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ON THE COMMON RIGHT FACTORS OF
MEROMORPHIC FUNCTIONS

TUEN-WAI NG AND CHUNG-CHUN YANG

In this paper, common right factors (in the sense of composition) of pi + p2F
and p3 +P4F are investigated. Here, F is a transcendental meromorphic function
and pi's are non-zero polynomials. Moreover, we also prove that the quotient

. (pi + P2-F)/(p3 + P4F) is pseudo-prime under some restrictions on F and the pi's.
As an application of our results, we have proved that R(z)H(z) is pseudo-prime for
any nonconstant rational function R{z) and finite order periodic entire function
H(z).

1. INTRODUCTION AND MAIN RESULTS

The subject of factorisation under the the composition of meromorphic functions
is clearly related to the dynamics of rational or entire functions.

We assume that the reader is familiar with some basic results and notations of
Nevanlinna Theory of entire and meromorphic functions (see Hayman [7]), which will
be the main tool of our investigations.

In [10], Urabe proved the following theorem.

THEOREM. Let Pi (i = 1,2) and Q be non-constant polynomials with degPi <
such that P\{z) — P2(z) has only simple zeros. Let

{ )

Then F is prime.

Therefore, it is natural to consider the primeness and pseudo-primeness of functions
of the general form (pi + P2-F)/(P3 + PiF), where F is a transcendental meromorphic
function and the Pi's are polynomials. In this paper, common right factors of functions
Pi +P2F and P3 +PiF (in the sense of composition) will first be investigated. Then we
shall also prove that the quotient (p\ + P2-F)/(P3 +p*F) is pseudo-prime under some
further restrictions on F and the pi's as follows.
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THEOREM 1 . Let g be a common right factor of pi +P2F and p$ +p4F, where

the Pi's are polynomials, P2,P4 ^ 0 and F is a transcendental meromorphic function.

If {piP4 —P2Ps,P2,Pi} is a linear independent set over C, then g must be a polynomial

and is a right factor of P4/P2 •

THEOREM 2 . Let pi be a polynomial for i = 1 , . . . , 4 , P2,Pi ^ 0 and let F be

a transcendental meromorphic function with at most a finite number of poles. IfP2/P4

is not a constant, then (pi 4-p2F)/(p3 +P4F) is pseudo-prime.

REMARK. If P2/P4 is equal to a non-zero constant, then (pi +P2F)/(jpz +P4F) may
not be pseudo-prime. For example, let / be a transcendental meromorphic function
such that F = f(ez) is of finite order. Then (1 + F)/(2 + F) = [(1 + /)/(2 + /)] o ez,
which is not pseudo-prime. However, we can still draw the same conclusion under some
further restrictions on F and the pi's.

THEOREM 3 . Let F be a periodic entire function of finite order, let pi,P2 and
p be three polynomials. Let Q(z) be the canonical product of the common roots of
Pi + pF and P2 + cpF, where c is a non-zero constant. If Q/p is not a constant, then
(pi + pF)/(j>2 + cpF) is pseudo-prime.

COROLLARY 1. Let pi,P2 be two polynomials, not both constant. Suppose that
H is a periodic entire function of finite order. Then F — pi +P2H is pseudo-prime.

PROOF OF COROLLARY 1: If p2 is a constant, it reduces to a result of Gross [4].
Suppose that p2 is not a constant. Consider 1 4- 1/F = (pi + 1 4- P2#)/(Pi + P2H)
and apply Theorem 3 to 1 4- 1/F to conclude that 1 + 1/F is pseudo-prime and hence
so is F . D

As another application of Theorem 3, we can confirm the following result which
was conjectured by Zheng in [11].

THEOREM 4 . Let H be a periodic entire function of finite order. Then for any
non-constant rational function R(z), F(z) — R(z)H(z) is pseudo-prime.

It is natural to conjecture the following :

CONJECTURE. For any non-constant rational function R(z) and periodic entire func-
tion H, R(z)H(z) is pseudo-prime.

2. SOME LEMMAS

LEMMA 1 . [8] Let f be a meromorphic function. Then for all irreducible rational

functions in f,

i = 0
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with meromorphic coefficients ap(z),bq(z) £ 0 such that T(r,Ui) = o(T(r,f)),
T(r,bj) = o(T(r,f)) i = 0 , . . . , p , j = 0,...,q. Then we have T(r,R(z,f)) =
max (p, q)T(r, f) + o{T(r, / ) ) .

REMARK. In the sequel, any function g satisfying T(r,g) — o(T(r,f)) as r - > oo, r £

E (a set of finite linear measure) will be called a small function of / .

LEMMA 2 . [1] Let f be a transcendental meromorphic function, g be a transcen-
dental entire function and R be a nonconstant rational function. Then the function
f(g{z)) — R{z) has infinitely many zeros.

LEMMA 3 . [3] Let f be a meromorphic function and g be a transcendental entire
function. If Pf(g) < oo, then pf = 0.

LEMMA 4 . [2] Let f be a meromorphic function and g be an entire function such
that p/(fl) < oo. Let f = / 1 / / 2 , where / 1 , f2 are the canonical products formed by the
zeros and poles of f respectively. Then for e > 0 and arbitrary large r,

klogM(r,/!(<?)) + logM(r, f2(g)) < r

where k = (1 + e) (p/(p) + e) + pg + e. In particular pf^g) < 00 for i = 1,2.

In order to investigate the common right factors of the functions pi + p2F and
P3 + PiF, we prove the following lemma.

LEMMA 5 . Suppose F and G are two transcendental meromorphic functions
which satisfy the equation

where a,ij(z) are linearly independent polynomials over C . If g is a common right

factor of F and G, then g must be a polynomial.

PROOF: Suppose that g is transcendental and write F = fi(g) and G =

/2(fl)i where fi,f2 are meromorphic functions. Then the above equation becomes

J2aij(z)fl(9(z))f2(9(z)) — 0- Since g is transcendental and aij(z) are polynomi-
«.i
als, J2T{r,aij) = o(T(r,g)). Then we can apply the well known result of Steinmetz

».i
([9] or [5]) to obtain a set of polynomials Pij(z), not all identically zero, such that

J2a.ij(z)Pij(g(z)) = 0. By rearranging the expression according to the powers of g, we

have
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where Ck(z) is a linear combination of the a,ij(z) 's over C. By Lemma 1, we must have

Cfc (z) = 0 for all the k 's. Since at least one of the Pij (z) is not identically zero, one of

the Ck{z) is a non-trivial linear combination of the atj(z) 's over C. This contradicts

our hypothesis on the aij(z)'a. Q

REMARK. The assumption of linear independence on the a.ij(z)'s is essential. For
example,

cos2 z + sin2 z = 1

but cos z and sin z have the non-polynomial right common factor ez.

The following lemma is implicitly contained in the proof of the result obtained
by Gross and Osgood in [6], which is a key factor used in the proof of Theorem 3.

By observing that £ T(r, hi) = o(T(r,g)), £ r(r.V'i) = o(T(r,g)), this allows us to
t=l i=l

choose M — 1 in [6, p.291]. Together with the lemma in [6, p.288], we can obtain the
following result.

LEMMA 6 . Suppose that g is a nonconstant entire function, and that tpi^O for

1 ^ i ^ n, are entire functions (where n ^ 2 is a naturai number). Suppose, fc ^ 0 and
hi ^ 0 (1 ^ i ^ n ) are meromorphic functions, with fo analytic at z = 0, /i(0) ^ 0.

Suppose further that £ T(r,h{) = o(T{r,g)) and f^Tfai/ji) = o(T(r,g)). If
t=l i=l

then there exist n functions Pi(z,w), not all zero, where each Pi(z,w) is a polynomial

in w whose coefficients are functions of t/>i, ip2, i>3, • • • , ̂ V», such that

where degPi(z,w) (in w) sj (n - 1) for i = 1 , . . . ,n, Px £ 0 and

vanishes to at least the order n at g = 0.

3. PROOFS OF THEOREMS

PROOF OF THEOREM 1: Let pi +p2F = fi(g) and p3+p4F - /2(g), where fuf2

are meromorphic functions. Then by eliminating F, we have

(1) Pi(z)pi(z) - p2(z)p3(z) = Pi{z)fi{g{z)) -P2{z)f2{g(z)).

By applying Lemma 5, one can conclude that g is a non-constant polynomial. Therefore,

/ i and f2 are transcendental since F is transcendental. Since the pi's are polynomials,
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4

we still have £ T(r,pi) < 0{T(r, g)). Now by the well known result of Steinmetz ([9]

or [5]), there exist, polynomials A(z),B(z) and C(z) not all identically zero, such that

(2) (plP4 - P2P3)(z)C(g(z)) = P4(z)A(g(z)) - p2(z)B(g(z)).
By a simple elimination, we conclude from (1) and (2) that

- A)(g(z)) = P2{z){hC -

The fact that / i , / 2 are transcendental and one of A, B or C ^ 0 ensures that

(fiC - A)(g(z)) and (f2C — B)(g(z)) are not identically zero. Hence g is a right

factor of Pi/p2 • D

P R O O F OF THEOREM 2: Suppose that (pi + p2F) / (p3 + p4F) is not pseudo-
prime. Then (pi + p2F)/(p3 + PiF) = /(</) where / is a transcendental meromorphic
function and g is a transcendental entire function. Therefore,

, , x _ P2 = P1+P2F P2
Pi P

PXPA — P2P3

which has only a finite number of zeros. This contradicts Lemma 2. D

PROOF OF THEOREM 3: We may assume c = 1. Suppose (pi +pF)/{p2 + pF) is
not pseudo-prime. Then (pi +pF)/(p2+pF) = H{K) = Hi(K)/H2(K), where H is
transcendental meromorphic, K is transcendental entire and Hi,H2 are the canonical
products formed by the zeros and poles of H respectively. Note that since F is of
finite order, then so is (pi + pF)/(p2 + pF). Hence pn = PHX = PH2 = 0 by Lemmas
3 and 4. Since H\ and H2 have no common zeros, neither do H\{K) and H2(K).
Therefore, the zeros of H\(K) and H2(K) are zeros and poles of (pi +pF)/(p2 +pF)
respectively. Hence, we have

(3) Pl+pF = H1(K)eRQ

(4) P2+pF = H2(K)eRQ,

where R is an entire function and Q is the canonical product of the common roots of
Pi + pF and p2 + pF. Clearly, Q is a polynomial and divides p\ — p2 in the product
sense. By Lemma 4, the order of H\{K) is finite. Therefore from (3), eR is of finite
order and hence R must be a polynomial. Subtracting (4) from (3) and then dividing
both sides by eR, we get

2 ^ V * = (ffi - H2)oK.
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Clearly R can't be a constant, otherwise K will be a polynomial. Now if Hi — H2 has
more than one distinct zero, then as K is transcendental entire, by Picard's theorem,
(Hi — H2)oK would have infinitely many zeros. This is impossible since the number of
zeros of (pi — VT)IQ is finite.

Since the order of H\ — Hi is zero, we must have Hi — H2 = (z — a)n and then
K(z) = a + P(z)e~R(z^n, where a is a complex number and P(z)n = (pi — p2)/Q for
some natural number n. By considering Hi(z + a) instead of Hi(z), we may assume
a = 0. Since Hi and H2 have no common zeros, we may also assume -Hi(O) 7̂  0. Now

Pi(z) +p(z)F(z) =

Eliminating F by using the fact that F is periodic with period 1 (say), we get

Hi (P{z + l)e-*<z+1^n)eH<z+1>Q(z + l)p(z) - Hi (p(z)e-R^'n')eR^Q{z)p(z + 1)

+ pi(z)p(z + 1) -p i ( z + l)p(z) = 0.

If we let S{z) = R(z + 1) - R(z) and multiply both sides by e~R^, then

HI(P{Z + l)e-R(z+1Vn)esWQ(z + l)p(z) -

+ (pi(z)p(z + 1) - P l (z + l)p(z))e-RW = 0.

Set A - Hi, h = Hi, f3 = zn, hi(z) - es^Q(z + l)p(z), h2(z) =

-Q{z)p{z + 1) and h3(z) = px{z)p{z + 1) - P l (z + l)p(z). Also let g(z) = e-«(*>/",

Then the above equation becomes

= 0 .

Since deg(R(z +1)-R(z)) ^ degR{z), T(r,Vi) = o(T{r,g)) and T{r,hi) =
3 3

o(T(r,g)). It is then easy to check that £ T(r,hi) = o(T(r,g)) and £ T{r,ipi) =
i=l i=l

o(T(r,g)). Therefore by Lemma 6, there exist polynomials Pi(z, w),P2(z, w) and
Pz(z,w) of degree Pi (in to) ^ 3 — 1 = 2 , with coefficients being functions of ipi,

such that,

(5) Pi(z, g)hi + P2(z, g)h2 + P3(z, g)h3 = 0,

where the Pi's satisfy the conditions that

(6)
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vanishes to at least order 3 at g = 0 for i = 2,3 and Px ^ 0. We rewrite (5) as

(7) P1(z,g)es^Q(z + l)p(z) - P2(z,g)Q(z)p(z + 1) + P3(z,g)h3 = 0.

2 oo
Let Pi(z,g) = 52cik(z)gk and Hi(z) = £ ajzj• Because PiMfog) - PJiW'iS)

fc=0 J=0

vanishes to at least order 3 at g — 0, we have for m — 0,1,2,

(8)

On the other hand, since Pif3(i>3g)-P3fi(ipig) = P\9n—P3fi{i>i9) which vanishes
to at least order 3 at g — 0, we see that C30 = 0 as n ^ l .

Now rearrange (7) according to the powers of g. We get a polynomial equation in
g with small functions of g as the coefficients. By Lemma 1, these coefficients must be
identically zero and we have for m = 0,1,2,

(9) clm(z)es^Q(z + l)p(z) - c2m(z)Q(z)p(z + 1) + c3m(z)h3 = 0.

Since C30 = 0, for m = 0,

(10) cwes(z)Q{z + l)p(z) - c20Q(z)p(z + 1) = 0.

Prom (8), we have cloao = 02000. Note that ao = /i(0) = Hi(0) ^ 0. Therefore

(11) c10 ( e s ^ Q ( z + l)p(z) - Q(z)p(z + 1)) = 0.

If esW = 1 and cw ^ 0, then Q(z + l)/p(z + 1) = Q{z)/p{z) which implies that
Q(z)/p(z) is a constant and this contradicts our assumption. Therefore either es^ ^ 1
or cio = 0. If e5<*) ^ 1, then (es^Q(z)p(z + 1) - Q(z + l)p(z)) ^ 0 and therefore
cio^O.

Hence cio = C20 = C30 = 0- Because cio = C30 = 0 and the coefficient of g in
P\gn - P3f\{i)\g) is identically zero we see that c3\ = 0.

From (8) again we have CUOQ = C2iao- From this together with c3i = 0, (9)
becomes

(12) c n (e s^>Q^ + l)p(z) - Q(z)p(z + 1)) = 0.

This allows us to repeat the above argument to conclude that cn = c2i = 0. Then
repeating the argument once more, we have cxi = 0 for i — 0,1,2. This contradicts
the fact that Pi(z) ̂ 0 . D
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P R O O F OF THEOREM 4: Let R(z) — Pi(z)/p2{z), where p\ and p 2 do not have
any common zero. Consider 1 + 1/F = (p2 +piH)/(piH). Let Q(z) be the canonical
product of the common roots of P2+P1H and p\H. Then clearly Q(z) divides p2 in
the product sense. If one of p\ or Q is non-constant, then Q/pi is non-constant as pi
and p2 do not have any common zero. Now by Theorem 3, we conclude that 1 + 1/F

is pseudo-prime and so is F.

If both px and Q are constants (say pi = 1), then H and p2 + H do not have
any common zero and therefore H(z)/p2{z) has finitely many poles.

Suppose that H(z)/p2(z) = f\{g), where f\ is a transcendental meromorphic
function and g is a transcendental entire function. Using the fact that H{z)/p2(z)

has finitely many poles, we can conclude that g{z) = a + P(z)e~K(-z^n and f\{z) —

f(z)/(z - a)n where P{z), K(z) are polynomials, K(z) is non-constant and / is a
transcendental entire function of zero order with / (a ) ^ 0. By considering f(z + a)

instead of f(z), we may assume a = 0. Note that P(z)n = P2(z) where n is an natural
number. Hence, we have H(z) = f(w)o(P(z)e-K<-z^n)eK(-z'>.

The fact that H(z) is periodic (say with period 1) gives

(13) fW{z)g{z))tPM - f(g(z)) = 0,

where 0(z) = K(z + 1) - K(z) and ip(z) = P(z + l)/P(z)e-^z^n is an meromorphic
function with T(r, tp)=o(T(r, g)). By applying Lemma 6, there exist two polynomials
in w, Pi(z,w) ^ 0, P2{z,w), with degree Pi (in w) < 2 - 1 — 1 and cofficients being
functions of ip, such that

P1(z,g(z))e^-P2(z,g(z))=0.

Then,
P2(z,g) _ /,(,)

Pi(z,g)

By Lemma 1, this is impossible if either degree Pi (in w) ^ 0. Therefore, both of
degree Pi (in w) = 0 and hence Pi(z,g) = a(z) where Ci(z) is a function of rp. Using
the fact that P\f{g) — P2f{ipg) vanishes to at least order 2 at g = 0 and by arguments
similar to those in the proof of Theorem 3, we can conclude that c\ = c2 and hence

e/3(z) = i Then Equation (13) becomes

(14) fMz)g(z)) = f(g(z)),
where ip(z) = P(z + 1)/P(z).

Now we can choose a constant A such that the equation t{j(z)g(z) = A has infinitely
many roots, say {aj}. Note that g(a.i) — A/ip(a,i) which converges to A as i trends
to infinity and from (14), f(g(di)) = f{A). By the uniqueness theorem, we have
f(z) = f(A) which is impossible. Finally, we conclude that R(z)H(z) is pesudo-
prime. U
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