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Summary

An analysis based on a model that is different from the traditional Fisher’s model for quantitative
characters under assortative mating reveals that the genotypic offspring-midparent regression can
be affected by assortative mating of parents. It is demonstrated that the prediction that mating
parents assortatively introduces only a negligible bias in the estimated coefficient of linear
offspring-midparent regression is limited to Fisher’s model and cannot be generalized.

1. Introduction

The regression of offspring on midparental value of a
quantitative character has been widely used to esti-
mate the heritability of the character in a population.
Considering experimental methods of estimating the
coefficient of offspring-midparent regression in a
randomly mating population, Reeve (1953) suggested
that ‘statistically more accurate estimates can be
obtained with the same sample size by mating parents
assortatively’ (Reeve, 1961). This suggestion is based
on the fact that the variance of midparental values
is increased by assortative mating of parents, and,
consequently, the variance of the estimated regression
coefficient is decreased. Falconer (1981) also recom-
mended assortative mating of parents as a way to
obtain a better estimate of the offspring-midparent
regression for a randomly mating population.

It is clear that Reeve’s method can be useful only if
the assortative mating of parents does not introduce
a bias in the estimated value of the regression
coefficient as compared to its value in the population
under random mating. Wright (1952) pointed out that
correlations between non-additive components in
parents arising under assortative mating may intro-
duce a bias in the estimated regression coefficient.
However, Reeve (1961) concluded that such a bias will
be negligible. He drew this conclusion from the model
of quantitative characters under assortative mating
introduced by Fisher (1918). The main assumptions of
this model pertinent to the Reeve’s analysis are:

(1) The quantitative character is controlled by an
infinite number of loci, each having an infinitesimal
effect on the character.

(2) There are only two alleles in each locus.

(3) There is no epistasis between effects of loci.
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(4) The distribution of the genotypic values of
individuals in mating pairs is bivariate normal.

Clearly, these assumptions made in 1918 at the dawn
of genetics are quite simplistic in view of the modern
knowledge accumulated in genetics since then. It is
certain that these assumptions may not always
adequately reflect the complex reality of the heredity
and development of quantitative characters in organ-
isms. It is well known, for example, that a locus can
have more, and sometimes much more, than just two
alleles (how to define a locus controlling a quantitative
character represents an additional problem). It is also
known that dominance is not the only way in which
genes can interact, and that epistasis is as widely
present as dominance. Moreover, in some instances a
distinction between dominance and epistasis is quite
‘blurred’ (Lerner, 1958). In view of all this, it is
important to make sure that a conclusion reached for
Fisher’s model is not limited to this particular model,
but possess a broader generality. This becomes
especially important when the conclusion leads to a
practical recommendation, as in the case with the
suggested method of mating parents assortatively in
order to obtain a statistically more accurate estimate
of the offspring-midparent regression.

The purpose of this paper is to demonstrate that the
conclusion that only a negligible bias is introduced
in the estimated offspring-midparent regression co-
efficient by assortative mating of parents results from
the assumptions of Fisher’s model and is, therefore,
limited to this model. It will be shown that, when a
different model is used to describe quantitative
characters under assortative mating, the model
predicts that a substantial biascan be introduced in the
regression coefficient by mating parents assortatively
as compared to mating them randomly.
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2. The model

The model that will be used in the analysis is the
gametic model introduced by Gimelfarb (1982). A
gamete is treated in this model as the elementary unit
controlling a quantitative character and a finer genic
constitution of gametes (loci, alleles) is not specified.
Each gamete is characterized by a number (called
gametic contribution), and the genotypic value, X, of
an individual whose genotype is made up by gametes
with contributions o and f is considered to be a
function (called developmental function), fa, f), of the
gametic contributions,

X =f(p). (H

The particular form of this function can be very
complex for a given quantitative character, since it
will depend on particularities of the genetic system
controlling the character. It has been suggested,
however, (Gimelfarb, 1982) that the form

S, p) = A(x+p)+ Dof @

can serve as an approximation to an actual develop-
mental function of a quantitative character. It is
important to realize that a developmental function in
the form (2) does not imply a specific gene action. It
should be viewed only as a convenient mathematical
approximation incorporating interactions on the
gametic level. When D = 0, the gametic contributions
are strictly additive, when A4 = 0, they are strictly
multiplicative. No scale transformation exists that can
convert (2) into an additive form when both
parameters 4 and D are non-zero. Notice also that
although for many quantitative characters (2) is just
an approximation to the actual developmental
function, there may be characters for which (2) is the
exact form of their actual developmental functions.

The genotypic composition of a population is
described in the gametic model by the bivariate
distribution p(a, f) of the genotypes of individuals
expressed in terms of gametic contributions. Due to
the symmetry of gametes in  genotypes,
p(a, ) = p(B,a). The univariate marginal of p(a, f),
p(x) = j p(ax, B)dp, represents the distribution of
gametic contributions in the pool of gametes of the
population.

An assumption will be made that distribution p(a, f)
is bivariate normal in any generation. Notice that
given this assumption and the developmental function
in form (2) with a non-zero D the distribution of the
genotypic values for the character will not be normal.
This is one of the differences between this model and
the model of Fisher, where the distribution of genotypic
values is assumed as normal in any generation.

Under the assumption of bivariate normality, the
distribution p(a, f) is totally described by the following
parameters: the mean gametic contribution, m, the
variance of gametic contributions, v, and the covariance
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of contributions of the gametes constituting a zygote,
cov:

m = { op(or) dax, Ga)
v = | a2p(a) do—m?, 3b)
cov = ([ afip(a, B) d(aff) — m? (3b)

It will be assumed that parents are drawn from a
population in equilibrium under random mating
(including linkage equilibrium). Therefore, the covar-
iance of gametic contributions in a parental zygote is
zero. We shall also assume for simplicity that the mean
contribution of gametes in parents is also zero. Thus,
the parental distribution p(e,f) has the following
parameters:

m=0, 4a)
v = v, (4b)
cov =0, CY9)

where v, is the variance of gametic contributions in
linkage equilibrium.

Given the developmental function as in (2), the
mean genotypic value in parents, M, is computed as

Mp = E[f(a, B)l = E[A(a+ )+ D]
=2A4m+ D(cov+m?).
Because of (4a) and (4¢),
Mp=0. (5)

The variance, Vp, of the genotypic values in parents is
computed as follows.

Ve = E[/*(% A1—M}
= E[A%o+ f)? + D*a?f3? + 2ADafi(o+ )],
or, taking into consideration (4a) and (4¢),
Vp =2A4%,y+ D*m,,+4ADm,,, 6)

where m,, and m,, are the higher moments of the
distribution p(a, f). Due to the assumption of bivariate
normality,
My, =0 (7a)
(7b)

(Kendall & Stuart, 1973). The substitution of (7a) and
(7b) into (6) yields

Vp = 24+ D3, ®)

— 12 2 — 2
my, = v¢+2 Cov? =0}

It is clear that, since the mean parental genotypic
value, Mp, is zero, the mean midparental genotypic
value, Mg, is also zero. As for the variance of the
midparental genotypic values, Vp, it is known
(Falconer, 1981) that

Ve =1Vp(1+R), &)

where R is the correlation between genotypic values of
parents.
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Considering the relationship between the gametic
distributions in offspring and in parents, it is obvious
that, given parental gametes are in linkage equilibrium,
the gametic distribution in offspring is the same as in
parents. Therefore,

m=m=0, v=v=u, (10a,b)

where primes indicate offspring parameters.

We shall now make an assumption about the
assortative mating of parents. Consider the distribution
of the genotypes expressed in terms of gametic
contributions in mating pairs, P(a, §; 7, 8), representing
the frequency of pairs with one mate having genotype
(o, ) and the other having genotype (,9). It will be
assumed that this distribution is tetravariate normal.
This will imply that p(a,f), which represents, of
course, the bivariate marginal of P, is bivariate
normal. Assuming that the quantitative character is
sex-independent,

P(o, B;7,0) = P(y,9; ). amn
Due to the assumption of tetravariate normality, this
distribution is completely determined by the four
parameters:
m =0, 12)
where cov* is the covariance between contributions of
gametes from the genotypes of two mating individuals.
Notice that, although cov = 0, because of the random
mating in the population from which parents have
been drawn, cov* # 0, if parents mate assortatively.

The last assumption that will be made concerns the
genetic transmission of quantitative characters. We
shall assume that the mean contribution of gametes
produced by an individual is equal to the average of
the contributions of the gametes constituting the
individual’s genotype. Thus, if u(a, f) designates the
mean contribution of gametes produced by an
individual whose genotype is (a, ),
(o, B) = Yo+ B). (13)
Notice that (13) is the only assumption about the
genetic transmission of a quantitative character made
in this paper. This assumption always holds true if the
character is controlled by very tightly linked loci (no
recombination), which is equivalent to one multiallelic
locus. It will also be true for any recombination
pattern if, for example, the gametic contribution has
a meaning of the number of positive (or negative)
alleles in the gamete. In other instances (13) can be
considered as an approximation.

Thus, there are three main assumptions on which the
following analysis will be based:

(1) The developmental function, f{a, f), is as in (2).

(2) The distribution of gametic contributions in
pairs of mating individuals, P(a, £; 7, d), is tetravariate
normal.

(3) The mean contribution of a gamete produced by
an individual is equal to the average contribution of
the gametes constituting the individual’s genotype

(eq. 13).

v=1v, cov=0, cov*,
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3. Offspring-midparent genotypic regression

The coefficient of linear regression, b, of the offspring’s
genotypic value on the midparental genotypic value is
by definition,

— COVO—F

b=,

(14

where Cov,_p is the covariance between the
genotypic value of offspring and the midparental
genotypic value. It is known (Crow & Kimura, 1970)
that this covariance is the same as the covariance
between the genotypic values of offspring and parent,
Covg_p. Therefore, taking into account (9),
_2Covg_p

" Ve(1+R)’

Let (4,77) be the genotype of an offspring, whereas
(o, f) and (y, 3) be the genotypes of parents. Then the
covariance between the genotypic values of offspring
and a parent can be written as

Covg_p = E{[A(A+n)+ DAyl [A(a+B)+ Do}
= E{[A(u(, B) +u(y, 9))
+Dp(o, B) p(y, 9)] [A(a+ )+ Dofl},

where u(a, f) and u(y, 8) are the mean contributions of
gametes produced by parents with genotypes (a, f) and
(7, 6), respectively. Taking into consideration (13),

Covo_p = E{4*(a+ f)(x+B+7y+0)
+3D?af(a+F)(y +9)
+ AD[af(a+B+y+0)+i(a+B (y+I)l},

which yields after some transformations

b (15)

Covp_p = A%(vy+cov+2 cov¥)+ Dm,,,,
+ AD(Myy00+ Mg +Myy10),  (16)

where

mye = ([ §§ By 6' P(a, B; y, 0) d(ayd)

is the respective moment of distribution P. Due to the
assumption of tetravariate normality,

(17a)
(17b)

(Kendall & Stuart, 1973). Substituting (17a) and (175)
into (16) and taking into consideration (4¢),

Myy0 = Magiq = My =0,

Myy10 = Vg COV*+ 2 cOv cov*

Covg_p = A%vy+2A4%cov* + D?vycov.

Introducing p* as the correlation between the
contributions of gametes from the genotypes of two
mating individuals, so that cov* = p*y,,

(18)

Notice that the expression in parentheses represents
the genotypic parental variance, Vp, (eq. 8). Therefore,

(19)

Covgy_p = A%,+(24%0,+ DY) p*.

Covg_p = A%,y + Vp p*,
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and, by substituting this into (14), we obtain
_ 2A4%,+ Vpp*
Vp(14+ R)

Let b, be the offspring-midparent regression under
random mating of parents. It follows from (20) that
2A4%,

VP )

(20)

by = @n
Then expression (20) for the offspring-midparent
regression under assortative mating of parents, b, can
be presented as

(22)

In order to be able to use this formula for evaluating
numerically the difference between b and b,, it is
necessary to determine values of p* corresponding to
a particular R. To do that, let us consider the genotypic
covariance, Covp_p, between mating parents.

Covp_p = E{[A(a+B)+ Dafl] [A(y+0)+ Dydl}
= 2A4% cov*+ D?*m,,,, +4AD m,,,,,
where m,,;, and m,,,, are the higher moments of

P(o, B; v, 0). Because of the assumption of tetravariate
normality,

My =0, (23a)
my,,, = covi42(cov*)? = 2(cov*)? (since cov = 0)
(23b)
Therefore,
Covp_p = 4A2cov* +2D?*(cov*)?
= 4A42%p,p* + 2D%(p*)2. (24)
On the other hand, by definition,
COVI)_I)' = Rl/p,
and, hence,
RV p = 4A%, p* +2D%3(p*)?,
or
2 4 2
2D ”°(p*)2 Yopx—R = 0. (25)
I)
It follows from (8) that
D%? = Vp—2A4%,.

Substituting this into (25) and taking into account (21)
yields the following quadratic equation for p*:

2(1 — by)(p*)2+2by p* — R = 0. (26)

The two equations (22) and (26) make it possible to
evaluate the offspring-midparent genotypic regres-
sion under assortative mating of parents with a given
genotypic correlation of mates, R, and a given off-
spring-midparent regression under random mating
of parents, b,.

It should be noted that the two assumptions:
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tetravariate normality of P(a, §;y,0) and the develop-
mental function in form (2) impose constraints on
negative values of R feasible in a population. These
constraints and the fact that a negative root of (26)
represents a spurious correlation between the contri-
butions of gametes under positive assortative mating
have been discussed elsewhere (Gimelfarb, 19854). In
order to avoid these complications we shall limit our
consideration to only positive assortative mating, i.e.
positive values of R, and to positive roots of (26).

Table 1. Effect of assortative mating in parents on the
offspring—midparent regression

R b,:0-90 0-75 0-50 0-25 0-00
0-1 092 0-80 0-62 0-48 0-41
0-2 0-93 0-84 0-70 0-60 0-53
0-3 0-94 0-87 0-76 0-67 0-60
0-4 0-95 0-88 0-79 0-72 0-64
0-5 0-96 0-90 0-82 0-74 0-67
0-6 0-96 0-91 0-84 0-76 0-68
0-7 0-97 0-92 0-85 0-78 0-70
0-8 0-97 0-93 0-86 0-79 0-70
09 0-97 0-93 0-87 0-79 0-71
1-0 0-97 0-94 9-87 0-79 0-71

Table 1 shows the offspring-midparent regression
coefficients computed from equations (22) and (26) for
different values of genotypic correlation of mates, R,
and different values of the regression coefficient under
random mating of parents, b, (in the first row). Thus,
column 2, for example, shows values of b starting from
b, =09 to value of =097 corresponding to
assortative mating of parents with R = 1.

4. Discussion

Table 1 convincingly demonstrates that the genotypic
offspring—midparent regression can be affected by
assortative mating in parents. Not surprisingly, the
differences between b, and b are not large when the
value of b, is close to 1, i.e. gametes have mostly
additive effect on the character. The differences can be
substantial, however, even for a modest degree of
assortative mating, for increasing deviations from
additivity. If, for example, the offspring-midparent
regression in random mating equilibrium is b, = 0-5,
assortativematingof parents withgenotypiccorrelation
R =0-5 will increase the regression to the value
b = 0-82. It should be noted that, unlike assortative
mating occurring in natural populations which is
usually weak, assortative mating in an experiment,
where the experimenter himself matches parents, can
be quite strong. It is interesting to notice that in an
extreme case of developmental function in form (2)
with 4 = 0,i.e. when gametic contributions are strictly
multiplicative, the offspring-midparental regression
in random mating equilibrium is zero. However,
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assortative mating of parents will yield in this case a
non-zero regression that can take quite large values.

It should be pointed out that values of regression
coefficients in Table 1 are computed for a specific set
of assumptions, e.g. that the developmental function
is in form (2), that the distribution P(a, f;7,0) is
tetravariate normal. Therefore, the numerical values in
this table cannot be viewed as representing a general
situation. Deviations from the assumptions can affect
the actual numerical values of the regression co-
efficients. In some instances the value of the regression
coefficient under assortative mating can be smaller
than in Table 1, in other instances it may be even
greater than in the table. The real significance of Table
1 is that it demonstrates that a substantial bias can be
introduced in the estimated offspring-midparent
regression coefficient by mating parents assortatively.

Another result based on Fisher’'s model was
obtained by Vetta (1976). It predicts that dominance
variance in a population under random mating is the
same as in the population under assortative mating.
That this result is also limited to the Fisher’s model and
does not hold for the gametic model, has been
demonstrated elsewhere (Gimelfarb, 19855).

When speculating why the discrepancy exists
between the result obtained by Reeve (1961) based on
Fisher’s model and the result obtained in this paper,
one should keep in mind that these results concern the
coeflicient of linear regression, even though the actual
offspring-midparent regression can be non-linear. The
main feature of Fisher’s model, which seems to be
crucial for Reeve’s result, is that the offspring—
midparent regression in this model is always linear (or
approximately linear). This linearity is implied, at least
partially, by the assumption that a character is
controlled by infinitely many non-interacting loci. It is
known, however, that non-additive genic effects, such
as dominance (Bulmer, 1980; Gimelfarb, 19854) and
epistasis, can introduce a strong non-linearity in
offspring—midparent regressions. It is clear that, even
though assortative mating of parents may have no
effect on the coefficient of linear regression if the
regression is in fact linear, it may still have a
substantial effect on the coefficient of linear regression
if the actual offspring-midparent regression is non-
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linear. It would seem, therefore, that the discrepancy
between the results predicted by the two models can
be attributed to the neglected non-linearity of
offspring-midparent regression in Fisher’s model used
by Reeve.

Thus, the main conclusion of this paper is that
assortative mating of parents, while reducing the
sampling variance of the estimated value of offspring—
midparent regression, can at the same time introduce
a substantial bias in the estimated value.

This work was supported by U.S. Public Health Service
grant GM27120.
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