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Introduction. In Riemannian geometry the autoparallels
associated with the affine connexion coincide with the geodesics
which arise from the metric. This is not the case in a modifi-
cation of Riemannian geometry suggested by Lyra. A sufficient
condition that the two classes of curves coincide is obtained.

The differential geometrical structure of a manifold is
determined by

(i) an affine connexion characterized by its components
f'dg , which are defined by the infinitesimal parallel transfer
of a vector §" . If we let &£F denote the quantity which must
be subtracted from the ordinary differential d §" in order to

obtain a tensorial differential, we have

(1) SEH = - g E%ax?,

and (ii) a metrical connexion characterized by the metric
fundamental tensor Bul which is defined by the measure of
length 1 of a vector gt :

(2) 12 =g 678 .
- Riemannian geometry is characterized by the following
assumptions.
(a) Cip = lpa
(3)  (b) 812 = 8(g.x EFEM) =0,
(c) dguxn = § Bu -
From these it follows that
) ré = L&)
where the latter quantities are Christoffel symbols of the second

kind.
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An autoparallel of an affine connexion is defined by a
curve xP = xF(s) (with s representing arc-length), whose
tangential vector §{M =dx"/ds istransferred parallel to
itself. Its equation is therefore

i
o

(5) a? x* rk
ds? “¢

CLIQ-
1%,

S

A geodesic of a metrical connexion, on the other hand,
is defined by the extremal curves of the problem in the calculus
of variations:

® pY
(6) §( [ds) =£(/\/gphgt‘-§f at)=o0,

where s is arc-length and t is an arbitrary parameter. This
yields

(7) d"'x*‘%f*}ix_“.dx@:oq
dsz <@

ds ds
In view of (4), the two classes of curves are the same.

A modified Riemannian geometry. Lyra [1] suggested a
modification of Riemannian geometry, which may also be
considered as a modification of Weyl's geometry [3] . Weyl
introduced the concept of non-integrability of length transfer,
thereby modifying (3b) to

§12 = .12 ¢, dx*.
As a result
(8) ?s {« } z(gﬁ%‘*’g d’ 8 g ¢¥)

where
=g ¢, .

A Weyl manifold is therefore characterized not only by
g ux but also by ¢4 . The non-integrability of length transfer
leads to the concept of gauge-transformation

1212 = A (xt)12,

under which
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(a) g —_ -g' A )\g wh ’
9) pA IS

(b) o — & b - ATTR2A

In Weyl's geometry the autoparallels and the geodesics are
different.

In Lyra's geometry Weyl's concept of gauge, which is
essentially a metrical concept,is modified by introducing a
gauge function in the structureless manifold.

According to Lyra, the displacement vector PP' between
two neighbouring points P(x*) and P'(x* +dx*), has the
components §" = x° dx™, where x°(x!) is a gauge function,
The coordinate system (x") together with the gauge x° form
a reference system (x°; x"). The transformation formula
for a tensor under the general transformation of reference

systems :
(10)  xP o xt' = x®¥(x*); x° 5x0' = x°' (x°, xF),
with
{
o' P-' = ?_}_{P' . P éi(M
(1 ) Al“' = gk AF"' H bx"" ’
is then
' : s-r p! X [
§?1l---(’sl = AT Al Al L LA, g("-
0y-- -0y P s L o,

Thus the factor AS~T, where A = x°'/x©, arises as a con-
sequence of the introduction of the gauge function.

In a Riemannian manifold the components of the affine
connexion f"d';s can be considered to arise as a consequence
of general coordinate transformations in the following manner
(cf. [4]). Let us suppose that, in a coordinate system (x"), a
vector £M is constant, i.e. &M /dx™ = 0. Then, in
another coordinate system (x P“'),we have

! '
11 " BV
( ) 2—_§(N + F‘V'A' g = 0 F}
where

1] ] I
PV,:-A$ AM , AP

I
VX P! py N 2xXA ).
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Another way of expressing the fact that £M = constant would be
to szy that equation (11) is valid in all coordinate systems, but

r “k = 0 in the particular system (x™). r\,)\ vanishes also
in all other coordinate systems obtained by an affine transfor-
mation from this one.

We shall show that a similar analysis of a constant vector
in Lyra's geometry leads to the concept of a generalized affine
connexion characterized not only by ([ but also by a function

¢, » which arises through gauge transformation.

A vector £ in Lyra's geometry transforms as
/ '
§F = Aall gl

If 28"y 2x* =0 in the reference system (x°; x/), then, in
the reference system (x°' ; xf“"), we have

]
1 2¢8¥ 1 ! PR 1 dlog A gn'
T 3aT o AL AL E - g & =0
or
1
1 2¢™ ~
(12) o axn t ,X,g %¢>u§ = 0,
where
2
. Nl -1 m! P _ _1_ 310g)\,
(121 Mo = A Aad a0 500 37X

! U
Note that A,’: Al = 5P by (10') and hence, by partxal
differentiation w1th respect to xA, Al pen Al = -A"’ Al X
Accordingly rh L\ is symmetrical in v! and A

In analogy to the Riemannian case then the parallel trans-
fer of a vector §" in Lyra's geometry is given by

M 1 ¢! &«
(13) 8¢ _-(r@- zS£¢P)§x°dx@
The transformation formulae for f':f, and ¢, are:

(i) Under coordinate transformation x# — x M ,

A "SR U S R v
" r',(, =Au A, A{5 P«‘;s’ + o AL A‘,("3 ,
!
<
¢Q=Ad\ ¢«l L4
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(ii) Under gauge transformation x° — x°'

r# -A-I{‘F (P'=f‘: ‘xl= «, (l‘=€) s

«'g’ «f
(147) 1 2log )
¢,,(.=A°1(¢,( + 2o —;—‘j—{%—) (o' =)

Autoparallels of the modified manifold. An autoparallel
of the generalized affine connexion is defined by a curve
xT = x7T (s), whose tangential vector §°= x°(dx%/ds) is
transferred parallel to itself. Its equation is therefore

x
tdx” dx® d d
(15) xo & 2 + F"F_d? o (XO)Z-}. - . )_X x© ( 0)2 -
where
2
° 1 ?log(x®)
(15") = = 5 BEYCEE

A metrical connexion can be introduced in Lyra's
geometry by means of a symmetric metric tensor g pA S

(16) ds? = g b (xOdx M )(xCdx M)
with the assumption that

' A
(17) S(g,n EF §N) = 0
for arbitrary vectors §M .

Assuming, as usual, that the process $ satisfies the
product rule of differentiation and that % gij = dgij» we find,
from (13) and (17), that -

(18) ris =%0{:%}+%(5; bp + Sp by - 8 hg 9M)

where ¢!z g *X ¢y . A geodesic of the metrical connexion is
therefore given by a solution of

A
e s(f oo B B o,

i.e. by
(19) §(f Ldt) =0, \
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where

The Euler-Lagrange equations for the problem (19) are then

d /2L 2L . dx”

(35 - = 0 (®=F )
Now

aL  _ (ds\ "1 1 .w . on2

%7 -(3) Parat {0 grkisv
and

'c)l... . (ds) 1 (xo)‘z € v M

dt

Substituting in the Euler-Lagrange ecquations, performing the
differentiation and putting t=s, we find that the geodesics of
.the metrical connexion can therefore be written

déx ™ dx™ dxM
0,2 . 0y2 = ==
(% gy, Tzt ° DA
(20) N
dx P dx/_
gy X0 X0, g ) X° L o

where [v,A ] is the Christoffel symbol of the first kind and %2
denotes Ox°/9xA . Multiplying (20) by gT*Y and using(15'),
we obtain

d2x*® {7 dxkg_:_r*

dsé Ap s
(21)
x° T ° ST ° T dxt dx* _
+7 (Sp.¢>\ + X¢r;’ $gl“)a—s—a‘s_“on

where 4‘;75 gT)‘ ¢°>>\ .

On the other hand, in view of (18) and (15), the equation
of an autoparallel of the generalized affine connexion becomes
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%O dZXT +{;(_10_{t } +%(8;¢)\ + 8;\¢P-g?“)‘ q)t )}

ds? A
(22) N
M dx dx* dx?
o2 dx 1 - 042 0-
- (x®) ds ds 2 (%« *;‘)(x ) ds ds

A comparison of equations (21) and (22) shows that a sufficient
condition that the two types of curves be the same is

©
¢o{ = P
It can easily be seen that the above condition is invariant
under gauge transformations because $°( transforms exactly
as ¢, , when x°— x°',
In concluding the author wishes to acknowledge
Dr. Vanstone's help with the final redaction of this paper.
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