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Abstract

Let E/Q(T) be a nonisotrivial elliptic curve of rank r. A theorem due to Silverman [‘Heights and the
specialization map for families of abelian varieties’, J. reine angew. Math. 342 (1983), 197–211] implies
that the rank rt of the specialisation Et/Q is at least r for all but finitely many t ∈ Q. Moreover, it is
conjectured that rt ≤ r + 2, except for a set of density 0. When E/Q(T) has a torsion point of order 2,
under an assumption on the discriminant of a Weierstrass equation for E/Q(T), we produce an upper
bound for rt that is valid for infinitely many t. We also present two examples of nonisotrivial elliptic curves
E/Q(T) such that rt ≤ r + 1 for infinitely many t.
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1. Introduction

Let π : E → P1 be a nonconstant elliptic surface defined over Q. By this, we mean a
two-dimensional projective variety E endowed with a morphism π as above such that
all but finitely many fibres of π are curves of genus one and such that there exists a
section σ to π. Let E/Q(T) be the generic fibre of E, where T is a coordinate of P1

Q
.

The Mordell–Weil theorem for function fields (see [16, page 230]) asserts that E(Q(T))
is a finitely generated group.

Denote by r the rank of the generic fibre E/Q(T) of E and by rt the rank of the
specialisation Et/Q of E at T = t, provided that Et/Q is an elliptic curve. It follows
from a theorem of Silverman (see [14, Theorem C] or [16, Theorem III.11.4]) that r ≤ rt
for all but finitely many t. A natural question to ask is how far the above inequality is
from being an equality. Assume from now on that π : E → P1

Q
is nonisotrivial. Let

N(E) = {t ∈ P1(Q) : Et/Q is an elliptic curve and rt = r}
and

F (E) = {t ∈ P1(Q) : Et/Q is an elliptic curve and rt ≥ 2 + r}.
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2 M. Melistas [2]

The density conjecture (see [15, page 556] or [4, Appendix A]) predicts that N(E) is
infinite while F (E) has density zero.

Proving either of these two statements at the moment seems to be out of reach.
Moreover, not a single (unconditional) example of a nonisotrivial elliptic surface for
which N(E) is infinite is known. However, conditional examples relying on standard
conjectures in analytic number theory have been found. For instance, under the
assumption that there are infinitely many Mersenne primes, Caro and Pasten in [3]
found an elliptic curve E/Q(T) of rank 0 and infinitely many primes q such that
Eq/Q has rank 0 as well. Moreover, work of Neuman and Setzer (see [11, 13]) on
elliptic curves with prime conductor combined with a conjecture of Bouniakowsky [2]
provides another such example.

For every i ≥ 1, we let

Ii(E) = {t ∈ P1(Q) : Et is an elliptic curve and rt ≤ r + i}.

In this article, we are interested in providing examples of elliptic surfaces and explicit
positive integers i such that Ii(E) is infinite. Our first result is the following theorem
(see Theorems 2.3 and 2.4 below).

THEOREM 1.1. Let E/Q(T) be either the elliptic curve given by the Weierstrass
equation

y2 = x3 + Tx2 − x

or the elliptic curve given by the Weierstrass equation

y2 + xy = x3 +
T − 1

4
x2 − x.

Then, there exist infinitely many integers n such that rk En(Q) ≤ 1. In particular, the
set I1(E) is infinite.

Before we state our next theorem, we need to introduce some notation. If F(x) is an
irreducible polynomial with integer coefficients, then we write ρF(p) for the number
of solutions of the congruence

F(x) ≡ 0 (mod p).

THEOREM 1.2. Let E/Q(T) be a nonisotrivial elliptic curve whose Mordell–Weil
group contains a point of order 2. Fix an integral Weierstrass equation for E/Q(T)
and denote by Δ(T) ∈ Z[T] its discriminant.

(1) Assume that Δ(T) = pa1
1 · · · p

am
m f (T)k, where m ≥ 0, k, a1, . . . , am > 0, and f (T) is

an irreducible polynomial with integral coefficients such that ρ f (p) < p for every
prime p. Then, there exist infinitely many positive integers n such that

rk En(Q) ≤ 2 deg(Δ) + 2m + 1.

In particular, the set I2 deg(Δ)+2m+1(E) is infinite.
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[3] Low rank specialisations of elliptic surfaces 3

(2) Assume that Δ(T) = pa1
1 · · · p

am
m Tk1 f (T)k2 , where m ≥ 0, k1, k2, a1, . . . , am > 0, and

f (T) � ±T is an irreducible polynomial with ρ f (p) < p for every prime p. Assume
also that ρ f (p) < p − 1 for every prime p ≤ deg( f ) + 1 such that p � f (0). Then,
there exist infinitely many positive integers n such that

rk En(Q) ≤ 4 deg( f ) + 2m + 2.

In particular, the set I4 deg( f )+2m+2(E) is infinite.

In fact, we prove a more general theorem where we also treat the general case where
Δ(T) factors into a product of any number of irreducible polynomials. To prove our
results, we combine a bound on ranks of elliptic curves over Q that depends on their
discriminants coming from 2-descent (see [1, 3]) with results on almost prime values
of polynomials that are derived from sieve methods in analytic number theory (see, for
example, [5] or [6]).

2. Proofs of Theorems 1.1 and 1.2

In this section, we prove Theorems 1.1 and 1.2. In fact, we will prove more general
versions of the theorems stated in the introduction. Before we begin our proofs, let us
recall a theorem that provides an upper bound for the rank of elliptic curves with a
torsion point of order 2.

THEOREM 2.1 (See [1, Proposition 1.1] and [3, Theorem 2.3]). Let E/Q be an elliptic
curve that has a point of order 2.

(1) If E/Q has an integral Weierstrass equation of the form y2 = x3 + Ax2 + Bx, then

rk E(Q) ≤ ν(A2 − 4B) + ν(B) − 1,

where ν(n) denotes the number of positive prime divisors of a nonzero integer n.
(2) Let α and μ be the number of places of additive and of multiplicative reduction of

E/Q, respectively. Then,

rk E(Q) ≤ 2α + μ − 1.

REMARK 2.2. Elliptic curves for which the inequality of part (1) of Theorem 2.1 is an
equality are called elliptic curves of maximal Mordell–Weil rank. Examples of such
curves have been exhibited by Aguirre et al. in [1].

Throughout the rest of this section, we will denote by Pr the set of positive integers
with at most r prime divisors, counted with multiplicity. We are now ready to proceed
to the proof of Theorem 1.1 for one of the two elliptic curves.

THEOREM 2.3. Consider the elliptic curve E/Q(T) given by y2 = x3 + Tx2 − x. Then,
there exist infinitely many integers n such that En/Q has Mordell–Weil rank at most 1.
Moreover, there exists a positive constant C such that, if X is sufficiently large,

#{n : n ≤ X and rk En(Q) ≤ 1} ≥ C
X

log X
.
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4 M. Melistas [4]

PROOF. For an integer n, consider the elliptic curve En/Q given by y2 = x3 + nx2 − x.
We first show that there exist infinitely many n such that En/Q has Mordell–Weil rank
at most 1. Since E/Q(T) has a torsion point of order 2 and the torsion subgroup of
E(Q(T)) injects in En(Q) when En/Q is nonsingular, En/Q has a point of order 2 for all
but finitely many n. Therefore, it follows from part (1) of Theorem 2.1 that

rk En(Q) ≤ ν(n2 + 4) + ν(−1) − 1 = ν(n2 + 4) − 1,

where ν(N) denotes the number of positive prime divisors of a nonzero integer N.
If we can find infinitely many n such that n2 + 4 ∈ P2, then we are done. In contrast,

for every prime p, we have ρn2+4(p) ≤ 2 and ρn2+4(2) = 1, so that

Γn2+4 =
∏

p prime

1 − ρn2+4(p)/p
1 − 1/p

> 0.

Therefore, it follows from [10] that there exist infinitely many positive integers n such
that n2 + 4 has at most two prime divisors, counted with multiplicity. This proves that
there exist infinitely many positive integers n such that En/Q has Mordell–Weil rank
at most 1.

We now show the inequality of the theorem. Consider the polynomial

h(n′) = (n′ + 1)2 + 4 = n′2 + 2n′ + 5.

According to [9, Theorem 1] (see also [8, page 172] and [10]), if X is sufficiently large,

#{n′ : n′ ≤ X and h(n′) ∈ P2} ≥
1

144

∏

p prime

1 − ρh(p)/p
1 − 1/p

X
log X

.

Further,

#{n : n ≤ X and n2 + 4 ∈ P2} ≥ #{n′ : n′ ≤ X and (n′ + 1)2 + 4 ∈ P2} − 1.

Therefore,

#{n : n ≤ X and n2 + 4 ∈ P2} ≥
1

144

∏

p prime

1 − ρh(p)/p
1 − 1/p

X
log X

− 1 ≥ C
X

log X

for all X sufficiently large (picking an appropriate constant C). This proves our
theorem. �

Consider now the elliptic curve E/Q(T) given by the Weierstrass equation

y2 + xy = x3 +
T − 1

4
x2 − x.

Specialisations of this curve have been studied by Neumann [11] and Setzer [13]. More
precisely, it is proved in [13, Theorem 2] that if p � 2, 3, 17 is a prime and E/Q is an
elliptic curve of conductor p with a torsion point of order 2, then p = b2 + 64 for some
integer b ≡ 1 (mod 4). In this case, E/Q is isomorphic to either the curve Eb/Q or to a
curve which is isogenous to Eb/Q.
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[5] Low rank specialisations of elliptic surfaces 5

It follows from part (2) of Theorem 2.1 that if p is a prime of the form p = b2 + 64
for some integer b ≡ 1 (mod 4), then the specialisation Eb/Q has rank equal to 0.
According to a conjecture of Bouniakowsky [2, page 328], there are infinitely many
such numbers b. Without relying on any conjectures, we show below that we can
find infinitely many integers n such that n2 + 64 ∈ P2, which forces the rank of the
corresponding curve En/Q to be at most 1.

THEOREM 2.4. Consider the elliptic curve E/Q(T) given by

y2 + xy = x3 +
T − 1

4
x2 − x.

Then, there exist infinitely many integers n such that En/Q has Mordell–Weil rank at
most 1.

PROOF. The proof is similar to the proof of Theorem 2.3. For every n ∈ Z, consider
the elliptic curve En/Q given by

y2 + xy = x3 +
n − 1

4
x2 − x.

The discriminant of En/Q is Δ(n) = n2 + 64 and the c4-invariant is c4(n) = n2 + 48.
Since E/Q(T) has a torsion point of order 2, we find that En/Q has a point of order 2
for all but finitely many En/Q. The strategy that we will follow for the rest of the proof
is to try to control the primes of bad reduction of En/Q for sufficiently many integers
n and apply Theorem 2.1.

CLAIM 2.5. If n2 + 64 ∈ P2, then n is odd. �

PROOF OF THE CLAIM. If n2 + 64 is odd, then n must be odd. Therefore, assume that

n2 + 64 = 2q,

where q is a prime (not necessarily distinct from 2). This means that n is even. If we
write n = 2n′, then

2q = n2 + 64 = 4n′2 + 64

and we see that q is even, so q = 2. However, then n2 + 64 = 4, which is impossible.
Therefore, n must be odd. �

If n2 + 64 ∈ P2, then n2 + 64 is odd and, hence, n is odd. Moreover, by replacing
n with −n if necessary, we can also arrange that n ≡ 1 (mod 4). Thus, the given
Weierstrass equation for En/Q is an integral Weierstrass equation and by looking at
the corresponding c4-invariant, we see that when n2 + 64 ∈ P2, every divisor of Δ(n)
does not divide c4(n). This proves that if n2 + 64 ∈ P2, then the curve En/Q has at most
two primes of multiplicative reduction and no primes of additive reduction. Therefore,
it follows from part (2) of Theorem 2.1 that

rk En(Q) ≤ 2 · 0 + μn − 1 = μn − 1,
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6 M. Melistas [6]

where μn ≤ 2 is the number of primes of multiplicative reduction of En/Q. This shows
that when n2 + 64 ∈ P2, we have rk En(Q) ≤ 1.

Since ρn2+64(p) ≤ 2 and ρn2+64(2) = 1 for every prime p,

Γn2+64 =
∏

p prime

1 − ρn2+64(p)/p
1 − 1/p

> 0.

Therefore, it follows from [10] that there exist infinitely many n such that n2 + 64 ∈ P2.
Hence, there exist infinitely many integers n such that rk En(Q) ≤ 1.

Before we proceed to the proof of a slightly more general version of Theorem 1.2,
we need to recall two theorems on almost-prime values of polynomials that are derived
from analytic number theory and will be needed in our proofs.

THEOREM 2.6 ([12, Theorem 6] and [12, Theorem 7]). Let F(x) be an irreducible
polynomial of degree g ≥ 1 with integral coefficients. Assume that ρF(p) < p for every
prime p.

(1) Then, there exists a constant X0(F) that depends on F such that for every
X ≥ X0(F),

#{n : 1 ≤ n ≤ X, F(n) ∈ Pg+1} ≥
2
3

∏

p

1 − ρF(p)/p
1 − 1/p

X
log(X)

.

In particular, there exist infinitely many integers n such that F(n) has at most
g + 1 prime factors.

(2) Assume in addition that ρF(p) < p − 1 for every prime p ≤ deg(F) + 1 with
p � F(0). Then, there exist positive constants C(F) and X0(F) that depend on F
such that for every X ≥ X0(F),

#{p prime : 1 ≤ p ≤ X, F(p) ∈ P2g+1} ≥ C(F)
X

log2(X)
.

In particular, there exist infinitely many prime numbers p such that F(p) has at
most 2g + 1 prime factors.

THEOREM 2.7 [6, Theorem 10.4]. Let F1(x), F2(x), . . . , Fg(x) be distinct irreducible
polynomials with integral coefficients and write F(x) = F1(x)F2(x) · · ·Fg(x) for their
product. Assume that ρF(p) < p for every prime p. Then, there exists a positive integer
s that can be explicitly computed and depends on F, and a positive constant C(F) that
depends on F such that for all X sufficiently large,

#{n : 1 ≤ n ≤ X, F(n) ∈ Ps} ≥ C(F)
X

logg(X)
.

We are now ready to proceed to the proof of a slightly more general version of
Theorem 1.2.
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[7] Low rank specialisations of elliptic surfaces 7

THEOREM 2.8. Let E/Q(T) be a nonisotrivial elliptic curve whose Mordell–Weil
group contains a point of order 2. Fix an integral Weierstrass equation for E/Q(T)
and denote its discriminant by Δ(T) ∈ Z[T].

(1) Assume that Δ(T) = pa1
1 · · · p

am
m f (T)k, where m ≥ 0, k, a1, . . . , am > 0, and f (T) is

an irreducible polynomial with integral coefficients such that ρ f (p) < p for every
prime p. Then, there exists a constant X0( f ) that depends only on f such that for
every X ≥ X0( f ),

#{n : 1 ≤ n ≤ X, rk En(Q) ≤ 2 deg(Δ) + 2m + 1} ≥ 2
3

∏

p

1 − ρ f (p)/p
1 − 1/p

X
log(X)

.

In particular, there exist infinitely many positive integers n such that

rk En(Q) ≤ 2 deg(Δ) + 2m + 1.

(2) Assume that Δ(T) = pa1
1 · · · p

am
m Tk1 f (T)k2 , where m ≥ 0, k1, k2, a1, . . . , am > 0, and

f (T) � ±T is an irreducible polynomial with ρ f (p) < p for every prime p. Assume
also that ρ f (p) < p − 1 for every prime p ≤ deg( f ) + 1 with p � f (0). Then,
there exist constants C( f ) and X1( f ) that depend only on f such that for every
X ≥ X1( f ),

#{n : 1 ≤ n ≤ X, rk En(Q) ≤ 4 deg( f ) + 2m + 2} ≥ C( f )
X

log2(X)
.

In particular, there exist infinitely many positive integers n such that

rk En(Q) ≤ 4 deg( f ) + 2m + 2.

(3) More generally, write Δ(T) = pa1
1 · · · p

am
m f1(T)h1 · · · fg(T)hg , where p1, . . . , pm are

distinct primes for some m ≥ 0 and f1(T), . . . , fg(T) are distinct irreducible poly-
nomials with integral coefficients for some g ≥ 1. Assume that ρ f1(T)··· fg(T)(p) < p
for every prime p. Then, there exists a positive constant C( f1, . . . , fg) that depends
on f1, . . . , fg such that for all X sufficiently large,

#{n : 1 ≤ n ≤ X, rk En(Q) ≤ 2(m + s) − 1} ≥ C( f1, . . . , fg)
X

logg(X)
,

where s is a positive integer that can be explicitly computed and depends on
degΔ(T) and g.

PROOF OF PART (1). Let E/Q(T) be an elliptic curve as in part (1). Since E/Q(T) has
a torsion point of order 2 and the torsion subgroup of E(Q(T)) injects in Et(Q) when
Et/Q is nonsingular, Et/Q contains a point of order 2 for all but finitely many Et/Q.
Moreover, applying part (1) of Theorem 2.6 to the polynomial f (T) yields a constant
X0( f ) that depends on f such that for every X ≥ X0( f ),

#{n : 1 ≤ n ≤ X, f (n) ∈ Pdeg( f )+1} ≥
2
3

∏

p

1 − ρ f (p)/p
1 − 1/p

X
log(X)

.
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8 M. Melistas [8]

Recall that Δ(T) = pa1
1 · · · p

am
m f (T)k and note that for each n ∈ N, the primes of bad

reduction of En/Q are a subset of the primes that divide Δ(n). Therefore, by applying
part (2) of Theorem 2.1 to each En/Q, we find that if f (n) ∈ Pdeg( f )+1, then the rank of
En/Q is at most 2(deg( f ) + 1 + m) − 1 = 2 deg( f ) + 2m + 1. Since deg( f ) = deg(Δ),
the proof of part (1) is complete. �

PROOF OF PART (2). Now, let E/Q(T) be an elliptic curve as in part (2). As in the
previous part, Et/Q contains a point of order 2 for all but finitely many Et/Q. Applying
part (2) of Theorem 2.6 to the polynomial f (T) yields positive constants C( f ) and
X0( f ) that depend on f such that for every X ≥ X0( f ),

#{p prime : 1 ≤ p ≤ X, f (p) ∈ P2 deg( f )+1} ≥ C( f )
X

log2(X)
.

Recall Δ(T) = pa1
1 · · · p

am
m Tk1 f (T)k2 and note that for each n ∈ N, the primes of bad

reduction of En/Q are a subset of the primes that divide Δ(n). Therefore, by applying
part (2) of Theorem 2.1 to each En/Q, we find that if n is prime with f (n) ∈ P2 deg( f )+1,
then the rank of En/Q is at most 2(2 deg( f ) + 2 + m) − 1 = 4 deg( f ) + 2m + 2. �

PROOF OF PART (3). Now, let E/Q(T) be an elliptic curve as in part (3). As in
the previous parts, Et/Q contains a point of order 2 for all but finitely many Et/Q.
Applying Theorem 2.7 to the polynomial f1(T) · · · fg(T), we find that there exists a
positive integer s that can be explicitly computed, and depends on f1(T), . . . , fg(T) and
a positive constant C( f1, . . . , fg) that depends on f1(T), . . . , fg(T) such that for all X
sufficiently large,

#{n : 1 ≤ n ≤ X, f1(n) · · · fg(T) ∈ Ps} ≥ C(F)
X

logg(X)
.

Recall that Δ(T) = pa1
1 · · · p

am
m f1(T)h1 · · · fg(T)hg and note that for each n ∈ N, the

primes of bad reduction of En/Q are a subset of the primes that divide Δ(n). Therefore,
by applying part (2) of Theorem 2.1 to each En/Q, we find that if n is prime with
f (n) ∈ P2 deg( f )+1, then the rank of En/Q is at most 2(s + m) − 1 = 2s + 2m − 1. This
completes the proof of our theorem. �

We end this article by presenting some examples where Theorem 2.8 can be applied
to find explicit bounds for the ranks of infinitely many specialisations.

EXAMPLE 2.9. Consider the elliptic curve E/Q(T) given y2 = x3 + g(T)x2 − λx, where
g(T) ∈ Z[T] and λ is a positive integer. This elliptic curve has discriminant

Δ(T) = 16(−λ)2(g(T)2 + 4λ).

When g(T)2 + 4λ is an irreducible polynomial such that ρg(p) < p for every prime
p, part (1) of Theorem 2.8 shows that there exist infinitely many positive integers n
such that rkEn(Q) ≤ 4 deg(g) + 2v(λ) + 3, where v(λ) is the number of positive prime
divisors of λ.
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[9] Low rank specialisations of elliptic surfaces 9

EXAMPLE 2.10. Consider the elliptic curve E/Q(T) given by y2 + xy − Ty = x3 − Tx2,
which has discriminant Δ(T) = T4(1 + 16T). It is well known (see [7, Section 4.4])
that if E′/Q is any elliptic curve with a torsion point of order 4, then there exists λ ∈ Q
such that E′/Q is isomorphic to Eλ/Q. According to part (2) of Theorem 2.8, there exist
infinitely many integers n such that the rank of En/Q is at most 6. It is easy to check
that the discriminant of E/Q(T) satisfies the hypotheses of part (2) of Theorem 2.8.

REMARK 2.11. Keep the same notation as in Theorem 2.8. Given an elliptic curve that
satisfies the conditions of part (3) of Theorem 2.8, the corresponding number s can be
explicitly computed. A formula for s can be found on [6, page 283]. In the simple case
where g = 2, that is, when

Δ(T) = pa1
1 · · · p

am
m f1(T)h1 f2(T)h2 ,

such an s can be computed based only on the degree of Δ(T). For example, when
deg(Δ(T)) is equal to 3, 4, 5 or 6, then s is equal to 7, 9, 10 or 11, respectively (see
[6, page 287]).

EXAMPLE 2.12. Consider the elliptic curve E/Q(T) given by y2 = x3 + (T + 1)x2 −
(T2 + 1)x which has discriminant

Δ(T) = 16(T2 + 1)2((T + 1)2 + 4(T2 + 1)) = 16(T2 + 1)2(5T2 + 2T + 5).

By part (3) of Theorem 2.8 combined with Remark 2.11, there exist infinitely many n
such that the rank of En/Q is at most 9.

Acknowledgement

I would like to thank the anonymous referee for a fast review and a very helpful
correction.

References
[1] J. Aguirre, Á. Lozano-Robledo and J. C. Peral, ‘Elliptic curves of maximal rank’, in: Proceedings of

the Segundas Jornadas de Teoría de Números (eds. J. Cilleruelo, E. González Jiménez, A. Quirós
and X. Xarles) (Revista Matemática Iberoamericana, Madrid, 2008), 1–28.

[2] V. Bouniakowsky, ‘Sur les diviseurs numériques invariables des fonctions rationnelles entières’,
Mém. Acad. Sc. St. Pétersbourg 6 (1857), 305–329.

[3] J. Caro and H. Pasten, ‘On the fibres of an elliptic surface where the rank does not jump’, Bull.
Aust. Math. Soc. 108(2) (2023), 276–282.

[4] B. Conrad, K. Conrad and H. Helfgott, ‘Root numbers and ranks in positive characteristic’, Adv.
Math. 198(2) (2005), 684–731.

[5] J. Friedlander and H. Iwaniec, Opera de Cribro, Colloquium Publications, 57 (American Mathe-
matical Society, Providence, RI, 2010).

[6] H. Halberstam and H.-E. Richert, Sieve Methods, London Mathematical Society Monographs, 4
(Academic Press, London, 1974).

[7] D. Husemöller, Elliptic Curves, 2nd edn, Graduate Texts in Mathematics, 111 (Springer-Verlag,
New York, 2004).

[8] H. Iwaniec, ‘Almost-primes represented by quadratic polynomials’, Invent. Math. 47 (1978),
171–188.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972724001175
Downloaded from https://www.cambridge.org/core. IP address: 3.15.165.7, on 10 Apr 2025 at 06:20:43, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972724001175
https://www.cambridge.org/core


10 M. Melistas [10]

[9] V. Kapoor, ‘Almost-primes represented by quadratic polynomials’, Master of Science thesis, Simon
Fraser University, 2006; arXiv:1910.2019.02885 (2019).

[10] R. J. Lemke Oliver, ‘Almost-primes represented by quadratic polynomials’, Acta Arith. 151(3)
(2012), 241–261.

[11] O. Neumann. ‘Elliptic curves with prescribed reduction. I’, Math. Nachr. 49 (1971), 106–123.
[12] H.-E. Richert, ‘Selberg’s sieve with weights’, Mathematika 16 (1969), 1–22.
[13] B. Setzer, ‘Elliptic curves of prime conductor’, J. Lond. Math. Soc. (2) 10 (1975), 367–378.
[14] J. H. Silverman, ‘Heights and the specialization map for families of abelian varieties’, J. reine

angew. Math. 342 (1983), 197–211.
[15] J. H. Silverman, ‘Divisibility of the specialization map for families of elliptic curves’, Amer. J.

Math. 107 (1985), 555–565.
[16] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in

Mathematics, 151 (Springer-Verlag, New York, 1994).

MENTZELOS MELISTAS, Department of Applied Mathematics,
University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
e-mail: mentzmel@gmail.com

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972724001175
Downloaded from https://www.cambridge.org/core. IP address: 3.15.165.7, on 10 Apr 2025 at 06:20:43, subject to the Cambridge Core terms of use, available at

https://arxiv.org/abs/1910.2019.02885
mailto:mentzmel@gmail.com
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0004972724001175
https://www.cambridge.org/core

	1 Introduction
	2 Proofs of Theorems 1.1 and 1.2

