 0<A<1,

v((r,00)) < CAv((Ar,00)). (3.17)
Then —¢" € WLSC(a —2,¢,z9) for some c € (0,1].

Proof. Let us first notice that by the Fubini—Tonelli theorem,
h(r) = r_z/ min {r?,s*}v(ds)
(0,00)

:r”/rtu((t,oo)) dt.
0

Thus, by (3.17), for all 0 <r < 1/z¢ and 0 < A < 1,

200> [T
CA“h(\r) = (’2 / t1((My00)) di
0

2 T

> =y tv((t,00)) dt

= h(r). (3.18)

Hence, by [23, Lemma 2.3], there is C’ > 1 such that for all 0 <r < 1/,
K(r)<h(r) <C'K(r). (3.19)

The integral representation of ¢ entails that
e e 2K (1/2) < —¢"(x) <e*27 %2 %h(1/x), = >0;
thus, by (3.19), we obtain
—¢"(x) ~27*h(1/x)

for all > xy. Now, the weak lower scaling property of —¢” is a consequence of (3.18). O

4. Estimates on the density

Let T = (T3: t > 0) be a subordinator with the Lévy—Khintchine exponent ¢ and the
Laplace exponent ¢. In this section we always assume that —¢” € WLSC(a — 2,¢,2¢)
for some ¢ € (0,1], 29 > 0 and « € (0,1]. In particular, by Theorem 3.3, the probability
distribution of T} has a density p(t, ). To express the majorant on p(, - ), it is convenient
to set

p(z)=2°(=¢"(x)), >0.

https://doi.org/10.1017/51474748021000360 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748021000360

Transition densities of subordinators of positive order 1137

Obviously, ¢ € WLSC(a,¢,z0). Let ¢! denote the generalised inverse function defined
as

gofl(x) = sup{r >0: p"(r)= m}

where

@*(r) = sup ().
o<z<r

We start by showing comparability between the two concentration functions K and h
defined in (2.3) and (2.4), respectively.
Proposition 4.1. Suppose that —¢"" € WLSC(a— 2,¢,z¢) for some c € (0,1], xo > 0 and
a>0. Then there is C > 1 such that for all 0 <r < 1/x0,
K(r)<h(r) <CK(r).
Proof. Since h(r) > K(r), it is enough to show that for some C' > 1 and 0 <r < 1/,
h(r) < CK(r).
In view of (2.5), we have
o d 1/xo d 00 d
h(r) :2/ K(s)& = 2/ K&)E 12 K. (4.1)
r $ r s 1/xzo s

Let us consider the first term on the right-hand side of (4.1). By Remark 3.2 we have
K(r)~¢(1/r), for 0 < r < 1/zg, which implies
/o ds

K(s)? SK(r), 0<r<1l/z.

T

This finishes the proof in the case xo = 0. If zy > 0, then, for 1/(2z9) <r < 1/xzq, we have
K(r) 2 ¢(1/r) Z ¢(w0) > 0.

Hence, K(r) 21 for all 0 <r < 1/z¢. Since the second term on the right-hand side of
(4.1) is constant, the proof is completed. O

Let us notice that by (2.6), Proposition 4.1 and Remark 3.2, we have
Vi (z) = h(l/z) ~ K(1/z) ~ ¢(z) (4.2)
for all & > z(. In particular, there is ¢; € (0,1] such that ¢* € WLSC(a,¢1,20). Moreover,

P (z) S K(1/x) :x2/(0 y )szy(ds)

< / (1—cossz) v(ds);
(0,1/z)

thus, for all x > xg,

P (x) S R (). (4.3)
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Since for A>1 and z > 0,
p(Az) < Np(2), (4.4)
we get
p* (M) < X" (). (4.5)

Proposition 4.2. Suppose that —¢"” € WLSC(a — 2,¢,zq) for some c € (0,1], g >0 and
a>0. Then for all r > 2h(1/x),
1
h=1(r)
Furthermore, there is C > 1 such that for all A >1 and r > 2h(1/x¢),

Y () < OV ().

~yT (). (4.6)

Proof. Using (2.6), we immediately get
1 1
- < -
h=1(r/2) ~ h—1(24r)

for all 7 > 0. On the other hand, by Proposition 4.1 and [23, Lemma 2.3], there is C' > 1
such that for all A >1 and r > h(1/xg),

<yp(r)

1
< 1/a7. .
o < e — o (4.7)
Hence, for r > 2h(1/x0),
1 1
—1 —l/oz < —1 < 1/04 .
c™ 2 Wi = P(r) <C(24) h=1(r)’ (4.8)

proving (4.6). The weak upper scaling property of ¥~1 is a consequence of (4.7) and
(4.8). O

Proposition 4.3. Suppose that —¢" € WLSC(a—2,¢,2¢) for some c € (0,1], zo >0 and
a>0. Then for all x > xq,

P () = " (2), (4.9)

and for all v > o(xo),
YTHr) m e (). (4.10)
Furthermore, there is C' > 1 such that for all A > 1 and r > o(z9),
P () < OXVepT ().
Proof. We start by showing that there is C' > 1 such that for all x > x,

C™*(x) < ¢*(2) < Cv* (). (4.11)
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The first inequality in (4.11) immediately follows from (4.2). If xo = 0, then the second
inequality is also the consequence of (4.2). In the case xg > 0, we observe that for x > xg,
we have

so*(x):maX{ sup ©(y), sup <p(y)}
0<y<zo ro<y<zw

< max {¢*(z0)," (x) }

(2

proving (4.11).
Now, using (4.11), we easily get

PHCTIr) < p7Hr) <YTH(Cr)
for all r > Cy*(x¢). Hence, by Proposition 4.2,
T r) =T (r)

for 7 > C'max {¢*(x0),2h(1/2¢)}. Finally, since both 1~ and ¢~! are positive and
continuous, at the possible expense of worsening the constant, we can extend the area of
comparability to conclude (4.10). Now, the scaling property of ¢! follows by (4.10) and
Proposition 4.2. O

Remark 4.4. Note that, alternatively, one can define the (left-sided) generalised inverse

p_1(x) =inf{r > 0: p.(r) =z},

where

@« (r) = inf ().

r<z

In such a case we have
Dx (go_l(s)) =s, and w_1 (ga*(s)) <s.
Clearly, for all z > 0,
pi(z) < () < 9" (2).
Let u > xp and set
ro =inf{r > 0: ¢*(r) = u}.

By Proposition 4.3, ¢* € WLSC(a,c,z0) for some ¢ € (0,1] and z¢ > 0. Thus, for A > ¢/,
we get ©*(Arg) > ¢*(ro). It follows that for all u > xg,

sup{r > 0: " (r) =u} < Ainf{r > 0: ¢*(r) = u}
< Anf{r > 0: p.(r) = u}.
Thus, for all r > x,

e M (p*(r) S
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Corollary 4.5. Suppose that —¢" € WLSC(«a — 2,¢,x9) for some c € (0,1], zo > 0 and
a > 0. Then there is C' > 0 such that for all x > x,

(¢(z) —z¢/(2)) < Cop(a). (4.12)
Proof. Suppose zy > 0. We have
(61) ~6'(@) — (o) 206 () = [ o= [ ptan)

where

o @) = tim o)

By the weak lower scaling property of ¢, for any z¢/x < u < 1, we have

p(x) = cu™"p(zu);
thus,

(60)—6/(2)) — (8an) — 06 (57) S plo) [ w"

We denote ¢; = ¢(z) — 209’ (z ). Using the scaling property of ¢, we conclude that

@ -1
C1 C1 _1( %o cic
1= o plan) € e (2 (o) < 225 ot
¢(xo) ¢(xo) z ¢(xo)
provided that @ > x(, which proves (4.12) if zy > 0. For o =0 it is enough to observe
that (2.9) implies that lim, ,q+ 2¢'(z) =0, and the claim follows. O

Proposition 4.6. Suppose that —¢" € WLSC(a —2,¢,20) "WUSC(8 —2,C,x¢) for some
€(0,1,C>1,20>0 and 0 < a < B < 1. Assume also that b=0. Then for all x > x,

p*(x) = o(x), (4.13)
and for all v > (),
P (r) = o7 (r). (4.14)
Furthermore, there is ¢’ € (0,1] such that for all A>1 and r > ¢(xg),
O YOr) > NPT (). (4.15)

Proof. Let us observe that, by (2.9), Proposition 2.3 and Proposition 2.4, there is ¢; €
(0,1] such that for all z > z,

2¢(x) > p(z) > c1p(x). (4.16)
Now the proof of the lemma is similar to the proof of Proposition 4.3 and is therefore
omitted. O
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4.1. Estimates from above

In this section we show the upper estimates on p(t, - ). Before embarking on the proof, let
us introduce some notation. Given a set B C R, we define

§(B) =inf{|z|: z € B}
and
diam(B) = sup {|z —y|: z,y € B}.
Let

br:b+/ sv(ds), r>0.
0.7)

In view of (2.2), the above definition of b, is in line with the usual one (see, e.g., [32,
formula (4)] or [23, formula (1.2)]). Let us define ¢: [0,00) — [0,00],

00 if s=0,
C(s) =< ¢*(1/s) if0<s<ay?,
Ao(1/s) if 25! < s,
where A = ¢*(20)/¢(z0) € (0,2].
Theorem 4.7. Let T be a subordinator with the Lévy—Khintchine exponent 1 and the
Laplace exponent ¢. Suppose that —¢" € WLSC(a—2,¢,x¢) for some c € (0,1], ¢ >0 and

a > 0. Then the probability distribution of Ty has a density p(t,-). Moreover, there is
C >0 such that for all t € (0,1/p(x0)) and x € R,

p(ba+thy g1 ) < Cp (1/6)-min {1,6¢(J2))}. (4.17)
In particular, for all t € (0,1/¢(z0)) and x > 2etd’ (v=1(1/t)),
p(t,z+tb) < Cp~ ' (1/t) min{1,t((z)}. (4.18)

Proof. Without loss of generality, we can assume b = 0. Indeed, otherwise it is enough to
consider a shifted process T; =Ty —tb. Next, let us observe that for any Borel set B C R,
we have

v(B) < / (1- 6_8/6(3)> v(ds)
(6(B),0)
< ¢(1/8(B)). (4.19)
Furthermore, for §(B) < 1/x¢, by Proposition 4.1 and Remark 3.2,
v(B) <h(6(B))
S ¢*(1/5(B)).

Thus, v(B) S ¢(6(B)). We claim that ¢ has doubling property on (0,00). Indeed, since —¢”
is nonincreasing function with the weak lower scaling property, it has doubling property
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on (wg,00); thus, for 0 < s < zy",
C(39) =457 (=0"(2/5)) £ 572 (=" (1/5) £C(6).

This completes the argument in the case o = 0. If 29 > 0, then by (2.10), for s > Qxal
we have

C(55) = Ap(2/s) < 24¢(1/s) < 2((s).
Lastly, the function

©* (27)
o(x)

[%xo,mo] Sz

is continuous and thus it is bounded.
Next, for s >0 and = € R,

sV]z|— 1|z > is;
thus, by motonicity and the doubling property of (, we get
¢(sVlzl=3lz]) S C(s).
Hence, by (2.4) and (4.2), for r > 0,
/ ((sVa—iz)v(dz) < ((s)h(r)
(r,00)

SC(s)er(1/r). (4.20)

Since 9* has the weak lower scaling property and satisfies (4.3), by [23, Proposition 3.4]
together with Proposition 4.2, there are C' > 0 and ¢; € (0,00] such that for all ¢ € (0,¢;),

[emergac<cwam)’, (4.21)
R

If 29 =0, then t; = co. If t; < 1/p(zp), we can expand the above estimate for ¢; <t <
1/¢(xg) using positivity of the right-hand side and monotonicity of the left-hand side.

In view of (4.19), (4.20) and (4.21), by [32, Theorem 1] with v = 0, there are Cy,Cs5,C3 >
0 such that for all ¢ € (0,1/¢(z0)) and = € R,

P(Wﬂbl/w—l(lm)
<O H(1/t) - min{l,t((ﬂx) —i—exp{ — Colz|yp~ 1 (1/t)log (1 +Cg|x|w_1(1/t))}}.
Let us consider x > 0 and t € (0,1/¢(xq)) such that ¢{(z) <1. We claim that
exp{ — Chap~(1/t)log (1 +o3w—1(1/t))} < 1¢(x). (4.22)
First suppose that x >z ! Let us observe that the function

[0,00) D u > uexp{ — Cyulog (1 +C3u)}
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is bounded. Therefore,

-1 -1 1
exp{ — Chap Y (1/t)log (1+ Csayp (1/t))} S ST Tn (4.23)
Since x¢~1(1/t) > 1, by (2.10), we have
_ ¢(1/x) 1
D= G i) 1) = v T 2y
Next, in light of (2.9), for all y > 0,
39" (y) < o(y);
hence, by the monotonicity of ¢!,
/) =07 (59 (971 (2/1))
<o~ (o(p7'(2/1)))
= 9071(2/0
—1(1/1), (4.25)

where in the last step we have used Proposition 4.3. Putting (4.23), (4.24) and (4.25)
together, we obtain (4.22) as claimed.
Now let 0 <z < xal. Observe that the function

[0,00) 2 u > u? exp{ — Csulog (I—I—C’gu)}

is also bounded. Hence,
_ _ 1
exp{ — Corp~ (1/1)log (1 + Csat) 1(1/t))} < ey (4.26)

Since x¢~1(1/t) > 1, using (4.5) we get

(1 /) = ¢ (1/) 1
te*(1/x) o (o (1) 1/7) > (o1 (1)) (4.27)

Hence, putting together (4.26) and (4.27) and invoking Proposition 4.2, we again obtain
(4.22).
Finally, using doubling property of ( we get
¢(37) S C(@);

thus, another application of Proposition 4.3 leads to (4.17).
For the proof of (4.18), we observe that

¢'(N) = /( o ze M y(dz) >e ! / zv(dz).

(0,1/X)
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Thus,
bt g1 = / ru(de) < ed/ (V1 (1)1)).
(0,1/9=1(1/t))

Hence, by monotonicity and the doubling property of ¢, for x > 2et¢’ (v ~1(1/t)), we obtain

C(m —tb1/¢—1(1/t)) < C<§> 5 C(-T)a

and the theorem follows. O
Now we define 7: [0,00) — [0,00],

00 if s=0,
n(s)=s"1¢(s) =14 s tp*(1/s) if0<s<azy?,
As™1p(1/s) if 25! < s,

where A = p*(x0)/d(xz0) € (0,2]. Notice that, by (2.9), if 2¢¢(|x|) <1, then tp*(1/|z]) <1,
and so

n(|e)) = ||~ ¢(l2])
<o (1/t)¢(|a]).

Therefore,
min{¢*1(1/t),tn(|x|)} <4p~1(1/t) ~min {1,¢¢(|z])}.

Theorem 4.8. Let T be a subordinator with the Lévy—Khintchine exponent i and the
Laplace exponent ¢. Suppose that —¢" € WLSC(a—2,¢,x¢) for some c € (0,1], g >0 and
a > 0. We also assume that the Lévy measure v has an almost monotone density v(x).
Then the probability distribution of Ty has a density p(t, ). Moreover, there is C >0 such
that for all t € (0,1/¢(xg)) and z € R,

p(ta+ thyy-sn ) < Cmin {1/, n(Je]) ). (4.28)
In particular, for all t € (0,1/p(x0)) and x > 2etd’ (=1(1/t)),
p(t,z+tb) < Cmin{p~ ' (1/t),tn(z)}. (4.29)

Proof. Without loss of generality, we can assume b= 0. Let us observe that for any A > 0,

1/x
o(\) > / (1—e™)u(s)ds 2 v(1/A)A7!
0
and

12
—¢"(\) > / s2e Mu(s)ds > v(1/ XA 73,
0
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Hence,

v(z) <n(x) for all z > 0. (4.30)

Since 7 is nonincreasing, for any Borel subset B C R,
v(B) < / n(z)dz < n(6(B)) diam(B). (4.31)
BN(0,00)

Arguing as in the proof of Theorem 4.7, we conclude that n has a doubling property on
(0,00). Using that and monotonicity of n, for s >0 and = € R,

77(3\/33— %x) < n(%s) <n(s).
Therefore, by (4.2), for r > 0,

/oor](s\/x—%x)l/(a:)dx,Sn(s)w*(l/r). (4.32)

Since 1* has the weak lower scaling property and satisfies (4.3), by [23, Theorem 3.1] and
Proposition 4.2, there are C' > 0 and t; € (0,00] such that for all ¢ € (0,¢1),

/ e RO ge < Cyl(1/t). (4.33)
R

If 29 =0, then t; = co. If t; < 48/¢(xg), we can expand the above estimate for t; <t <
48/ (xo) using positivity of the right-hand side and monotonicity of the left-hand side.

In view of (4.31), (4.32) and (4.33), by [22, Theorem 2.1], there is C > 0 such that for
all t € (0,1/¢p(z0)) and z € R,

Pt by ) < ComH /0 min {1, (0 (1/0) (el + (1 faly (1/0) 7.
We claim that
Y1)
(1+ felo(1/1)°

whenever tn(|z|) < 4071 (1/t).
First, let us show that for any e € (0,1], the condition tn(|z|) < 4¢¢~1(1/¢) implies that

tw*<|1|> < elwltp1<1>~ (4.35)
>

x
Indeed, by (2.9), we have |z|n(|z|) > 4¢*(1/|z|); thus,

(1) 2 a
ol (3) 2 Slelatle) " (137 )

Notice also that €'/3|z|¢~1(1/t) > 1 since otherwise, by (4.5),

1 < to* 1 1t* 1
<ty 61/3‘.T| <€2Tg0 m?

S tn(|x) (4.34)
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which entails that €2/ < to*(1/|z|); that is, €'/3|2z|p~1(1/t) < e~ 2/3tp*(1/|z]), contrary
to (4.35).
To show (4.34), let us suppose that tn(|z|) < 4¢~(1/t); thus, [z[¢~1(1/t) > 1. By (4.5),
we have
) 1
o (lzle=t (1/t) - 1/lal) — (lzle™1(1/1)?

which, by Proposition 4.3, gives

te*(1/]z]) =

|z~ (1/t)
(L+[z[y=2(1/t))3
proving (4.34), and (4.28) follows. The inequality (4.29) holds by the same argument as
in the proof of Theorem 4.7. O

theln(le)) > gte™(1/]2)) 2

Remark 4.9. In statements of Theorems 4.7 and 4.8, we can replace by y-1(1/) by
b1/s-1(1/¢)- Indeed, let us observe that if 0 <r; <7y < 1/xg, then

|br,y —bm‘ g/ sv(ds)
(r1,72]

<y 'r5h(ra)

<ritrag*(1/rg), (4.36)
where in the last estimate we have used (4.2). Hence, by (4.9), we get
|br1 fbm,} < rl_lrgcp*(l/rg). (4.37)
Therefore, by (4.36), (4.37) and Proposition 4.3, there is C > 1 such that
1
b1 uram —=biyer| < T (4.38)
provided that 0 < ¢ < 1/¢(z0). Now, let us suppose that 8C?¢((|x|) < 1. Then, by (2.10)
and (4.5),
1 1 2C
- >8C%¢(|z|) > 4C?%p* () > " (),
¢ 250 1) 2
that is,
2C
> —. 4.39
2 39

Hence, by (4.38),

‘Jf—f—t(bl/ ~1(1/¢) — b1y 71(1/t)‘>‘x|_L>m
P (1/t) ® V)| = e 1(1/t) = 27

which, together with monotonicity and the doubling property of (, gives

C<|9C+t(b1/w—1<1/t> —bijpe-raym) D S¢(lal)-
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Similarly, if ¢n(|z|) < 45¢1(1/¢), then
o™ (1/1) = €V

1147

thus, by taking € = (2C) 3, we obtain (4.39). Hence, by monotonicity and the doubling

property of 7, we again obtain

77(‘37+t(b1/¢1(1/t) ~bijeram) D S ().

4.2. Estimates from below

In this section we develop estimates from below on the density p(¢, - ). The main result
is Theorem 4.11. Its proof is inspired by the ideas from [42], see also [23]. Thanks to
Theorem 3.3, we can generalise results obtained in [42] to the case when —¢” satisfies the
weak lower scaling of index a— 2 for a > 0 together with a certain additional condition.
We use the following variant of the celebrated Pruitt’s result [45, Section 3] adapted to

subordinators.

Proposition 4.10. Let T be a subordinator with the Lévy—Khintchine exponent

zp(g):—igb—/o )(eifw—l) v(dx).

Then there is an absolute constant ¢ > 0 such that for all A >0 and t >0,

IP’( sup ’T —Sb,\‘ > )\) < cth(A).

0<s<t

Proof. We are going to apply the estimates [45, (3.2)]. To do so, we need to express the
Lévy—Khintchine exponent of T — sby in the form used in [45, Section 3], namely,

P(€) = (&) +ikbx

‘ Yy ; 1€
= —i£ b—b>\+/ de)/ <615y1)1/dy.
( (0,00) L+ yl? (dy) (0,00) L+ yl? (dy)

Since

ylyl? y y
vy - [ vt = [ gvan- [ i),
/(0,,\] L+ [yl? (\oo) LY (0,A] (0,00) L+ [yl?

we have

1 yly|® y
M) =5 fo-bs o, v+ | (dy) - v(dy)

A o) 14'|?J|2 o, 1+ yl? (noo) L[yl

!/\0

Hence, by [45, (3.2)]

IP( sup |T, —sbx| > A) < esh(A),
0<s<t

as desired.
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Theorem 4.11. Let T be a subordinator with the Laplace exponent ¢. Suppose that
—¢" € WLSC(a — 2,¢,29) for some c € (0,1], g >0 and « > 0, and assume that one of
the following conditions holds true:

(i) —¢” e WUSC(8—2,C,xg) for some C>1 and a < <1, or
(ii) —¢” is a function regularly varying at infinity with index —1. If xo =0 we also
assume that —@" 1is reqularly varying at zero with indexr —1.

Then there is My > 1 such that for each M > My there exists py > 0, so that for all
0 < p1 < po, 0< pg there is C >0 such that for allt € (0,1/¢(x0)) and all x > 0 satisfying

P1 (-1 P2
—Wﬁx—tﬁﬁ (‘P (M/t))gmv

we have
p(tx) > Co™ (1/1). (4.40)

Remark 4.12. From the proof of Theorem 4.11 it stems that if o = 0, one can obtain
the same statement under the condition that —¢" is (—1)-regular at infinity and satisfies
upper scaling at 0 with o < 8 < 1. Alternatively, one can assume that —¢" satisfies upper
scaling at infinity with o < 8 < 1 and varies regularly at zero with index —1. The same
remark applies to Proposition 4.14.

Proof. First let us observe that it is enough to prove that (4.40) holds true for all
t€(0,1/¢(x0)) and all z > 0 satistying

P ca (o (M) < — 2

=1 (M/t) e (M)
Indeed, since ¢! is nondecreasing and has upper scaling property (see Proposition 4.3), it
has a doubling property. Hence, the lemma will follow immediately with possibly modified
Po-
Without loss of generality, we can assume that b = 0. Let A > 0, whose value will be
specified later. We decompose the Lévy measure v(dz) as follows: Let vi(dz) be the
restriction of 2v(dz) to the interval (0,A] and

vo(dz) = v(dz) — 1 (dz).

1

We set
o1(u) = /(o,oo) (1—e ") 11 (ds), @a(u) = /(0 (1—e ") va(ds).

,00)

Let us denote by T the subordinator having the Laplace exponent ¢;, for j € {1,2}.
Let ;(§) = ¢;(—i€). Notice that v <1, < v; thus,

%QZ) S ¢2 S ¢a
and for every n € N,
%(_1)n+1¢(n) < (_1)n+1¢gn) < (_1)n+1¢(n). (441)
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Therefore, for all u > 0,
30(u) < pa(u) < p(u). (4.42)

Next, by Theorem 3.3, the random variables Tt(z) and T; are absolutely continuous. Let
us denote by p(t,-) and p(t, -) the densities of Tt@) and T}, respectively.
Let M > 2My+ 1, where Mj is determined in Corollary 3.5 for the process T, For
0<t<1/p(xg), we set
=ty (91 (M)
Since ¢~1(M/t) > z¢, we have
Tt

L = 64 ( M (M) < o).

Let

wy = (¢) (@ /) = 07 (M]1).
Then, by (4.42) we get
1, M _ M,
> — M/t)=—>—.
Moreover, by Corollary 4.5 together with (4.42) we get

t(P2(w2) —wagy(w2)) Stz (w2) $1.
Hence, by Corollary 3.5,
1
VH(=¢5) (wa)
Notice that, by (4.41) and Remark 3.4, the implied constant in (4.43) is independent of
t and A. Since

PP (tay) 2 (4.43)

M

(=) (w2) < (—¢") (™M (M /1)) = W7

by (4.43) and monotonicity of ¢t

, we get
PP (tay) > Crp~ ' (1/1), (4.44)

for some constant C7 > 0.
Next, by the Fourier inversion formula

sup [9,p'? (t,2)| <
z€ER

e~ tRY2(8) ‘§| d¢

< [ e ™ Og)dg;

— 5
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thus, by [23, Proposition 3.4] and Propositions 4.2 and 4.3 we see that there is Cy > 0
such that for all ¢ € (0,1/¢(z0)),

5161%\311)(2) ()] < Co(p™ (1/1))°.

By the mean value theorem, for y € R, we get
_ 2
P (ty+20) —pP (t2)] < Calyl (071 (1/1)".

Hence, for y € R satisfying

P w—
20207 1(1/t)

by (4.44), we get
PP (by+ae) > p (tar) = Calyl (o7 (1/1)
> o,
Therefore,

plt,z) = / POtz — )BT € dy)

> S 'P(|$‘xt -1 < salc(i/t))

7 010-2(lr=n=11 5 o)

C1 ~ 1 ~ 1) _1 Co
- . 5 (1 _ _ _ _1 <20
5 e (1/t) P(’x Tt (ztbA (24 xt)) (Tt thx)‘ < oo )
where we have set Cy = C;(2C2)~! and

Ty :tﬁb/(‘P_l(M/t))-
Let po = %Co and

1
A= ——. 4.45
eIy (449)
We have
1 i 1 )
itb)\ — (l’t —xt) = itbA *tgﬁl(l/)\)
= E/ s(1—e ) v(ds).
2 Jon
Thus, tby — (& — z¢) is nonnegative, and in view of (4.2) and (4.45),
Sty — (T — x4) < CstAp(1/N)
CsM
— s 4.46
o1 (440
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for some constant C's > 0. Next, setting

p(t) =71 (%tb,\ — (&4 —xt)>7

we get

inf P ’ & —Ap(t) = (TY) = Ly ’<C)\ >0, — A<z —F < pal
te(o’iI/lw(zo)){ <x E=Aolt) (t ? )\) = i Pt

; W _1 e
2 tE(O,ir/li(zo)) {HD (’y AT ztb’\)‘ = CO) Pommplt) Sy s p2}'
(4.47)

Hence, the problem is reduced to showing that the infimum above is positive. Let us
consider a collection {Y;: t € (0,1/¢(x0))} of infinitely divisible nonnegative random
variables Y; = A\ 7! (Tt(l) - %tb,\). The Lévy measure corresponding to Y; is

pe(B) = tvy (AB) (4.48)

for any Borel subset B C R. Since for each R > 1,

bl = / y o (dy)
(0, RA]

1/ 1
=3 yv(dy) = 5ba,

by Proposition 4.10,
P(vil = R) =P (|1~ 3tha| = RA)
gt/ min {1, R7>A"2s*} v (ds);
(0,00)
thus,

P(|Y;| > R) gt)\_QR_z/ s2v(ds)
(0,2
<tR72h(N)

StR2p(1/N),

where in the last estimate we have used (4.2). Therefore, recalling (4.45), we conclude that
the collection is tight. Next, let ((Y}n,yn): n e N) be a sequence realising the infimum in
(4.47). By the Prokhorov theorem, we can assume that (Y;, : n € N) is weakly convergent
to the random variable Y. We note that Y;  has the probability distribution supported
in [— %tn/\;lb,\n,oo) where ), is defined as A corresponding to t,,.

Suppose that (¢, : n € N) contains a subsequence convergent to to > 0. Then Yy =Y,
and the support of its probability distribution equals [f %tg)\glb,\moo). Since p(tg) <
%to)\o_lb)\o, we easily conclude that the infimum in (4.47) is positive.

Hence, it remains to investigate the case when (¢, : n € N) has no positive accumulation
points. If zero is the only accumulation point, then (A,: n € N) has a subsequence
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convergent to zero. Otherwise, (t,) diverges to infinity; thus, g =0 and (\,) contains a
subsequence diverging to infinity. In view of (4.46), p(t) is uniformly bounded in ¢. Thus,
after taking a subsequence, we may and do assume that there exists a limit

p= lim p(t,).

By compactness we can also assume that (y,: n € N) converges to yg € [—p1 — , pa].
Consequently, to prove that the infimum in (4.47) is positive, it is sufficient to
show that

P(lyo — Yol < $Co) > 0. (4.49)

Observe that (4.49) is trivially satisfied if the support of the probability distribution of
Y, is the whole real line. Therefore, we can assume that Yj is purely non-Gaussian. In
view of [47, Theorem 8.7], it is also infinitely divisible.

Given w: R — R a continuous function satisfying

lw(z)—1] <z,  and  |w(z)] < 2|7, (4.50)

we write the Lévy—Khintchine exponent of Y;, in the form
v = i€ = [ (e -1 isw(s)) u, (ds)
(OVOO)
where
Yo = / sw(s) p, (ds) — %A;ltnbM.
(0,00)

Since (Y;, : n € N) converges weakly to Yp, there are 79 € R and o-finite measure py on
(0,00) satisfying

/(0 )min{1,52} po(ds) < oo,
such that the Lévy—Khintchine e:xponent of Yy is
Yo(§) = —i&o — /( - (e* —1—igsw(s)) po(ds),
where

Yo = le oy (4.51)

Moreover, for any bounded continuous function f: R — R vanishing in a neighbourhood
of zero, we have

Jim [ ), ()= [ fs) o) (4.52)
(0,00) (0,00)

Next, let us fix w satisfying (4.50) which equals 1 on [0,1]. In view of (4.48) and the
definition of vy, the support of p; is contained in [0,1]. Hence, v, = 0 for every n € N
and, consequently, 79 = 0. We also conclude that supp ug C [0,1].
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At this stage we consider the cases (i) and (ii) separately. In (ii) we need to distinguish
two possibilities: if (¢,,) tends toward zero, then (A,) also approaches zero, and we impose
that —¢" is a function regularly varying at infinity with index —1; otherwise, (¢,,) tends
toward infinity as well as (\,,), and thus zg =0, and we additionally assume that —¢” is a
function regularly varying at zero with index —1. For the sake of clarity of presentation, we
restrict attention to the first possibility only. In the second one the reasoning is analogous.
We show that the support of the probability distribution of Yj is the whole real line. By
[47, Theorem 24.10], the latter can be deduced from

/ min{1,s} po(ds) = oc. (4.53)
(0,00)
Since supp g C [0,1], for each € € (0,1) we can write

/ min{1,s} po(ds) > / s po(ds);
(0,00) (e/2,1]

thus, to conclude (4.53), it is enough to show that

/ s pio(ds) > loge™t. (4.54)
(e/2,1]
For the proof, for any € € (0,1) we define the following bounded continuous function:
0 if s <e€/2,
2s—¢, ife/2<s<e¢,
(s) = - 4.55
Jels) s ife<s<l, ( )
1 if s> 1.
We have, in view of (4.52),
/ spo(ds) > fe(8) o(ds) = lim fe(s) pe, (ds) > liminf s e, (ds).
(e/2,1] (0,1] e J(0,1) O J(e]
(4.56)
Let us estimate the last integral. We write
/ s (ds) = tA! / svy(ds)
(e,1] (Xe, A
= %t)fl/ sv(ds).
(A&, A
By the Fubini—Tonelli theorem, we get
A
/ sv(ds) = / u*Q/ s2v(ds) du+ MK (X) — AeK (Xe).
(A&, A Ae (0,u]
Thus,
A
2/ spe(ds) =tA™! [ K(u)du+tK(\) —teK (Xe). (4.57)
(e,1] Ae
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Setting z = 1/A, by (4.2) and (4.45), we obtain

Moreover, since @ is a 1-regularly varying function at infinity, we have

w(z/e)
o M

teK (Xe) ~ tep(z/e) = Me

)

as z tends to infinity. Therefore, it remains to estimate the integral in (4.57). Using (4.2)

we get
-1

A Py z
tA [ K(u)du = / p(u™!) du

e L)0(Z> z—1
= LpZZ) /6 Zufzgo(u) du

¢'(2) — ¢ (e '2)
2(—¢"(2)

Since —¢"(s) = s~ 1{(s) for a certain function ¢ slowly varying at infinity, by [3, Theorem

1.5.6],

P A —1 et

¢'(2) = ¢' (e z>:/ Aet)dt o1
(—o'z) h e

as z tends to infinity. Hence,

liminf s, (ds) >loge™?,

n—00 (6,1]

which by (4.56) implies (4.54).

Next, let us consider the case (i); that is, when —¢” € WUSC(8 —2,C,zo) with C >1

and o < 8 < 1. We claim that for all € € (0,1),

/ 5% po(ds) > 0.
(0,¢)

(4.58)

To see this, it is enough to show that there is C' > 0 such that for all e € (0,1] and

t e (0,1/¢(x0)),

/ 5% g (ds) > Ce* 2.
(0,€)

For the proof, we select a continuous function on R such that
L1y =n<T(_g),

and for each 7 > 0 set

e () = n(ra).
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Since for 0 < 27 <¢,

/(0»00) 5 (ne(s) = 11r () pe(ds) +/

11, (s) pe(ds) > / & pu(ds),
(0,27)

(0€)
by (4.59) and (4.52),

/ 5% (ne(s) —nr(s)) po(ds) + limsup/ 520, (s) e, (ds) > Ce* 2.
(0,00) (0,00)

n—oo

Since Y;, and Y} are purely non-Gaussian, by [47, Theorem 8.7(2)],
lim limsup/ s% g, (ds) = 0;
=0t nooo J(—1 1) )
thus,
[ #uaszce,
(0,¢)

which entails (4.58).
We now turn to showing (4.59). We have

/ 52y (ds) = t)fz/ s2v1(ds)
(0,¢) (0, xe)

=1tA7? s2v(ds)
(0, Xe)
=1t K(Xe);

thus, by (4.2) and the weak lower scaling property of ¢,
/ % i (ds) 2 te*p (e ' ATH)
(0,¢)
2 t€2_a90(1/)‘)7

~

which, together with the definition of A, implies (4.59).
Since the support of the probability distribution of Y; is not the whole real line, by [42,
Lemma 2.5], the inequality (4.58) implies that

/ min{1,s} po(ds) < oo (4.60)
(0,00)
and the support of Yy equals [x,00) where

X="— /(O,oo) sw(s) po(ds) = —/ s po(ds). (4.61)

(0’ 1]
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To conclude (4.49), it is enough to show that y < —p. Since p(t,,) < 3¢, A, by, the latter
can be deduced from
1
x=— lim ~t, A\ tby
n—oo 2 "
(4.62)
——tim [ spu,(ds),
where the last equality is a consequence of (4.48) since
/ su(ds) = t)fl/ svp(ds)
(0,1] (0,A]
=St} sv(ds). (4.63)

(0,A]

Therefore, the problem is reduced to showing (4.62). By the monotone convergence
theorem and (4.52), we have

X=- lim+ Je (5) ,LLO(dS)
e—0 (0,1] (4 64)
- el—l>r(I)1+ nh~>nc}o (0,1] fe(s) Htn (dS)
and
tim [ flspe () = [ s, (ds) (4.65)
=0t J(0,1] (0,1]

where f. is as in (4.55). Hence, we just need to justify the change in the order of limits.
In view of the Moore-Osgood theorem [19, Chapter VII], it is enough to show that the
limit in (4.65) is uniform with respect to n € N.

We write

/ su(ds)— [ fu(s) pulds)
(0,1] (0,1]

<[ swss [ (sl
(0,€/2] (e/2,€]

S/ s pe(ds).
(0,€]

By (4.63) and the Fubini-Tonelli theorem, we have

e
2t*1)\/ s,ut(ds):/ sz/(ds):/ u*Q/ s2v(ds) du+ AeK (Ne)
(0,€] (0, \e] 0 (0,u]
Ae
m/ ga(uil)du+)\eg0()fle*1).
0

By almost monotonicity of ¢,

e
/ s,ut(ds);:zt)\_l/ ga(u_l)du+tegp()\_le_1)
(0,€] 0
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AT e(u™t) du. (4.66)

Now, setting z = =1 (M/t), by (4.45), we get

. Ae L L e/ H(M/t) .
tA™ /0 o(u™!)du=ty~ (M/t)/0 o(u ) du

_ ﬁ / O(:zu2<p(u) du

B gb’(e*lz)
z(—9¢"(2))’
In view of Proposition 2.4, by the upper scaling of —¢", there is ¢ > 0 such that for all
zZ > X,

(4.67)

/(.—1
_(s) < el B,
2(—9"(2))
Hence, the limit in (4.65) is uniform with respect to n € N, which justifies (4.62). This
completes the proof of (4.49) and the theorem follows. O

Theorem 4.13. Let T be a subordinator with the Laplace exponent ¢. Suppose that
¢ € WLSC(a,¢,20) N"WUSC(3,C,zq) for somece (0,1], C>1, 290 >0 and 0<a< B < 1.
We also assume that b= 0. Then for all 0 < x1 < X2 there is C' > 1 such that for all
t € (0,1/¢(x0)) and x > 0 satisfying

x1 <z~ (1/t) < xo,
we have

C' Lo (1/t) < p(tx) < C'o7 (L)1), (4.68)

Proof. First let us notice that Corollary 2.7 implies that —¢” € WLSC(a — 2,¢,20) N
WUSC(8 —2,C,x0). Therefore, the hypothesis of Theorem 4.11 is satisfied.

It is enough to show the first inequality in (4.68) since the latter is an easy consequence
of (4.28) and Proposition 4.6. For ¢ € (0,1/¢(x0)) and M > 1, we set

zy = t¢' (7' (M/t)).

By Proposition 4.6, the function ¢! possesses the weak lower scaling property. Moreover,
there is C7 > 1 such that for all r > p(x),

Cile () < o7 (r) < Cre™'(n). (4.69)
Hence, by Proposition 2.4, there is C5 > 1, such that
1

xy < Cy M —1/P (4.70)

=t (1/t)
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We select M > 1 satisfying
Clchl_l/B <X1-
Let p1 = po/2 where pg is determined in Theorem 4.11. Then, by (4.69) and (4.70), we

have
P1 1-1/8
<C1CoM
EEICVD R o~ 1(1/1)
X1
< —. 4.71
507D )
Now set ps = Cx2. Then, by (4.69), we have
o —2 5 P2 (4.72)

=t (1/t) T Cripmt(1/t) o1/t
Putting (4.72) and (4.71) together, we conclude that

X1 X2 }C<xt_ Pn_ P )
o7 (1/t) o7 (1/t)] T e M1/t e (1/t)
Therefore, by Theorem 4.11, for all ¢ € (0,1/¢(zp)) and x > 0 satisfying
x1 <xdp”H(1/t) < xa,
we have
p(ta) Z o~ H(1/1).

In view of (4.69), this completes the proof of the theorem. O
Proposition 4.14. Let T be a subordinator with the Laplace exponent ¢. Suppose that

—¢" € WLSC(a — 2,¢,z9) for some c € (0,1], xg >0 and « > 0, and assume that one of
the following conditions holds true:

(i) —¢” e WUSC(8—2,C,xg) for some C>1 and a < <1, or

(il) —¢" is a function reqularly varying at infinity with index —1. If xo =0, we also
assume that —@" is reqularly varying at zero with index —1.

We also assume that the Lévy measure v(dx) has an almost monotone density v(x). Then
the probability distribution of Ty has a density p(t,-). Moreover, there are My > 1, pg >0
and C > 0 such that for all t € (0,1/p(xq)) and

2po

x> 2t¢' (¢ (Mo/t)) + P=YCYOR

we have
p(t,x) > Ctv(z).

Proof. Let A > 0. We begin by decomposing the Lévy measure v(dx). Let v4(dx) =
v1(z) dz and vo(dx) = vo(x) dz where

vi(x) =v(r) — () and va(z) = 2v(2) 1y 00) ().
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For u > 0, we set

o1 (u) :bu+/

(0,00)

(1—e ™) 11(ds) and  ¢o(u) = / (1—e™"") va(ds).

(0,00)

Let TU) be the Lévy process having the Laplace exponent ¢j, for j € {1,2}. Since %l/ <
1 <v, we have

%QS <¢1 <o,
and for all n € N,
B(=1)" oM < (1) < (1), (4.73)
Thus,
50 <p1 <0,
and so for all u > 0,
o1 (w/2) <7 Hu) S o (u). (4.74)

In particular, —¢Y has the weak lower scaling property. Therefore, by Theorem 3.3, Tt(l)
and T} are absolutely continuous. Let us denote by p(t,-) and p™) (¢, -) the densities of
T; and Tt(l), respectively. Observe that T is a compound Poisson process with the
probability distribution denoted by P;(dx). By [47, Remark 27.3],

Py(dz) > te 2 ®yy(2) da. (4.75)
We apply Theorem 4.11 to the process T™). For t > 0, we set
2y =161 (97 (Mo/1)).-

Then there are C' > 0 and pg > 0, such that for all ¢t € (0,1/¢(x0)) and z > 0 satisfying

Po Lo

<z <@t —,
e (1/1)

RICT R

we have
pW(ta) = Cort (1/8).
Therefore, if

Po
A=+ —
e (1/1)
then
A
/ pW(t,z)dz > 1. (4.76)
0

Next, if A > po/@~1(1/t), then, by (4.2),

tra(R) = ét/:o v(z)dx
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1, (4.77)

where the penultimate inequality follows either by monotonicity of h or by [23, Lemma
2.1 (4)]. Finally, by (4.75) and (4.77), for £ > 2\ we can compute

p(t) = [ p0(ta - ) Pi)
R
2t [ p0(a - sl ay
R
=3t [ $a =yl dy
Hence, by the monotonicity of v, we get

pt) 2 twla) [

A
P (ty) dy

0
A
> tV(x)/ P (ty) dy
0
= tv(x),
where in the last estimate we have used (4.76). Using (4.73) and (4.74), we can easily
show that
Po 0 —1 o
A=z + — = <t (¢ (Mo/t) + — 777
g =1 )
and the proposition follows. O

4.3. Sharp two-sided estimates

In this section we present sharp two-sided estimates on the density p(t, - ) assuming both
the weak lower and upper scaling properties on —¢”. First, following [6, Lemma 13], we
prove an auxiliary result.

Proposition 4.15. Assume that the Lévy measure v(dzx) has an almost monotone density
v(z). Suppose that —¢" € WUSC(,C,xq) for some C > 1, xg >0 and v < 0. Then there
are a € (0,1] and c € (0,1] such that for all 0 < z < a/x,

v(z) > cx™?(—¢"(1/2)).

Proof. Let a € (0,1]. Recall that by (4.30) we have v(s) < Cys73(—¢”(1/s)) for any
s> 0. Hence, for any u > 0,
-1

—gb”(u):/o 526_“Su(s)ds—|—/ s2e " y(s)ds

u—1

-1 o)

< Cl/ sTlem (= ¢"(1/s)) dS+CQV(CLU_1)/ s2e "5 ds, (4.78)
0 a

w1
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where Cs is a constant from the almost monotonicity of v. If u > xg, then by the scaling
property of —¢”" we obtain

—1

Cl/o sTte " (=" (1/s)) dsSC/O sTre " (su) 7 (= ¢ (u)) ds
SC(—(b"(u))/ sT177e7% ds.

0

By selecting a € (0,1] such that
QC/ s e ds < 1,
0

we get

Since

/ s2e " ds=u"2e " (a® +2a+2),
au—1

by (4.78) we obtain

a

—1 € 3 "
> —
viau™") 3(a? + 2 2)U (—¢"(w),
provided that u > xg. Now, by the monotonicity of —¢” we conclude the proof. O

In view of Propositions 2.3 and 2.4, we immediately obtain the following corollary.

Corollary 4.16. Assume that the Lévy measure v(dz) has an almost monotone density
v(x). Suppose that b =0 and ¢ € WLSC(a,c,z9) "WUSC(5,C,xg) for some ¢ € (0,1],
C>1,20>0and 0<a<pB<1. Then there are a € (0,1] and ¢’ € (0,1] such that for all
0<z<a/xo,

v(z) >z lo(1/x).
We are now ready to prove our main result in this section.

Theorem 4.17. Let T be a subordinator with the Laplace exponent ¢. Suppose that
¢ € WLSC(w,¢,20) "WUSC(8,C,x0) for some ce (0,1], C>1, 20>0 and 0 <a<f<1.
We also assume that b= 0 and that the Lévy measure v(dx) has an almost monotone
density v(x). Then there is x1 € (0,00] such that for all t € (0,1/p(x0)) and x € (0,21),

plt,z) ~ (t(*ﬁﬁﬂ(w)))% exp{ —t(¢p(w) —we'(w))}  f0<zpl(1/t) <1,
) te'p(1/x) if 1< z¢=1(1/t),

where w = (¢')~(z/t). If 2o =0 then v, = .
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Proof. First let us note that by Corollary 2.7, —¢"” € WLSC(« — 2,¢,20) NWUSC(5 —
2,C,x0). Therefore, we are in position to apply Proposition 4.14. By Corollary 3.7, for
X1 =min{1,6}, we have

p(t,3) & (H—¢" (w))) 2 exp{ —t(¢(w) —we' (w)) },

whenever 0 < 2¢~1(1/t) < x1. Next, let M} be My determined by Proposition 4.14. By
Proposition 2.4, (4.2) and monotonicity of ¢!, for ¢t € (0,1/¢(z)), we get

1 1
to' (Y= H1/t)) < ——— and td' (o Y (ML /1)) < ———:
thus, by Propositions 4.3 and 4.6, there is C7 > 0 such that
1

2ete (v~ 1(1/t)) < CL ———

6¢(w ( /))—Cl¢_1(1/t)
and

20} 1

2t¢' (971 (Mg /1)) +

C
L1/t = e (1)
where pj is the value of py determined in Proposition 4.14. Let x2 = max{1,C1,x1}. By

Proposition 4.14 and Corollary 4.16, there is a € (0,1] such that if z¢~1(1/t) > x2 and
0 <z <a/xg, then

p(t,z) 2 tv(z)

>t 6(1/2).
Furthermore, by (4.29), if z¢~1(1/t) > x2, then
pt,z) Stn(x)

Ste”le(1/x),

where in the last step we have also used (4.13). Lastly, by Theorem 4.13 there is Cy > 1
such that for all ¢ € (0,1/¢(x0)) and = > 0 satisfying

x1 <o~ (1/t) < o
we have
Oyt~ (1/t) < p(t,x) < Cap™ (1/1). (4.79)
We next claim that the following holds true.

Claim 4.18. There exist 0 < ¢y <1 < ¢ such that for all t € (0,c1/¢(x0)) and x>0
satisfying

x1 <xg” N (1/t) < xo,

we have

td' (o7 ea/t)) <z <td (¢ (1 /1)). (4.80)
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By Proposition 4.6, there is C3 > 1 such that for r > ¢ (x9),
O3l (r) < ¢ (r) < Gyt (r).
Let co = (x1¢/Cy2)~#/(1=8) € [1,00), where ¢ is taken from (4.15). Then
& 67 (eaft) 2 O3 ey TP (1) = X (1)),
Consequently, by Proposition 2.3,

X1 P(d (ca/t))
T S e 120
>t/ (¢~ (c2/t)). (4.81)

Moreover, there is Cy > 1 such that Cyx¢’(x) > ¢(x) provided that z > xg. Therefore, if
x2 < C; Y, then

e o 9(e7a/m)
“(1/n) - I/
<t¢/ (671 (1/1)), (4.82)

which yields (4.80) with ¢; = 1. Otherwise, if xo > C;l, then we set ¢; =
(C4XQC§(CI)_1)_5/(1_,8) € (0,1]. Hence, by Proposition 4.6, for all t € (0,c1/¢(x0)),

X1 e 1) < CoaCR) 767 /) = 07 (10,
Therefore,
X2
S
t& o7l (er/t) d(p (/1))

a ¢ 11/t) ¢ e/t)
<t/ (¢~ e /1)),
which, combined with (4.81) and (4.82), implies (4.80).
Now, using Claim 4.18 and Propositions 4.3 and 4.6, we deduce that for ¢t € (0,¢1/¢(x0))
and x1 < z¢ 1 (1/t) < x2,

w< ¢~ (ea/t) SOTH(L/Y) (4.83)
and
w> ¢~ er/t) 2 671 (1/1). (4.84)
Hence, tw¢’(w) = 1 and
exp { — t(0(w) —w'(w)) } ~ 1. (4:85)

Next, by Propositions 2.4 and 2.1,
w?(~¢"(w)) = wg' (w);
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thus, by (4.83) and (4.84), we obtain

1 w
\/t(—¢”(w)) ~ Vitwg' (w)

which, together with (4.85), implies that

~ o (1/1),

(t(=9" (w)) * exp{ —t(d(w) —we'(w)) } = ¢~ (1/1),
for t € (0,c1/p(x0)) and x1 < xd~1(1/t) < x2. In view of (4.79), the theorem follows in
the case zo = 0. Now, it remains to observe that in the case o > 0 we may use positivity
and continuity to conclude the claim for all t € (0,1/¢(x0)). O
5. Applications

5.1. Subordination

Let (2°,7) be a locally compact separable metric space with a Radon measure p having
full support on 2. Assume that (X;: t > 0) is a homogeneous in time Markov process
on 2 with density h(t, -, -); that is,

B(X0 € Bl Xo =)= [ hltaoy) uldy)
B
for any Borel set BC 2, x € & and t > 0. Assume that for all ¢ >0 and x,y € 2,
5, (T(x,y)t_%) < h(tx,y) < t~5 ®y (T(r,y)t_%> (5.1)

where n and 7 are some positive constants, ®; and ®, are nonnegative nonincreasing
function on [0,00) such that ®1(1) > 0 and

sup P2 (s)(1+5)"T7 < 0. (5.2)
s>0

By H(t,x,y) we denote the heat kernel for the subordinate process (Xr,: t > 0); that is,

Hitag) = [ hoaa)Geds)
0
where
G(t,s) =P(T, > s).

Suppose that ¢ € WLSC(«,¢,20) NWUSC(S3,C,x¢) for some ¢ € (0,1], C > 1, xg > 0 and
0<a<fB<1. We also assume that

lim ¢/(z) =b=0

T—r00

and that the Lévy measure v(dz) has an almost monotone density v(x).
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Claim 5.1. For all x,y € 2 satisfying 7(x,y)~" > xo and any t € (0,1/p(x0)),

t¢(T($,y)_Z)T(az,y)‘" if 0 < to(r(z,y)~7) <1,
(07(1/1)" if 1< to(r(2,y)7).

By Proposition 2.3, ¢/ € WLSC(a — 1,¢,20) "WUSC(8 —1,C,z0). Let 0 <r < ¢/ (z). If
0 < A <, then by setting

H(t,x,y) %{

D=CT3)\ 17,
the weak upper scaling property of ¢’ implies that
Ar=2¢'((¢")7H(r)) = ¢/ (D(¢') 7 (r)).
Therefore,
(¢)7M () < CTANTA ()7 (). (5.3)
Analogously, we can prove the lower estimate: If 0 < A < ¢, then by setting
D= et
we obtain
A=’ ((¢)7H(r) < ¢/ (D(&)7H(r))
and, consequently,
()71 (Ar) = ema AT w (¢) 7 (). (54)

Since (¢’)~! is nonincreasing, the last inequality is valid for all 0 < A < 1. Let

H(tz,y) = /““”+/ h(s,2,y)G(t,ds)
0

=Ta7m
= Il(t,fﬂ,y)+.[2(t,$,y).
By Theorem 4.17,

L~ ¢7111/t) /0 h<¢11(1/t),x,y) t(—;”(w)) exp(—t(¢(w) —w(b’(w))) du (5.5)

where

Recall that, by Proposition 2.3, for all r > xy we have
r¢!(r) < ¢(r) < Cirg/(r). (5.6)

We can assume that

to (2(001)1%3900) <1.
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By (5.6) and the weak upper scaling of ¢, we get
¢ (o7 (1/1) < <1/ (97 (1/1)
<¢f((Co) ™7

o
to=t(1/t)

thus,

() =0

Hence, by (5.3) and (5.4), we obtain
wTEeT /) SwSuT TR L/, ue (0.1, (5.7)
Moreover, since w > o, by (5.6) and Proposition 4.6,

we' (w) 2 d(w) —we’ (w) = /Ow w(u)dﬂ

Thus, (5.7) entails that

uTTE St(d(w) —we (w)) SuTTE, ue (0,1]. (5.8)
Next, by Proposition 4.6 and (5.6), we get

1
—1(1/t)w
V(=" (w m o
Therefore, by (5.7),
I G U) S e SuT T (1), we (01, (5.9)
t(—=¢" (w))
Now, by (5.5) and (5.1) together with (5.8) and (5.9), we can estimate
1 - [e3
L < (qb_l(l/t));/ D, (u_%A%> s exp (—C’”ufﬁ) du (5.10)
0
and
1 2—«
Lz (¢_1(1/t))7/ Dy (uf%A%> w20 exp (—C"ufﬁ) du, (5.11)
0
where

A=1(zy) e (1/1).

Suppose that A < 1. Since ®; and ®, are nonincreasing, by (5.10) and (5.11), we easily
see that

e\:

L (7' (1/1)".
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We also have

LS s iplts)ds S (071(1/0)°
¢*11<1/t)
Therefore,
H(tz,y) = (¢~ (1/1)"
We now turn to the case A > 1. By (5.2) and (5.10),

1
L < (¢*1(1/t))7A7%*1/ u*ﬁexp(_cuu—ﬁ>du
0
SA ()" (5.12)

It remains to estimate I. Let us observe that for all » > xg, if w > 1, then by the weak
upper scaling of ¢, we have

$(r) < (ru) < Cu’o(r).
On the other hand, if 0 < u <1, then by (2.10) and the monotonicity of ¢, we get
ug(r) < ¢p(ru) < ¢(r).
Therefore, for all u > 0 and r > xg,
min{1,u}é(r) < qb(ru) < Cmax{1,u’}o(r). (5.13)

Since 7(x,y)~Y > o, by Theorem 4.17, ) and estimates (5.13), we get
I, < t¢(7(m / <I>2 m i 7%71max{17u_5}du

and

o0

I 2 tqﬁ(r(m,y)*'y)r(a:,y)fn/ Dy (Uf%) w5 min{1,u} du.

1/A
By (5.2), we have
1

1
/@g(U_%)u_%_ﬂ_ldug/ u P du < oo;
0 0

L= to(r(z,y) ) 7(z,y) ™"
Finally, since A > 1, by (2.10), we have

to(r(z,y) ") =top(A o7 (1/t)) > A7

thus,

hence, by (5.12),
Il 5 t¢(7(m?y>_’y)7—(m7y)_na

proving the claim.
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Example 5.2. Let (£7,7) be a nested fractal with the geodesic metric on 2". Let d,,
and dy be the walk dimension and the Hausdorff dimension of &, respectively. Let
(X;: t>0) be the diffusion on 2" constructed in [2, Section 7]. By [2, Theorem 8.18], the
corresponding heat kernel satisfies (5.1) with n =dy, v =d,,, and
Dy (s) = Da(s) =exp (—s%> .
Let T be a subordinator with the Laplace exponent
@(s) =s%1og” (2+ s),

where « € (0,1) and o € R. Then, by Claim 5.1, the process (X, : t > 0) has density
H(t,x,y) such that for all x,y € 2" and ¢ > 0,

o. ift>7(r,y)*log”? (2+7(x,y)~7), then
H(t,z,y) ~t a7 log~ o (2+t_1),
o. ift<7(x,y)*log”? (2+7(x,y)"7), then
H(t,x,y) ~t7(x,y)” 7 "log? (2—|—T(:c,y)*7).

Example 5.3. Let (£',7) be a complete manifold without boundary, having nonnegative
Ricci curvature. Then by [37], the heat kernel corresponding to the Laplace—Beltrami
operator on 2 satisfies estimates (5.1) with

Dy (s) = e=Crs” Dy(s) = e~ 25",

Now, one can take T with a Lévy—Khintchine exponent regularly varying at infinity with
index a € (0,1) and apply Claim 5.1 to obtain the asymptotic behaviour of the subordinate
process.

5.2. Green function estimates

Let T = (T;: t > 0) be a subordinator with the Laplace exponent ¢. If —¢” has the weak
lower scaling property of index a— 2 for some « > 0, then the probability distribution of
T; has a density p(t, - ); see Theorem 3.3. In this section we want to derive sharp estimates
on the Green function based on Sections 3 and 4. Let us recall that the Green function is

G(z) = / p(t,x)dt, x> 0.
0
We set

x> 0.

p(x)
f(x) = :
)= 5@
Let us denote by f~' the generalised inverse of f; that is,
fHx) =sup{r >0: f*(r) =z}

where

fr(r)= sup f(x).

o<z<r
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Notice that by (2.9) and Proposition 2.3, for all z > xq,
ff(x) Sa. (5.14)

In view of (4.2) and Proposition 4.3, the function ¢ is almost increasing; thus, by
monotonicity of ¢’, f is almost increasing as well. Therefore, there is ¢ € (0,1] such
that for all z > =z,

cof(x) < f(x) < f*(x). (5.15)

Moreover, f has the doubling property on (zg,00). Since ¢ belongs to WLSC(a,c,x0),
by monotonicity of ¢, we conclude that f belongs to WLSC(«,c,x). It follows that
f~1 € WUSC(1/a,C, f*(x9)) for some C > 1 and since f~! is increasing, we infer that
f~1 also has doubling property on (f*(zg),00).

Proposition 5.4. Suppose that b=0 and —¢" € WLSC(a — 2,¢,x0) for some ¢ € (0,1],
0 >0 and a>0. Then for each A >0 and M > 0 there is C > 1 so that for all x < A/xy,

1 e 1
0_17</ p(tx)dt < C—7——.
1 - €T - 1
In particular, for each A >0 there is C > 0 such that for all x < A/xy,
1
Glz)>C——F.
VR

Proof. For M >0 and x > 0 we set
I (z) = / p(t,z)dt.
qﬁ’(f—lm(M/z))

Let us first show that for each M > 0 there are Ap; > 0 and C > 1 such that for all

x < Apr/xo,
C_lm < /oo ) p(t,z)dt < Cm. (5.16)
¢ (F1(M /)
Let
Ay = min{M7calM0} ~min{1,*xo}
f*(zo)

where My is determined in Corollary 3.5, and ¢ is taken from (5.15). We claim that the
following holds true.

Claim 5.5. For each M >0 there is C > 1 so that for all x < Ay/xo,

1 1

) =

(5.17)
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Suppose that
x

Y a0 )

with M; = calMO. Notice that for x < Apr/xo, we have © < My/f*(xo). Hence, zo <
S~ (M /z); thus, by monotonicity of ¢/, we obtain

— </ (M /)
< ¢/ (o). (5.19)
Moreover, for w = (¢')~1(x/t), the condition (5.18) implies that
[H(w) > My /z,

(5.18)

which together with (5.15) gives

to(w) = f(w) = coz f*(w)
> Mp. (5.20)

Now, to justify the claim, let us first consider M > M. In view of (5.19) and (5.20), we
can apply Corollary 3.5 to get

) 1 (6l w6/ (w)

IM(x)z/ 7,exp{—t o(w) —wed' (w) }dt.
x _ /
Tt VI (W)

Since by Proposition 4.1 and Remark 3.2, for all w > xg,
$(w) —we (w) ~ h(1/w)
~ K(1/w)
~ w2 ( - ¢//(W))7

after the change of variables t = 2/¢(s), we can find Cy > 1 such that for all x < Ay /o,

/ T el f(WEFE -2 < 1y(a)
f s¢/(s)

“H(M/z)
e 1 ds
S g, PO OWTE)

(5.21)

Recall that f~! has the doubling property on (f*(z),00). Using now Proposition 2.3 and
(5.15), we get

2/ (M/2) s
(o) 2 /f exp{—@xf*(swxf*(s)qjs)

(M=)

1 M
“aonay| M

1

2 Wa (5.22)
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where the implicit constants may depend on M. Therefore, by monotonicity of f~! and
@', the estimate (5.22) gives

1

@2 G

(5.23)

This proves the first inequality in (5.17).
We next observe that (5.14) entails that f~!(s) > s for s > f*(z0); thus, by (5.23),

1

¢'(1/x)
1
R 5.24
£o(1/2) 20
where the last estimate follows by Proposition 2.3.
We next show the second inequality in (5.17). By (5.21), Proposition 2.3 and

monotonicity of ¢,

In(z) < /f T e 02‘1:vf(8)}\/rf(8)0§§)

“H(M/=)

1 /foo exp{—C{le(s)}\/xf(s)ds

< - -
~ o(fUM /) S

1 %
= o(f~1(M/x)) /fl(M/w) exp{ - ﬁxf(s)} ds

where in the last inequality we have used

exp{ —C’;le(s)}\/xf(s) < exp{ - ﬁxf(s)}
Since ¢ € WLSC(a,¢,x0), by [6, Lemma 16],

/Rexp{—C;lmf(|s|)}ds§f_l(Ml/x).

G(x) > I, () 2

Finally, the doubling property of f~!, monotonicity of ¢ and Proposition 2.3 give

1 Y
Sy’ /)

1
¢ (f~1(1/))
where the implied constant may depend on M. This finishes the proof of (5.17) for M >
M;.
We next consider 0 < M < M;. By monotonicity, the lower estimate remains valid for

all M > 0. Therefore, it is enough to show that for each 0 < M < M, there is C' > 1 such
that for all < Ar/xo,

In(2) S

¢’<f—1?Ml/w>> 1
ptr)dt < C——r—F——.
)

€T
¢ (F~1(M/x))
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By [23, Theorem 3.1], there is to > 0 such that for all 0 < ¢ < ¢,

p(tx) Se (1))
If 9 =0, then ty = co. Since ¢ is almost increasing we have
X M1

o (100 2) = o1 /2)
M,

< .
~ o (f1(Mimo/A))
Hence, by continuity and positivity of p(t,z) and ¢~1(1/t), we can take

T
tg> —F——————.
¢ (f~1(M:/x))
Therefore, by the change of variables t = x/¢'(s) we get

(7 1(M; /) 77 1M /)

p(t,a)dt < e (1/t)dt

~

(M) &1/

F7H M) 1 ¥ (s) ds
_ 1
x/f—l(M/w) 4 ( x )f(s) s2¢/(s)

Next, by monotonicity and the doubling property of f~! and ¢’, we obtain

TG00 1 1 0N/ s
t,x)dt < ) 1( )d
p( 33) (f_l(M/x))2 gb'(f*l(Ml/x)) /fl(M/z) 2 S

L e ey
S(f‘l(l/x)f ¢'(f1 (1)) /fl<M/z> ’ ( z )d'

Since by (5.15) for s > f~1(M/x) we have

¢(s) _ #(8) o wis

by monotonicity of ¢!, Proposition 4.3, Remark 4.4 and the doubling property of f~!

and ¢!
/ O (“) as s (/)

(M /) r

@/ (f=H(M/x))

, we get

which together with (5.25) gives (5.17) for 0 < M < M;. This completes the proof of
Claim 5.5.

Our next task is to deduce (5.16) from Claim 5.5. By Lemma 2.9 and Proposition 2.3,
there is a complete Bernstein function ¢ such that ¢ ~ ¢ and

33‘2(—(5”(56))

fla) = fla) ===
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for all z > x. Let T be a subordinator with the Laplace exponent (;NS By p(t, - ) we denote
the density of the probability distribution of T;. We set

Glx) = /O St dt

and

In(z) = p(t,x) dt.
F=IM/w)
Fix M > 0. By Claim 5.5, there is Ap; > 0 such that for all z < A/,
= 1
¢'(f~1(1/x))
- 1
¢ (f1(1/x)

On the other hand, since ¢ is the complete Bernstein function, by (5.24) and [34, Corollary
2.6], there is C'5 > 1 such that

(5.26)

Al @) <) <O
P gy = M@ =@ =S
Therefore, by (5.26), for © < Aps/xo,
1 ~ 1
o Al (@) ———
¢ (f~1(1/x)) w(b(i/w) (5.27)
" wo(1/z)

and (5.16) follows for all A < Aj;. Let us now consider A > Aj;. Observe that the functions

sl

o To
[AM ] 9x»—>/ p(t,x)dt
o To

&' (f~ 1<M/ )

and

are both positive and continuous; thus, they are bounded for each A. Therefore, at the
possible expense of worsening the constant, we can conclude the proof of the proposition.

Proposition 5.6. Suppose that b=0, —¢" € WLSC(a—2,¢,x¢) for some c € (0,1], x5 >0
and a >0 and that the Lévy measure v(dx) is absolutely continuous with respect to the
Lebesgue measure with a monotone density v(x). Then there is € € (0,1) such that for
each A >0, there is C > 1 such that for all x < A/xy,

T —iasen € 1
p(tr)dt < C—— .
| o)t <O )
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Proof. In view of (5.27), it is enough to show that for some € € (0,1) and all A > 0 there
is C' > 1, such that for all z < A/x,

/0 p(t,x)dt < Cm. (5.28)

Let € € (0,1) and

. Zo
A =min< 1, .
{ f*(zo) }
Suppose that

) S (5:29)

that is,

< ———«€.
Tt (/)
Hence, by monotonicity of ¢! and ¢/,
S VA
"2 i) )
> S (57 (1/1).

By Proposition 4.3 and the scaling property of ¢/, there are ¢ € (0,1] and C > 1 such that

v 2 g (Cot )
> Lecamtg (pm1 (1)),

€
Therefore, by taking € = (2¢)"1cC*™1, we get
z > 2etd’ (Y (1/1)).
Since v(x) is the monotone density of v(dxz), by Theorem 4.8 we get
Tt © o(1/x) T ?
p(t,z)dt < .
/o o \¢(f1(1/2))
By (5.14), f=1(s) 2 s for s > f*(x¢); thus, using (4.4),
sollfs) /)
¢ (f71 (1))~ e(f1(1/x))

which entails (5.28). The extension to arbitrary A follows by continuity and positivity
argument as in the proof of Proposition 5.4. O

It is possible to get the same conclusion as in Proposition 5.6 without imposing the
existence of the monotone density of v(dx); however, instead we need to assume the weak
upper scaling property in —¢”.
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Proposition 5.7. Suppose that b=0 and —¢" € WLSC(a—2,¢,29) "WUSC(5 —2,C,x0)
for some c€ (0,1], C>1, 29 >0 and % <a<p<1. Then there is € € (0,1) such that for
each A >0, there is C1 > 1, so that for all x < A/xy,

Ttarm 1
p(t,x)dt < C;————. 5.30
/ (ha)d < Oy s (5.30)

Proof. Let

. Zo
A =min\ 1, .
{ f* (o) }
By repeating the same reasoning as in the proof of Proposition 5.6, we can see that the
condition

LSS
implies
x> 2etd (Y1 (1/1)),

for € = (2¢)"tcC*~1. Therefore, we can apply Theorem 4.7 to get

S=ta e € S=ta €
/ PO bty dt S e(1/x) / T o 1 dt, (5.31)
0 0

where the implied constant may depend on €. Since o > %, by Proposition 4.3, [1, Theorem
3] and the doubling property of ¢!, we obtain

/0¢’<ff<1/z>>6wl(1/t) dt < (m)ipl <qb’(f_;§1/x))>

. (M)}(W> (5.32)

In view of (5.15), we have

¢ (1) _ e (11 /)

z Caf(f(1/2)
St (fH(1/x);

thus, by Proposition 4.3 and Remark 4.4,

p(1/z)z? (p_1<¢’(f‘1(1/ir)))< " (1/x)a?
¢'(f~1(1/2)) x (1)

=af~'(1/x)

)f_ (1/z)

pr(1/z)
e (f~1(1/x))
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In view of Propositions 2.3 and 4.6, we have f(s) ~ s for s > xo; thus, f~!(s) ~ s, for
s> f*(x). Hence,

p(l/a)a® <¢’<f1<1/x>>> <1
¢'(f~1(1/x)) z ~
Therefore, by (5.31) and (5.32), we conclude that
Tt © 1
p(ta)dt S —————
/o ¢'(f~1(1/2))
which, by Proposition 5.4 and (5.27), entails (5.30). The extension to arbitrary A follows

by positivity and continuity argument. O

Theorem 5.8. Let T be a subordinator with the Laplace exponent ¢. Suppose that
¢ € WLSC(a,c,zg) N WUSC(B,C,x0)

for some c€ (0,1], C>1, 29 >0 and 0 < a < B < 1. We assume that one of the following
conditions holds:
(i) The Lévy measure v(dz) is absolutely continuous with respect to the Lebesgue
measure with monotone density v(x), or
(i) a> 1.
Then for each A >0 there is C1 > 1 such that for all x < A/xo,
1 1
Cil———— <Gz) <O, ———.
st =9 =gt

Proof. By Corollary 2.7, —¢"" € WLSC(a—2,¢,29) "WUSC(8 —2,C, ). Let p(t,-) be the
transition density of T;. In view of Propositions 5.4, 5.6 and 5.7 and (5.27), it is enough
to show that for each A >0 and e € (0,1) there is C; > 0 such that for all x < A/z,

T 1
p(t,x)dt < le.
TGt € ¢ (f (1/36))

By [23, Theorem 3.1], there is tp > 0 such that for all ¢ € (0,t),
p(tx) S~ (1/1).

If zo =0, then tg = co. We can take

(5.33)

0 W)

1

Therefore, by monotonicity of ™", we get
PUTRTEVESY) PP NTVES)
p(tx)dt pi(1/t)dt
FEae © T ©

x 1 ¢/(f71(1/I))
=)’ ( = )
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By the doubling property of ¢!, definition of f and Remark 4.4,

- (cb/(fl(l/w))) o (qﬁ’(fl(l/w)))

ET x

since by the weak upper scaling property of —¢", f(s) = s for all s > f*(xg). Consequently,
we obtain (5.33) and the theorem follows. O
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