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Equilibration of Large Quantum Systems

The tendency of large systems to evolve to an equilibrium, namely, a stationary
state that does not depend on their initial state, is called thermalization. The
stationary state of a closed system is described by the microcanonical ensemble
corresponding to a narrow energy distribution.

Large-system thermalization is commonplace. Yet it appears to contradict
the unitarity of quantum mechanics, which requires symmetry with respect
to time inversion. This contradiction has not yet been fully reconciled with
the fundamental reversibility of quantum mechanics, despite a continuing
endeavor that may be traced back to von Neumann’s work in 1929. The cen-
tral paradigm is the eigenstate thermalization hypothesis (ETH) put forward by
Srednicki. It relies on the conjecture that a typical (randomly picked) eigenstate
of a realistic many-body Hamiltonian yields the same mean value for any rea-
sonable observable as predicted by a microcanonical ensemble with the same
total energy. The ETH predicts that almost any superposition of such eigen-
states relaxes at long times to a state that is practically indistinguishable from a
thermal equilibrium state. Studies of thermalization in closed quantum many-
body systems are aimed at bridging unitarity with irreversibility, ergodicity,
and the onset of thermodynamic behavior in complex or open systems. Yet the
quantum thermalization mechanism and the route to the bridging of quantum
and classical descriptions of the world by this mechanism remain enigmatic
and are still being debated. However, under generic conditions, one can show
that the observables of a large system are governed at long times by a canonical
density operator, as detailed in this chapter.

1.1 From Quantum Dynamics to Thermodynamics

In an isolated system with a large but countable number of degrees of freedom
(DOF), 1 � f <∞, governed by an autonomous Hamiltonian H , the spectrum is
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4 Equilibration of Large Quantum Systems

discrete (quantized). Its (typically infinitely many) eigenstates |n〉 (n = 0, 1, . . . )
possess eigenvalues En , ordered as

E0 ≤ E1 ≤ E2 ≤ . . . , (1.1)

with a bounded ground state energy, E0 > −∞. The Hamiltonian can then be
written as

H :=
∑

n

En|n〉〈n|. (1.2)

In the presence of energy degeneracy, we may use the projectors onto subspaces
of degenerate energies Em = En ,

PEn :=
∑

Em=En

|m〉〈m|, (1.3)

to rewrite the Hamiltonian (1.2) as

H =
∑
En

En PEn , (1.4)

where
∑

En
is a summation over all mutually different En values.

1.1.1 Thermodynamic Variables

The number of energy levels below any given E is

N (E) :=
∑

n

θ(E − En), (1.5)

the Heaviside (step) function θ(x) being equal to 1 for x > 0 and 0 for x ≤ 0. The
entropy associated with this number of levels is defined as

S(E) := kB ln N (E), (1.6)

where kB is Boltzmann’s constant. Commonly, this entropy is an extensive quantity,
since it scales for a system with f DOF as

S(E)/kB = O( f ). (1.7)

Equation (1.5) implies that for macroscopic f = O(1023), the level density is
staggering even on extremely small energy scales. Hence, the step function θ(x)
in (1.5) may be assumed to be washed out. The level number N (E) then becomes
a smooth function of E , whose well-defined derivative represents the density of
states

�(E) =
∑

n

δ(E − En), (1.8)
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1.1 From Quantum Dynamics to Thermodynamics 5

the delta-function δ(x) = θ ′(x) being also assumed to be washed out over many
energy levels.

The coarse-grained entropy defined by (1.6) leads to the definition of tempera-
ture, which applies whether the system is at equilibrium or not:

T (E) := 1/S′(E). (1.9)

In accordance with Nernst’s third law of thermodynamics, the entropy and
temperature converge to zero as the energy approaches the ground-state value,
E → E0. For macroscopic values of E − E0, the dependence of S on E is
logarithmic. It then follows from (1.7) and (1.9) that

kBT (E) = O

(
E − E0

f

)
, (1.10)

so that, for any macroscopic energy change �E ,

T (E +�E) = T (E)

[
1 + O

(
�E

E − E0

)]
. (1.11)

All these relations may fail at extremely low temperatures, which are beyond our
consideration here (but cf. references in this chapter).

1.1.2 States and Dynamics

A quantum mechanical state of the system is given by a density operator ρ(t),
whose evolution,

ρ(t) = Ut ρ(0)U †
t , (1.12)

is governed by the unitary propagator

Ut := exp(−i Ht/�) =
∑

n

exp(−i Ent/�)|n〉〈n|. (1.13)

Equations (1.12) and (1.13) yield, for an arbitrary initial state ρ(0),

ρ(t) =
∑
m,n

ρmn(0)e
−i(Em−En)t/�|m〉〈n|, (1.14)

where
∑

m,n is a summation over all m, n = 0, 1, 2, ..., ρmn(t) := 〈m|ρ(t)|n〉 being
the matrix elements of ρ(t).

The ensemble-averaged occupation probability pEn of an eigenvalue En is given
by the expectation value of the projector (1.3) onto the corresponding eigenspace,

pEn := Tr [PEnρ(t)] =
∑

Em=En

ρmm(t) =
∑

Em=En

pm, (1.15)
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6 Equilibration of Large Quantum Systems

where the level population pn is the time-independent expectation value of the
observable |n〉〈n|,

pn := Tr [|n〉〈n|ρ(t)] = ρnn(t) = ρnn(0), (1.16)

normalized by

1 = Tr ρ(t) =
∑

n

ρnn(t) =
∑

n

pn =
∑
En

pEn . (1.17)

In what follows, we shall employ the energy basis in which all the non-diagonal
elements of PEn ρ(0)PEn vanish,

ρmn(0) = 0 if m 
= n and Em = En. (1.18)

1.2 The Problem of Equilibration for Physical Observables

The statistical ensemble ρ(t) is not stationary at short t if ρ(0) is out of equi-
librium. Yet, if the right-hand side of (1.14) initially depends on t , it cannot
approach at large t any time-independent “equilibrium ensemble.” Furthermore,
any mixed state ρ(t) returns arbitrarily “near” its initial state ρ(0) at certain
times t (analogously, but not identically, to pure-state Poincaré recurrences). In
what follows, we examine the apparent contradiction of such recurrences with
equilibration.

According to (1.14), there exists at least one ρmn(0) 
= 0 with

ω := (En − Em)/� 
= 0. (1.19)

We consider observables represented by Hermitian operators

X =
∑
m,n

Xmn|m〉〈n|, Xmn := 〈m|X |n〉, (1.20)

with expectation values

〈X〉(t) := Tr[ρ(t)X ]. (1.21)

For the observable that represents an interlevel transition,

X = X̂ + X̂†, X̂ := |m〉〈n|/ρmn(0), (1.22)

we find from (1.14) that

Tr [ρ(t)X ] = 2 cos(ωt). (1.23)

Thus, the mean value of X in the ensemble ρ(t) exhibits permanent oscillations,
allowing us to conclude that quantum mechanics and equilibration are, in general,
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incompatible. Nevertheless, as shown below, equilibration can approximately hold
true for a restricted class of observables X and initial conditions ρ(0).

A measurement of an observable X may be assumed to yield a finite range of
possible outcomes,

�X := max
H
〈ψ |X |ψ〉 − min

H
〈ψ |X |ψ〉 = xmax − xmin, (1.24)

where the maximization and minimization are over all normalized vectors in the
pertinent Hilbert space H, |ψ〉 ∈ H, so that xmax and xmin are the largest and
smallest eigenvalues of X , respectively.

1.2.1 Equilibration Conditions

The key requirement on the initial condition ρ(0) is that the ensemble-averaged
level populations pn can be split into a locally averaged level population density
h(E) and “unbiased fluctuations” δpn , whose average within the interval around E
is vanishingly small compared to h(E),

pn = h(En)+ δpn. (1.25)

This requirement should hold within any energy interval, which contains many
levels En , but is still exceedingly small on any experimentally resolvable
scale.

This initial condition is the result of a preparation process, during which the
system was still entangled with the outside world. The reduced initial state (at
t = 0) of the system (obtained by tracing out the outside world) must therefore be
a mixed state. Any time-dependent system Hamiltonian will cause the spreading
of occupation probabilities over neighboring energy levels. Since the levels are so
dense, the spreading randomizes the pn’s in accordance with (1.25). This prepara-
tion process stands in contrast to a “sudden” (discontinuous) parametric change of
the Hamiltonian, dubbed quantum quench.

1.2.2 Energy Density

Let us define the ensemble-averaged energy density

ρ(E) := 〈δ(E − H)〉, (1.26)

ρ(E)d E being the probability to find an energy value between E and E + d E .
From (1.16) it follows that

ρ(E) =
∑

n

pnδ(E − En). (1.27)
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8 Equilibration of Large Quantum Systems

The delta-functions in (1.27) are assumed to be “washed out” over many energy
levels so that they give rise to a well-defined, smooth energy density. Consistently
with (1.25) one then finds that

ρ(E) = h(E)�(E). (1.28)

Namely, the probability ρ(E)d E of finding an energy between E and E + d E
is given by the locally averaged energy-level population h(E) multiplied by the
local level density�(E) times the interval d E . It is important that the locally aver-
aged population-density h(E) be independent of the specific choice of the energy
interval around E .

1.2.3 Maximal Level Population

Even if the energy levels are populated nonuniformly, we expect from (1.25)–(1.28)
that

max
n

pn � 10−O( f ), (1.29)

so that maxn pn is extremely small.
According to (1.22), the spectrum of X consists of the eigenvalues x± =

±|ρnm(0)|−1 and, for dimH > 2, of the eigenvalue x0 = 0. From (1.24) we then
have

�X = 2|x±| > 2

maxn pn
. (1.30)

We can deduce from (1.29) that �X ≥ O(10 f ). Although the observable (1.22)
exhibits persistent oscillations (1.23), such oscillations are beyond the conceiv-
able resolution limit for macroscopic systems ( f � 1). Hence, any realistic
measurement will yield one of the three outcomes, x± or x0.

1.2.4 Equilibrium Ensemble

For an arbitrary ρ(0) evolving according to (1.14), we can show that the cor-
responding equilibrium ensemble is described by the density operator of the
time-averaged ensemble ρ(t),

ρeq := ρ(t), (1.31)

where ρeq is a nonnegative, Hermitian operator of unit trace.
In the energy basis employed in (1.18), one finds from (1.16) and (1.31) that

ρeq =
∑

n

ρnn(0)|n〉〈n| =
∑

n

pn|n〉〈n|, (1.32)

so that ρeq is the (time-independent) diagonal part of ρ(t) from (1.14).
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From (1.21) and (1.31) we obtain that the average of X (t) over all times t > 0
equals

〈X〉(t) = Tr (ρeq X). (1.33)

Since this equality holds for X = I , the unity operator, it follows that the average
of ρ(t) over all times t > 0 is indistinguishable from ρeq.

We now estimate the derivation of 〈X〉(t) from its time average (1.33). To
this end, we define �̃X , the minimal range of the eigenvalues of the difference
between X and any energy-diagonal operator Y := ∑

n yn|n〉〈n| with arbitrary
real coefficients y0, y1, . . . . Explicitly,

�̃X := min
Y
[max

H
〈ψ |X − Y |ψ〉 − min

H
〈ψ |X − Y |ψ〉]. (1.34)

By definition,

�̃X = 0 if X = Y. (1.35)

From (1.24) and (1.34) we then find that

�̃X ≤ �X . (1.36)

The mean-square deviation of 〈X〉(t),

σ 2
X :=

[
〈X〉(t)− 〈X〉(t)

]2
, (1.37a)

can then be shown to be bounded by

σ 2
X ≤ �̃2

X Tr ρ2
eq. (1.37b)

The factor Tr ρ2
eq in (1.37b) is the purity of the time-independent part of ρ(t):

Tr ρ2
eq =

∑
n ρ

2
nn(0) according to (1.32). While ρ(t) may be a pure state, the purity

of ρeq may be as small as 10−O( f ) according to (1.29). We then finally obtain

σ 2
X ≤ �̃2

X max
n

pEn , (1.38)

where pEn [see (1.15)] is the occupation probability of En .
Let us consider Tr [ρ(t)X ] as a random variable, generated by sampling the

observable at random times t . The probability for 〈X〉(t) to deviate from its time
average 〈X〉(t) by more than an infinitesimal quantity δX can then be proven to be
bounded by

Prob{|Tr [ρ(t)X ] − Tr (ρeq X)| ≥ δX} ≤
( σX

δX

)2
. (1.39)
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10 Equilibration of Large Quantum Systems

Upon replacing (1.38) by its estimate according to (1.29) and considering (1.39),
one arrives at the main result of the present chapter:

Prob{|Tr [ρ(t)X ] − Tr (ρeq X)| ≥ δX} ≤
(
�̃X

δX

)2

10−O( f ). (1.40)

This general expression defines the resolution limit δX of 〈X〉(t) deviations from
equilibrium.

1.3 From Equilibration to Thermalization

According to the present discussion, all observable expectation values (1.21)
become practically indistinguishable from

Tr (ρeq X) =
∑

pn Xnn (1.41)

after initial transients have died out. Hence, the arguments raised above imply that
for realistic typical observables of macrosystems the problem of equilibration can
be considered as settled.

Upon adopting the arguments that support equilibration of experimentally real-
istic (typical) observables, as per (1.41), we next turn to the key question: To what
extent is the equilibrium expectation value of X from (1.41) in agreement with that
predicted by the microcanonical ensemble, namely

Tr (ρmic X) =
∑

pmic
n Xnn? (1.42)

Accordingly, are the level populations pmic
n simply equal to a normalization

constant if En is contained within a small energy interval [E − �E, E]? Alter-
natively, we may ask: Under what conditions does the microcanonical formalism
of equilibrium statistical mechanics break down?

The main condition for the microcanonical formalism to be valid is that only En

within a small energy interval have a nonvanishing occupation probability, namely,
the system energy is known to a high precision. We specifically assume that the
system energy is known within an uncertainty�E that is small, but experimentally
realistic.

Another validity condition of the microcanonical formalism is that the expec-
tation values (1.42) must be (practically) independent of the exact choice of the
energy interval (i.e., of its upper limit E and its width �E). The same conclu-
sion follows from the equivalence of the microcanonical and canonical ensembles
(for all energies E), considered as a self-consistency condition for equilibrium
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statistical mechanics. Clearly, if pn values are irrelevant, the expectation values
(1.41) and (1.42) are practically indistinguishable.

To ensure this equivalence of the microcanonical and canonical ensembles,
we assume that the expectation values Xnn = 〈n|X |n〉 are the same within
any small energy interval �E . This assumption amounts to coarse graining.
The same assumption underlies Srednicki’s “eigenstate thermalization hypothesis”
(ETH), whereby each individual energy eigenstate |n〉 behaves like the equilibrium
ensemble.

1.3.1 Integrals of Motion and Recurrence

Consider a many-body quantum system characterized by a set {X1, X2, . . . , X f }
of nontrivial integrals of motion. These operators commute with each other and
with the Hamiltonian H0 of the system, which may be integrable (solvable). These
integrals of motion result in high degeneracy of the eigenstates of H0; namely,
many states |α, i〉 (where i = {i1, . . . , i f }), corresponding to different eigenvalues
x ji j of the respective operators X j , have the same energy Eα. Such a system does
not thermalize, but approaches a state described by a generalized Gibbs ensemble
(GGE).

This picture is idealized. In reality, the Hamiltonian H = H0 + V usually con-
tains a perturbation V that does not commute with X j . This perturbation lifts the
degeneracy, thereby splitting the energy levels, Eα → Eαi .

Consider a system prepared in a nonstationary state,

|�(0)〉 =
∑
α,i

Cαi |α, i〉, (1.43)

with the average energy E and the energy uncertainty δE . The expectation value
X̄(t) = 〈�(t)|X |�(t)〉 of an observable X evolves in time as

X̄(t) =
∑
α,i

|Cαi |2〈α, i |X |α, i〉

+
∑
α,i 
=l

C∗
αlCαi 〈α, l|X |α, i〉 exp[i(Eαl − Eαi)t/�]

+
∑

α 
=β,i,l
C∗
β lCαi 〈β, l|X |α, i〉 exp[i(Eβ l − Eαi)t/�]. (1.44)

The hypothesis of quantum typicality states that the first term in Eq. (1.44) gives
the thermal average of X at the temperature related to the total energy E via the
equation of state. The two other terms describe the process of approaching the
equilibrium. The last term, containing the frequencies ωαβ = (Eα − Eβ), β 
= α,
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vanishes on a timescale τE ∼ 1/|ωαβ |. If the perturbation V is weak enough, then
the timescale τV of the decay of the second term is much longer, τV � τE . In other
words, the system prethermalizes on the timescale τE � t � τV and approaches
the slowly decaying state characterized by the expectation value given by the
GGE:

X̄GGE =
∑
α,i,l

C∗
αlCαi 〈α, l|X |α, i〉 = 〈�(0)|X̃ |�(0)〉. (1.45)

Here X̃ = ∑
α PαX Pα, where Pα = ∑

i |α, i〉〈α, i | is the projection operator on
the subspace of the nearly degenerate states corresponding to Eα.

Quantum typicality implies that the time dependence of (1.44) does not essen-
tially depend on the initial state |�(0)〉. Therefore, repeating an experiment many
times, averaging over experimental realizations, and subsequently Fourier trans-
forming the measured time dependence of the observable and its moments allows
for the estimation of the structure of the Hilbert space of the many-body system
(how much are the states degenerate to the zeroth approximation split via the
perturbation).

In a finite-size system all the unperturbed frequencies ωαβ may be commensu-
rate to the lowest of them, ω0, that is not small (i.e., lies in a range accessible
to measurements). Therefore, at times equal to an integer multiple of ω0 a par-
tial recurrence of the initial state will be observed. The recurrence is partial, since
the exact eigenstates are not degenerate, and the perturbation-induced interaction
blurs the recurrence, as we can see from substituting ωαβ t in (1.44) by an inte-
ger multiple of 2π . Nevertheless, its observation would demonstrate, for quantum
systems with commensurate-frequency spectra, that thermalization merely masks
reversible, unitary features that can be revived.

1.4 Discussion

We have seen that for the overwhelming majority of sampling times t > 0 and
any realistic observable X in a large system, the difference between Tr [ρ(t)X ]
and Tr (ρeq X) is far below any conceivable resolution limit. It then follows that
the steady-state ensemble ρeq appears to be adequate at almost any time t ≥ 0,
although the actual density operator ρ(t) is rather different, allowing for 〈X〉(t)
oscillation. This difference between ρ(t) and ρeq explains the apparent discrepancy
between unitarity and equilibration.

These conclusions do not require a macroscopic number f of degrees of
freedom: Systems with f ∼ 3 exhibit the trend to equilibrate and thermalize.

The resolution limit of (1.40) is based on the exact quantum mechanical time
evolution (1.12)–(1.14) and thus obeys the time-inversion symmetry required by
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quantum mechanics. In particular, (1.40) allows for recurrences of Tr [ρ(t)X ], but
such large deviations from the equilibrium state ρeq are extremely improbable. The
same behavior is obtained if one propagates ρ(0) backward in time. An initial
condition ρ(0) that is far from ρeq is therefore a rare deviation for any choice of
t = 0.

Deviations of Tr [ρ(t)X ] from the apparent equilibrium value Tr (ρeq X) are
not expected to exhibit time-inversion symmetry. Yet, the probabilities of such
excursions are expected to satisfy a detailed-balance symmetry with respect to time
inversion.

Thus, quantum mechanical time-inversion symmetry is preserved. However,
under out-of-equilibrium initial conditions, a “time arrow” emerges with extremely
high probability.
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