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Two-Sided Markets: Stable Matching
Federico Echenique, Nicole Immorlica, and Vijay V. Vazirani

1.1 Introduction

The field of matching markets was initiated by the seminal work of Gale and Shapley
on stable matching. Stable matchings have remarkably deep and pristine structural
properties, which have led to polynomial time algorithms for numerous computa-
tional problems as well as quintessential game-theoretic properties. In turn, these
have opened up the use of stable matching to a host of important applications.

This chapter will deal with the following four aspects:

1. Gale and Shapley’s deferred acceptance algorithm for computing a stable match-
ing; we will sometimes refer to it as the DA algorithm;

2. the incentive compatibility properties of this algorithm;
3. the fact that the set of all stable matchings of an instance forms a finite, distri-

butive lattice, and the rich collection of structural properties associated with this
fact;

4. the linear programing approach to computing stable matchings.

A general setting. A setting of the stable matching problem which is particularly
useful in applications is the following (this definition is quite complicated because of
its generality, and can be skipped on the first reading).

Definition 1.1. Let W be a set of n workers and F a set of m firms. Let c be a
capacity function c : F → Z+ giving the maximum number of workers that can
be matched to a firm; each worker can be matched to at most one firm. Also,
let G = (W , F , E) be a bipartite graph on vertex sets W , F and edge set E.
For a vertex v in G, let N(v) denote the set of its neighbors in G. Each worker
w provides a strict preference list l(w) over the set N(w) and each firm f pro-
vides a strict preference list l(f ) over the set N(f ). We will adopt the convention
that each worker and firm prefers being matched to one of its neighbors to
remaining unmatched, and it prefers remaining unmatched to being matched
to a non-neighbor.1 If a worker or firm remains unmatched, we will say that it
is matched to ⊥.

1 An alternative way of defining preference lists, which we will use in Section 1.3.2 is the following. Each
worker w has a preference list over F ∪ {⊥}, with firms in N(w) listed in the preference order of w, followed by
⊥, followed by (F \N(w)) listed in arbitrary order. Similarly, each firm f ’s preference list is over W ∪ {⊥}.
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We wish to study all four aspects stated for this setting. However, it would be
quite unwise and needlessly cumbersome to study the aspects directly in this setting.
It turns out that the stable matching problem offers a natural progression of settings,
hence allowing us to study the aspects gradually in increasing generality.

1. Setting I. Under this setting n = m, the capacity of each firm is one and graph G
is a complete bipartite graph. Thus in this setting each side, consisting of workers
or firms, has a total order over the other side. This simple setting will be used for
introducing the core ideas.

2. Setting II. Under this setting n and m are not required to be equal and G is
arbitrary; however, the capacity of each firm is still one. The definition of sta-
bility becomes more elaborate, hence making all four aspects more difficult in
this setting. Relying on the foundation laid in Setting I, we will present only the
additional ideas needed.

3. Setting III. This is the general setting defined in Definition 1.1. We will give
a reduction from this setting to Setting II, so that the algorithm and its
consequences carry over without additional work.

1.2 The Gale–Shapley Deferred Acceptance Algorithm

In this section we will define the notion of a stable matching for all three settings and
give an efficient algorithm for finding it.

1.2.1 The DA Algorithm for Setting I

In this setting, the number of workers and firms is equal, i.e., n = m, and each firm
has unit capacity. Furthermore, each worker and each firm has a total order over the
other side.

Notation. If worker w prefers firm f to f ′ then we represent this as f �w f ′; a similar
notation is used for describing the preferences of a firm.

We next recall a key definition from graph theory. Let G = (W , F , E) be a graph
with equal numbers of workers and firms, i.e., |W | = |F |. Then, µ ⊆ E is a perfect
matching in G if each vertex of G has exactly one edge of µ incident at it. If so, µ can
also be viewed as a bijection between W to F . If (w, f ) ∈ µ then we will say that µ
matches w to f and use the notation µ(w) = f and µ(f ) = w.

Definition 1.2. Worker w and firm f form a blocking pair with respect to a
perfect matching µ, if they prefer each other over their partners in µ, i.e., w �
fµ(f ) and f �w µ(w).

If (w, f ) form a blocking pair with respect to perfect matching µ then they have
an incentive to secede from matching µ and pair up by themselves. The significance
of the notion of stable matching, defined next, is that no worker–firm pair has an
incentive to secede from this matching. Hence such matchings lie in the core of the
particular instance; this key notion will be introduced in Chapter 3. For now, recall
from cooperative game theory that the core consists of solutions under which no
subset of the agents can gain more (i.e., with each agent gaining at least as much
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and at least one agent gaining strictly more) by seceding from the grand coalition.
Additionally, in Chapter 3 we will also establish that stable matchings are efficient
and individually rational.

Definition 1.3. A perfect matching µ with no blocking pairs is called a stable
matching.

It turns out that every instance of the stable matching problem with complete pref-
erence lists has at least one stable matching. Interestingly enough, this fact follows
as a corollary of the deferred acceptance algorithm, which finds in polynomial time
one stable matching among the n! possible perfect matchings in G.

Example 1.4. Let I be an instance of the stable matching problem with three
workers and three firms and the following preference lists:

w1 : f2, f1, f3 f1 : w1, w2, w3

w2 : f2, f3, f1 f2 : w1, w2, w3

w3 : f1, f2, f3 f3 : w1, w3, w2

Figure 1.1 shows three perfect matchings in instance I . The first matching is
unstable, with blocking pair (w1, f2), and the last two are stable (this statement
is worth verifying).

Figure 1.1

We next present the deferred acceptance algorithm2 for Setting I, described in
Algorithm 1.8. The algorithm operates iteratively, with one side proposing and the
other side acting on the proposals received. We will assume that workers propose to
firms. The initialization involves each worker marking each firm in its preference list
as uncrossed.

Each iteration consists of three steps. First, each worker proposes to the best
uncrossed firm on its list. Second, each firm that got proposals tentatively accepts
the best proposal it received and rejects all other proposals. Third, each worker who
was rejected by a firm crosses that firm off its list. If in an iteration each firm receives
a proposal, we have a perfect matching, say µ, and the algorithm terminates.

The following observations lead to a proof of correctness and running time.

Observation 1.5. If a firm gets a proposal in a certain iteration, it will keep
getting at least one proposal in all subsequent iterations.

2 The reason for this name is provided in Remark 1.11.
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Observation 1.6. As the iterations proceed, for each firm the following holds:
once it receives a proposal, it tentatively accepts a proposal from the same or a
better worker, according to its preference list.

Lemma 1.7. Algorithm 1.8 terminates in at most n2 iterations.

Proof In every iteration other than the last, at least one worker will cross a
firm off its preference list. Consider iteration number n2

− n+ 1, assuming the
algorithm has not terminated so far. Since the total size of the n preference
lists is n2, there is a worker, say w, who will propose to the last firm on its list
in this iteration. Therefore by this iteration w has proposed to every firm and
every firm has received a proposal. Hence, by Observation 1.5, in this iteration
every firm will get a proposal and the algorithm will terminate with a perfect
matching.

Algorithm 1.8. Deferred acceptance algorithm

Until all firms receive a proposal, do:

1. ∀w ∈W : w proposes to its best uncrossed firm.
2. ∀f ∈ F : f tentatively accepts its best proposal and rejects the rest.
3. ∀w ∈W : If w got rejected by firm f , it crosses f off its list.

Output the perfect matching, and call it µ.

Example 1.9. The Figures 1.2 shows the two iterations executed by Algo-
rithm 1.8 on the instance given in Example 1.4. In the first iteration, w2 will
get rejected by f2 and will cross it from its list. In the second iteration, w2 will
propose to f3, resulting in a perfect matching.

Figure 1.2

Theorem 1.10. The perfect matching found by the DA algorithm is stable.

Proof For the sake of contradiction assume that µ is not stable and let (w, f ′)
be a blocking pair. Assume thatµ(w)= f andµ(f ′)=w′ as shown in Figure 1.3.
Since (w, f ′) is a blocking pair, w prefers f ′ to f and therefore must have
proposed to f ′ and been rejected in some iteration, say i, before eventually
proposing to f . In iteration i, f ′ must have tentatively accepted the proposal
from a worker it likes better than w. Therefore, by Observation 1.6, at the

6

https://doi.org/10.1017/9781108937535.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781108937535.001


1 TWO-SIDED MARKETS: STABLE MATCHING

termination of the algorithm, w′ �f ′ w. This contradicts the assumption that
(w, f ′) is a blocking pair.

Figure 1.3 Blocking pair (w, f′).

Remark 1.11. The Gale–Shapley algorithm is called the deferred acceptance
algorithm because firms do not immediately accept proposals received by them
– they defer them and accept only at the end of the algorithm when a perfect
matching is found. In contrast, under the immediate acceptance algorithm,
each firm immediately accepts the best proposal it has received; see Chapter 3.

Our next goal is to prove that the DA algorithm, with workers proposing, leads to
a matching that is favorable for workers and unfavorable for firms. We first formalize
the terms “favorable” and “unfavorable.”

Definition 1.12. Let S be the set of all stable matchings over (W , F). For each
worker w, the realm of possibilities R(w) is the set of all firms to which w is
matched in S, i.e., R(w) = {f | ∃µ ∈ S s.t. (w, f ) ∈ µ}. The optimal firm for
w is the best firm in R(w) with respect to w’s preference list; it will be denoted
by optimal(w). The pessimal firm for w is the worst firm in R(w) with respect to
w’s preference list and will be denoted by pessimal(w). The definitions of these
terms for firms are analogous.

Lemma 1.13. Two workers cannot have the same optimal firm, i.e., each worker
has a unique optimal firm.

Proof Suppose that this is not the case and suppose that two workers w and w′

have the same optimal firm, f . Assume without loss of generality that f prefers
w′ to w. Let µ be a stable matching such that (w, f ) ∈ µ and let f ′ be the firm
matched to w′ in µ. Since f = optimal(w′) and w′ is matched to f ′ in a stable
matching, it must be the case that f �w′ f ′. Then (w′, f ) forms a blocking pair
with respect to µ, leading to a contradiction. See Figure 1.4.

Figure 1.4 Blocking pair (w′, f) with respect to µ.

Corollary 1.14. Matching each worker to its optimal firm results in a perfect
matching, say µW .
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Lemma 1.15. The matching µW is stable.

Proof Suppose that this is not the case and let (w, f ′) be a blocking pair with
respect to µW , where (w, f ), (w′, f ′) ∈ µW . Then f ′ �w f and w �f ′ w′.

Since optimal(w′) = f ′, there is a stable matching, say µ′, s.t. (w′, f ′) ∈ µ′.
Assume that w is matched to firm f ′′ in µ′. Now since optimal(w) = f , f �w f ′′.
This together with f ′ �w f gives f ′ �w f ′′. Then (w, f ′) is a blocking pair with
respect to µ′, giving a contradiction. See Figure 1.5.

Figure 1.5

Proofs similar to those of Lemmas 1.13 and 1.15 show that each worker has
a unique pessimal firm and the perfect matching that matches each worker to its
pessimal firm is also stable.

Definition 1.16. The perfect matching that matches each worker to its optimal
(pessimal) firm is called the worker-optimal (-pessimal) stable matching. The
notions of firm-optimal (-pessimal) stable matching are analogous. The worker
and firm optimal stable matchings will be denoted by µW and µF , respectively.

Theorem 1.17. The worker-proposing DA algorithm finds the worker-optimal
stable matching.

Proof Suppose that this is not the case; then there must be a worker who is
rejected by its optimal firm before proposing to a firm it prefers less. Consider
the first iteration in which a worker, say w, is rejected by its optimal firm, say
f . Let w′ be the worker that firm f tentatively accepts in this iteration; clearly,
w′ �f w. By Lemma 1.13, optimal(w′) 6= f and, by the assumption made in
the first sentence of this proof, w′ has not yet been rejected by its optimal firm
(and perhaps never will be). Therefore, w′ has not yet proposed to its opti-
mal firm; let the latter be f ′. Since w′ has already proposed to f , we have that
f �w′ f ′. Now consider the worker-optimal stable matching µ; clearly, (w, f ),
(w′, f ′) ∈ µ. Then (w′, f ) is a blocking pair with respect to µ, giving a
contradiction. See Figure 1.6.

Figure 1.6 Blocking pair (w′, f) with respect to µ.

Lemma 1.18. The worker-optimal stable matching is also firm pessimal.
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Proof Let µ be the worker-optimal stable matching and suppose that it is
not firm pessimal. Let µ′ be a firm-pessimal stable matching. Now, for some
(w, f ) ∈ µ, pessimal(f ) 6= w. Let pessimal(f ) = w′; clearly, w �f w′. Let w =
pessimal(f ′); then (w, f ′), (w′, f ) ∈ µ′. Since optimal(w) = f and w is matched
to f ′ in a stable matching, f �w f ′. Then (w, f ) forms a blocking pair with
respect to µ′, giving a contradiction.

1.2.2 Extension to Setting II

Recall that in this setting each worker and firm has a total preference order over
only its neighbors in the graph G = (W , F , E) and ⊥, with ⊥ the least preferred
element in each list; matching a worker or firm to ⊥ is equivalent to leaving it
unmatched.

In this setting, a stable matching may not be a perfect matching in G even if the
number of workers and firms is equal; however, it will be a maximal matching. Recall
that a matching µ ⊆ E is maximal if it cannot be extended with an edge from E−µ.
As a result of these changes, in going from Setting I to Setting II, the definition of
stability also needs to be enhanced.

Definition 1.19. Let µ be any maximal matching in G = (W , F , E). Then the
pair (w, f ) forms a blocking pair with respect to µ if (w, f ) ∈ E and one of the
following holds:

• Type 1. w, f are both matched in µ and prefer each other to their partners
in µ.
• Type 2a. w is matched to f ′, f is unmatched, and f �w f ′.
• Type 2b. w is unmatched, f is matched to w′, and w �f w′.

Observe that, since (w, f ) ∈ E, w and f prefer each other to remaining unmatched.
Therefore they cannot both be unmatched in µ – this follows from the maximality
of the matching.

The only modification needed to Algorithm 1.8 is to the termination condi-
tion; the modification is as follows. Every worker is either tentatively accepted by
a firm or has crossed off all firms from its list. When this condition is reached,
each worker in the first category is matched to the firm that tentatively accepted
it and the rest remain unmatched. Let µ denote this matching. We will still call
this the deferred acceptance algorithm. It is easy to see that Observations 1.5
and 1.6 still hold and that Lemma 1.7 holds with a bound nm on the number of
iterations.

Lemma 1.20. The deferred acceptance algorithm outputs a maximal matching
in G.

Proof Assume that (w, f ) ∈ E but that so far worker w and firm f are both
unmatched in the matching found by the algorithm. During the algorithm,
w must have proposed to f and been rejected. Now, by Observation 1.5, f must
be matched, giving a contradiction.
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Theorem 1.21. The maximal matching found by the deferred acceptance algo-
rithm is stable.

Proof We need to prove that neither type of blocking pair exists with respect
to µ. For the first type, the proof is identical to that in Theorem 1.10 and is
omitted. Assume that (w, f ) is a blocking pair of the second type. There are
two cases:

Case 1. w is matched, f is not, and w prefers f to its match, say f ′. Clearly w
will propose to f before proposing to f ′. Now, by Observation 1.5, f must be
matched in µ, giving a contradiction.

Case 2. f is matched, w is not, and f prefers w to its match, say w′. Clearly w
will propose to f during the algorithm. Since f prefers w to w′, it will not reject
w in favor of w′, hence giving a contradiction.

Notation. If worker w or firm f is unmatched in µ then we will denote this as
µ(w)=⊥ or µ(f )=⊥. We will denote the sets of workers and firms matched under
µ by W (µ) and F(µ), respectively.

Several of the definitions and facts given in Setting I carry over with small mod-
ifications; we summarize these next. The definition of the realm of possibilities of
workers and firms remains the same as before; however, note that in Setting II, some
of these sets could be the singleton set {⊥}. The definitions of optimal and pessimal
firms for a worker also remain the same, with the change that they will be ⊥ if the
realm of possibilities is the set {⊥}. Let W ′ ⊆ W be the set of workers whose realm
of possibilities is non-empty. Then, via a proof similar to that of Lemma 1.13, it is
easy to see that two workers in W ′ cannot have the same optimal firm, i.e., every
worker in W ′ has a unique optimal firm.

Next, match each worker in W ′ to its optimal firm, leaving the remaining
workers unmatched. This is defined to be the worker-optimal matching; we will
denote it by µW . Similarly, define the firm-optimal matching; this will be denoted by
µF . Using ideas from the proof of Lemma 1.15, it is easy to show that the worker-
optimal matching is stable. Furthermore, using Theorem 1.17 one can show that the
deferred acceptance algorithm finds this matching. Finally, using Lemma 1.18, one
can show that the worker-optimal stable matching is also firm pessimal.

Lemma 1.22. The numbers of workers and firms matched in all stable matchings
are the same.

Proof Each worker w prefers being matched to one of the firms that
is its neighbor in G over remaining unmatched. Therefore, all work-
ers who are unmatched in µW will be unmatched in all other stable
matchings as well. Hence for an arbitrary stable matching µ we have
W (µW )⊇W (µ)⊇W (µF ). Thus |W (µW )| ≥ |W (µ)| ≥ |W (µF )|. A similar
statement for firms is |F(µW )| ≤ |F(µ)| ≤ |F(µF )|. Since the number of work-
ers and firms matched in any stable matching is equal, |W (µW )| = |F(µW )|
and |W (µF )| = |F(µF )|. Therefore the cardinalities of all sets given above are
equal, hence establishing the lemma.
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Finally, we present the rural hospital theorem3 for Setting II.

Theorem 1.23. The set of workers matched is the same under all stable
matchings; similarly for firms.

Proof As observed in the proof of Lemma 1.22, W (µW ) ⊇ W (µ) ⊇ W (µF ).
By Lemma 1.22 these sets are of equal cardinality. Hence they must all be the
same set as well.

1.2.3 Reduction from Setting III to Setting II

We will first give a definition of a blocking pair that is appropriate for Setting III.
We will then give a reduction from this setting to Setting II, thereby allowing us to
carry over the algorithm and its consequences to this setting directly. Finally, we will
prove the rural hospital theorem for Setting III.

Definition 1.24. Given a graph G = (V , E) and an upper bound function
b : V → Z+, a set µ ⊆ E is a b-matching if the number of edges of µ incident
at each vertex v ∈ V is at most b(v). Furthermore, µ is a maximal b-matching
if µ cannot be extended to a valid b-matching by adding an edge from E − µ.

In Setting III, firms have capacities given by c : F→Z+. For the graph
G= (W , F , E) specified in the instance given in Setting III, define an upper bound
function b : W ∪ F → Z+ as follows. For w ∈ W , b(w) = 1 and for f ∈ F , b(f ) =
c(f ). Let µ be a maximal b-matching in G = (W , F , E) with upper bound function
b. We will say that firm f is matched to capacity if the number of workers matched
to f is exactly c(f ) and it is not matched to capacity if f is matched to fewer than c(f )
workers. Furthermore, if a set S ⊆W of workers is matched to firm f under µ, with
|S| ≤ c(f ), then we will use the notation µ(f ) = S and for each w ∈ S, µ(w) = f .

Definition 1.25. Let µ be a maximal b-matching in G = (W , F , E) with upper
bound function b. For w ∈ W and f ∈ F , (w, f ) forms a blocking pair with
respect to µ if (w, f ) ∈ E and one of the following hold:

• Type 1. f is matched to capacity, w is matched to f ′, and there is a worker w′

that is matched to f such that w �f w′ and f �w f ′.
• Type 2a. f is not matched to capacity, w is matched to f ′, and f �w f ′.
• Type 2b. w is unmatched, w′ is matched to f , and w �f w′.

Reduction to Setting II. Given an instance I of Setting III, we show below how to
reduce it in polynomial time to an instance I ′ of Setting II in such a way that there

3 The name of this theorem has its origins in the application of stable matching to the problem of matching
residents to hospitals. The full scope of the explanation given next is best seen in the context of the extension of
this theorem to Setting III, given in Section 1.2.3. In this application it was found that certain hospitals received
very poor matches and even remained underfilled; moreover, this persisted even when a hospital-optimal stable
matching was used. It turned out that these unsatisfied hospitals were mostly in rural areas and were preferred
least by most residents. The question arose whether there was a “better” way of finding an allocation. The rural
hospital theorem clarified that every stable matching would treat underfilled hospitals in the same way, i.e., give
the same allocation.
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is a bijection φ between the sets of stable matchings of I and I ′ such that φ and φ−1

can be computed in polynomial time.
Let I be given by (W , F , E, c) together with preference lists l(w),∀w ∈ W and

l(f ),∀f ∈ F . Instance I ′ will be given by (W ′, F ′, E′) together with preference lists
l′(w),∀w ∈W ′, and l′(f ),∀f ∈ F ′, where:

• W ′ =W .
• F ′ = ∪f∈F {f (1), . . . , f (c(f ))

}; i.e., corresponding to firm f ∈ I , I ′ will have c(f )
firms, namely f (1), . . . , f (c(f )).
• Corresponding to each edge (w, f ) ∈ E, E′ has edges (w, f (i)) for each i ∈

[1 . . . c(f )].
• ∀w ∈W ′, l′(w) is obtained by replacing each firm, say f , in l(w) by the ordered list

f (1), . . . , f (c(f )). More formally, if f �w f ′ then for all 1 ≤ i ≤ c(i) and 1 ≤ j ≤ c(j)
we have f (i)

�w f ′(j) and for all 1 ≤ i < j ≤ c(i) we have f (i)
�w f (j).

• ∀f ∈ F and i ∈ [1 . . . c(f )], l′(f (i)) is the same as l(f ).

Lemma 1.26. Let µ be a stable matching for instance I of Setting III. Then the
following hold:

• If firm f is matched to k < c(f ) workers then f (1), . . . , f (k) must be matched
and f (k+1), . . . , f (c(f )) must remain unmatched.
• If (f (i), w), (f (j), w′) ∈ µ with i < j then w �f w′.

Proof For contradiction assume that f (i) is unmatched and f (j) is matched, to
w say, in µ, where i < j. Clearly, f (i)

�w f (j) and w �f (i) ⊥. Therefore (w, f (i)) is
a blocking pair; see Figure 1.7.

The proof of the second statement is analogous, with ⊥ replaced by w′.

Figure 1.7 Blocking pair
(
w, f(i)

)
.

Theorem 1.27. There is a bijection between the sets of stable matchings of
I and I ′.

Proof We will first define a mapping φ from the first set to the second and
then prove that it is a bijection.

Letµ be a stable matching of instance I . Assume that a set S ⊆W of workers
is matched in µ to firm f and worker w ∈ S and w is the ith most preferred
worker in S with respect to l(f ). Then, under φ(µ) we will match w to f (i). This
defines φ(µ) completely.

For contradiction assume that φ(µ) is not stable and let (w, f (i)) be a block-
ing pair with respect to φ(µ). Assume that f (i) is matched to w′, where either
w′ ∈W ′ or w′ = ⊥. Clearly f (i) prefers w to w′; therefore, by construction, if w
is matched to f (j) then j < i, contradicting the fact that (w, f (i)) is a blocking
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pair. Hence w is either unmatched or is matched to f ′(k) for some f ′ 6= f and
some k.

In the first case, under µ, w is unmatched, w′ is matched to f , w �f w′, and
f �w ⊥. In the second case, under µ, w is matched to f ′, w′ is matched to f ,
w �f w′, and f �w f ′. Therefore, in both cases (w, f ) is a blocking pair with
respect to µ, giving a contradiction.

Finally we observe that φ has an inverse map φ−1(φ(µ)) = µ. Let µ′ be a
stable matching of instance I ′. If µ′(w) = f (i) then φ−1(µ′) matches w to f . The
stability of φ−1(µ′) is easily shown, in particular, because each f has the same
preference lists as f (i) for i ∈ [1, . . . , c(f )].

As a consequence of Theorem 1.27, we can transform the given instance I to an
instance I ′ of Setting II, run the deferred acceptance algorithm on it, and transform
the solution back to obtain a stable matching for I . Clearly, all notions established in
Setting II following the algorithm, such as the realm of possibilities and the worker-
optimal and firm-optimal stable matchings, also carry over to the current setting.

Finally, we present the rural hospital theorem for Setting III.

Theorem 1.28. The following hold for an instance in Setting III:

1. Over all the stable matchings of the given instance the set of matched workers
is the same and the number of workers matched to each firm is also the same.

2. Assume that firm f is not matched to capacity in the stable matchings. Then,
the set of workers matched to f is the same over all stable matchings.

Proof 1. Let us reduce the given instance, say I , to an instance I ′ in Setting II
and apply Theorem 1.23. Then we obtain that the set of matched workers is the
same over all the stable matchings of I ′, hence yielding the same statement for
I as well. We also obtain that the set of matched firms is the same over all the
stable matchings of I ′. Applying the bijection φ−1 to I ′ we find that the number
workers matched to each firm is also the same over all stable matchings.

2. Let µW and µF be the worker-optimal and firm-optimal stable matchings
for instance I , respectively. Assume for contradiction that firm f is not filled to
capacity and µW (f ) 6= µF (f ). Then there is a worker w who is matched to f
in µW but not in µF . Since µW is worker optimal, w prefers f to its match in
µF . Since f is not filled to capacity, (w, f ) forms a blocking pair of Type 2a (see
Definition 1.25) with respect to µF , giving a contradiction.

1.3 Incentive Compatibility

In this section we will study incentive compatibility properties of the deferred accept-
ance algorithm for all three settings. Theorem 1.17 shows that if workers propose to
firms, then the matching computed is worker optimal in the sense that each worker
is matched to the best firm in its realm of possibilities. However, for an individual
worker this “best” firm may be very low in the worker’s preference list; see end-
of-chapter Exercise 1.7. If so, the worker may have an incentive to cheat, i.e., to
manipulate its preference list in order to get a better match.

A surprising fact about the DA algorithm is that this worker will not be able to get
a better match by falsifying its preference list. Hence its best strategy is to report its
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true preference list. Moreover, this holds no matter what preference lists the rest of
the workers report. Thus the worker-proposing DA algorithm is dominant-strategy
incentive compatible (DSIC) for workers.

This ground-breaking result on incentive compatibility opened up the DA
algorithm to a host of consequential applications. An example is its use for match-
ing students to public schools in big cities, such as New York and Boston, with
hundreds of thousands of students seeking admission each year into hundreds of
schools. Previously, Boston was using the immediate acceptance algorithm, which
did not satisfy incentive compatibility. It therefore led to much guessing and gam-
ing, making the process highly stressful for the students and their parents. With the
use of the student-proposing DA algorithm, each student is best off simply reporting
her true preference list. For further details on this application, see Chapter 8.

The proof of Theorem 1.32, showing that Setting I is DSIC, is quite non-trivial
and intricate, and more complexity is introduced in Setting II. In this context,
the advantage of partitioning the problem into the three proposed settings should
become evident.

The rest of the picture for the incentive compatibility of the DA algorithm is as
follows. In Setting I, the worker-proposing DA algorithm is not DSIC for firms; see
Exercise 1.7. The picture is identical in Settings II and III for the worker-proposing
DA algorithm. However, Setting III is asymmetrical for workers and firms, since
firms have maximum capacities. For this setting, Theorem 1.35 will establish that
there is no mechanism that is DSIC for firms.

1.3.1 Proof of DSIC for Setting I

The following lemma will be critical to proving Theorem 1.32; it guarantees a block-
ing pair with respect to an arbitrary perfect matching µ. Observe that the blocking
pair involves a worker who does not improve its match in going from µW to µ.

Lemma 1.29 (Blocking lemma). LetµW be the worker-optimal stable matching
under preferences � and let µ be an arbitrary perfect matching, not necessarily
stable. Further, let W ′ be the set of workers who prefer their match under µ to
their match under µW , i.e., W ′ = {w ∈ W | µ(w) �w µW (w)}, and assume that
W ′ 6= �. Then W ′ 6=W and there exist w ∈ (W \W ′) and f ∈ µ(W ′) such that
(w, f ) is a blocking pair for µ.

Proof Clearly, for w ∈ (W \W ′),µW (w) �w µ(w). Two cases arise naturally:
whether the workers in W ′ get better matches in µ over µW by simply trading
partners, i.e., whether µ(W ′) = µW (W ′) or not. We will study the two cases
separately.

Case 1. µ(W ′) 6= µW (W ′). Since |µ(W ′)| = |µW (W ′)| = |W ′| and (µ(W ′) \
µW (W ′)) 6= �, therefore W ′ 6= W . Pick any f ∈ (µ(W ′) \ µW (W ′)) and let
w = µW (f ). Now w ∈ (W \ W ′), since if f /∈ µW (W ′) then µW (f ) /∈ W ′.
We will show that (w, f ) is a blocking pair for µ. To this end, we will identify
several other workers and firms.

Let w′ = µ(f ); since f ∈ µ(W ′), w′ ∈ W ′. Let f ′′ = µW (w′); clearly, f ′′ ∈
µW (W ′). Finally let f ′ = µ(w); since w ∈ (W \W ′), f ′ ∈ (F \µ(W ′)). Figure 1.8
should be helpful in visualizing the situation.
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Figure 1.8 Blocking pair
(
w, f(i)

)
.

Finally we need to show that f �w f ′ and w �f w′. The first assertion follows
on observing that w ∈ (W \W ′) and f 6= f ′. Assume that the second assertion
is false, i.e., that w′ �f w. Now f �w′ f ′′, since w′ ∈ W ′, f = µ(w′), and
f ′′ = µW (w′). But this implies that (w′, f ) is a blocking pair for stable matching
µW . The contradiction proves that w �f w′. Hence (w, f ) is a blocking pair
for µ.

Figure 1.9

Case 2. µ(W ′) = µW (W ′). In this case, unlike the previous one, we will
crucially use the fact that µW is the matching produced by the DA algorithm
with workers proposing. Let i be the last iteration of the DA algorithm in which
a worker, say w′ ∈ W ′, first proposes to its eventual match; let the latter be
f ∈ µW (W ′). Let w′′ = µ(f ). Since f ∈ µ(W ′), w′′ ∈W ′.

By the definition of W ′, f = µ(w′′) �w′′ µW (w′′). Therefore, w′′ must have
proposed to f before iteration i and subsequently moved on to its eventual
match under µW no later than iteration i. Now, by Observation 1.5, f must
keep getting proposals in each iteration after w′′ proposed to it. In particular,
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assume that at the end of iteration i−1, f had tentatively accepted the proposal
of worker w. In iteration i, f will reject w and w will propose to its eventual
match in iteration i+ 1 or later. Since w′ is the last worker in W ′ to propose to
its eventual match, w /∈ W ′. Therefore W ′ 6= W . We will show that (w, f ) is a
blocking pair for µ. Figure 1.9 visualizes the situation.

Since f must have rejected w′′ before tentatively accepting the proposal of
w, w �f w′′. Let f ′ = µW (w) and f ′′ = µ(w). In the DA algorithm, w had
proposed to f before being finally matched to f ′, therefore f �w f ′. Since w ∈
(W \W ′), f ′ �w f ′′. Therefore f �w f ′′. Together with the assertion w �f w′′,
we get that (w, f ) is a blocking pair for µ.

Notation 1.30. Assume that a worker w reports a modified list; let us denote it by
�
′
w. Also assume that all other workers and all firms report their true preference

lists. Define, for all x ∈ F ∪W,

�
′
x =

{
�x if x ∈ F or x ∈W \ {w},
�
′
w if x = w.

Let µW and µ′W be the worker-optimal stable matchings under the preferences
� and �′, respectively. We will use these notions to state and prove Theorem 1.32.
However, first we will give the following straightforward observation.

Observation 1.31. Let (W , F ,�) be an instance of stable matching and consider
alternative preference lists �′w for every worker w ∈ W and �′f for every firm
f ∈ F. Assume that we are given a perfect matching µ which has a blocking pair
(w, f ) with respect to the preferences �′. Moreover, assume that w and f satisfy
�
′
w = �w and �′f = �f . Then (w, f ) is a blocking pair in µ with respect to � as

well.

Theorem 1.32. Let� and�′ be the preference lists defined above and letµW and
µ′W be the worker-optimal stable matchings under these preferences, respectively.
Then

µW (w) �w µ
′

W (w),

i.e., the match of worker w, with respect to its original preference list, does not
improve if it misrepresents its list as �′w.

Proof We will invoke Lemma 1.29; for this purpose, denoteµ′W byµ. Suppose
that w prefers its match in µ to its match in µW . Let W ′ = {w ∈ W | µ(w) �w
µW (w)}; clearly w ∈W ′ and therefore W ′ 6= �. Now, by Lemma 1.29, there is
a blocking pair (w′, f ) for µ with respect to the preferences �, with w′ /∈ W ′;
clearly, w′ 6= w.

Since �′ and � differ only for w, by Observation 1.31 (w′, f ) is a blocking
pair for µ with respect to �′ as well. This contradicts the fact that µ is a stable
matching with respect to �′.
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1.3.2 DSIC for Setting II

While studying incentive compatibility for the case of incomplete preference lists, we
will allow a worker w not only to alter its preference list over its neighbors in graph
G but also to alter its set of neighbors, i.e., to alter G itself. For this reason, it will be
more convenient to define the preference list of each worker over the set F ∪{⊥} and
of each firm over the set W ∪ {⊥}, as stated in footnote 1 in Section 1.1.

Let � denote the original preference lists of workers and firms and let µW denote
the worker-optimal stable matching under preferences�. The definition of a blocking
pair with respect to a matching µ is changed in one respect only, namely µ(w) = ⊥
or µ(f ) = ⊥ is allowed. Thus (w, f ) is a blocking pair if and only if (w, f ) /∈ µ,
µ(w) �w f , and µ(f ) �f w.

The only change needed to the statement of the blocking lemma, stated as
Lemma 1.29 for Setting I, is that µ is an arbitrary matching, i.e., it is not necessarily
perfect. Once again, the proof involves the same two cases presented in Lemma 1.29.
The proof of the first case changes substantially and is given below.

Proof Case 1: µ(W ′) 6= µW (W ′). For w ∈ W ′, µ(w) �w µW (w), therefore
µ(w) 6= ⊥. However, µW (w) = ⊥ is allowed. Therefore |µ(W ′)| = |W ′| ≥
|µW (W ′)|. Hence, µ(W ′) 6⊂ µW (W ′) and, since µ(W ′) 6= µW (W ′), we obtain
(µ(W ′) \ µW (W ′)) 6= �. Pick any f ∈ (µ(W ′) \ µW (W ′)). Clearly µ(f ) 6= ⊥;
let w′ = µ(f ). Let µW (w′) = f ′′, where f ′′ = ⊥ is possible. By definition of W ′,
f �w′ f ′′ = µW (w′).

Assume for contradiction that µW (f ) = ⊥. Since µ(f ) = w′, w′ �f ⊥.
Therefore we obtain w′ �f µW (f ). If so, (w′, f ) is a blocking pair for µW ,
leading to a contradiction. Therefore µW (f ) 6= ⊥. Let µW (f ) = w. Clearly,
w /∈ W ′. Hence W ′ 6= W . Let µ(w) = f ′, where f ′ = ⊥ is possible. Clearly,
f 6= f ′ and f �w f ′. This, together with the assertion w �f w′, gives us that
(w, f ) is a blocking pair for µ.

Now consider Case 2, namely µ(W ′) = µW (W ′). Since, for each w ∈ W ′, we
have µ(w) �w µW (w), w cannot be unmatched under µ. Therefore, in this case,
∀w ∈ W ′, w is matched in both µ and µW . The rest of the proof is identical to that
of Lemma 1.29, other than the fact that f ′ = ⊥ and f ′′ = ⊥ are allowed. We will not
repeat the proof here. This establishes the blocking lemma for Setting II.

As in Setting I, presented in Section 1.3.1, we will adopt the notation � and �′

given in Notation 1.30. Let µ′W be the worker-optimal stable matchings under the
preferences �′. Note that Observation 1.6 still holds. Finally, the statement of The-
orem 1.32 carries over without change to this setting and its proof is also identical,
provided one uses the slightly modified statement of the blocking lemma.

1.3.3 DSIC for Setting III

For Setting III, the DSIC algorithm for workers follows easily using the reduction
from Setting II to Setting III, given in Section 1.2.3, and the fact that the worker-
proposing DA algorithm is DSIC for workers. However, this setting is asymmetric
for workers and firms, since firms can match to multiple workers. Therefore, we need
to study the incentive compatibility of the firm-proposing DA algorithm as well.
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The answer is quite surprising: not only is this algorithm not DSIC, but in fact no
mechanism can be DSIC for this setting.

Example 1.33. Let the set of workers be W = {w1, w2, w3, w4} and the set of
firms be F = {f1, f2, f3}. Suppose that firm f1 has capacity 2 and firms f2 and f3
have unit capacities. Preferences are given by:

f1 : w1 � w2 � w3 � w4

f2 : w1 � w2 � w3 � w4

f3 : w3 � w1 � w2 � w4

w1 : f3 � f1 � f2

w2 : f2 � f1 � f3

w3 : f1 � f3 � f2

w4 : f1 � f2 � f3

Consider the instance given in Example 1.33. If firms propose to workers,
the resulting stable matching, µF , assigns µF (f1)={w3, w4}, µF (f2)={w2}, and
µF (f3)={w1}.

Next consider matching µ with µ(f1) = {w2, w4}, µ(f2) = {w1}, and µ(f3) = {w3}.
This matching is strictly preferred by all firms but it is not stable since (w1, f1) and
(w3, f1) are both blocking pairs. However, if f1 misrepresents its preferences as

f1 : w2 �
′ w4 �

′ w1 �
′ w3,

then µ becomes stable and firm optimal. Hence we get:

Lemma 1.34. For the instance given in Example 1.33, there exists a matching
µ which is not stable and which all firms strictly prefer to the firm-optimal stable
matching µF . Moreover, there is a way for one firm to misrepresent its preferences
so that µ becomes stable.

The next theorem follows.

Theorem 1.35. For the stable matching problem in Setting III with capacitated
firms, there is no mechanism that is DSIC for firms.

1.4 The Lattice of Stable Matchings

The notions of worker-optimal and worker-pessimal stable matchings, defined in
Section 1.2.1, indicate that the set of all stable matchings of an instance has struc-
ture. It turns out that these notions form only the tip of the iceberg! Below we will
define the notion of a finite distributive lattice and will prove that the set of stable
matchings of an instance forms such a lattice. Together with the non-trivial notion
of rotation and Birkhoff’s representation theorem, this leads to an extremely rich col-
lection of structural properties and efficient algorithms which find a use in important
applications.
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1.4.1 The Lattice for Setting I

Definition 1.36. Let S be a finite set, ≥ be a reflexive, anti-symmetric, transi-
tive relation on S and π = (S,≥) be the corresponding partially ordered set.
For any two elements a, b ∈ S, u ∈ S is said to be an upper bound of a and b
if u ≥ a and u ≥ b. Further, u is said to be a least upper bound of a and b if
u′ ≥ u for any upper bound u′ of a and b. The notion of the (greatest) lower
bound of two elements is analogous. The partial order π is said to be a lattice
if any two elements a, b ∈ S have a unique least upper bound and a unique
greatest lower bound. If so, these will be called the join and meet of a and b
and will be denoted by a ∨ b and a ∧ b, respectively, and the partial order will
typically be denoted by L. Finally, L is said to be a finite distributive lattice,
abbreviated FDL, if for any three elements a, b, c ∈ S, the distributive property
holds, i.e.,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Birkhoff’s representation theorem, mentioned above, holds for FDLs. We next
define a natural partial order on the set of stable matchings of an instance and show
that it forms such a lattice.

Definition 1.37. Let Sµ be the set of stable matchings of a given instance
in Setting I. Define a relation ≥ on Sµ as follows: for µ,µ′ ∈ Sµ, µ ≥ µ′

if and only if every worker w weakly prefers her match in µ to her match
in µ′, i.e.,

∀w ∈W : µ(w) �w µ
′(w).

Theorem 1.41 will show that the partial order Lµ = (Sµ,≥) is a finite dis-
tributive lattice; Lµ will be called the stable matching lattice for the given
instance.

Letµ andµ′ be two stable matchings. We define the following four operations. For
worker w, max {µ(w),µ′(w)} is the firm that w weakly prefers among µ(w) and µ′(w),
and min {µ(w),µ′(w)} is the firm that w weakly dislikes, where “dislikes” is the oppo-
site of the relation “prefers”. For a firm f , max {µ(f ),µ′(f )} and min {µ(f ),µ′(f )} are
analogously defined.

Define two maps MW : W → F and MF : F →W as follows:

∀w ∈W : MW (w) = max {µ(w),µ′(w)} and ∀f ∈ F : MF (f ) = min {µ(f ),µ′(f )}.

Lemma 1.38. ∀w ∈W, if MW (w) = f then MF (f ) = w.

Proof Assume µ(w) 6= µ′(w), since otherwise the proof is obvious. Let
µ(w)= f and µ′(w) = f ′, and without loss of generality assume that f �w f ′.
Let µ′(f ) = w′; clearly w 6= w′. Now if w �f w′ then (w, f ) is a blocking pair for
µ′, leading to a contradiction. Therefore, w′ �f w and hence MF (f ) = w; see
Figure 1.10 for an illustration.
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Figure 1.10 Illustration of the Figure for proof of Lemma 1.38.

Corollary 1.39. MW and MF are both bijections, and MW =M−1
F .

As a consequence of Corollary 1.39, MW is a perfect matching on W ∪ F ;
denote it by µ1. Analogously, mapping each worker w to min {µ(w),µ′(w)} gives
another perfect matching; denote it by µ2. Observe that µ2 matches each firm f to
max {µ(f ),µ′(f )}; see Figure 1.11.

Figure 1.11 The meet and join of µ and µ′.

Lemma 1.40. The matchings µ1 and µ2 are both stable.

Proof Assume that (w, f ) is a blocking pair for µ1. Let µ(w)= f ′ and
µ′(w)= f ′′ and assume without loss of generality that f ′�w f ′′. Then
µ1(w)= max {µ(w),µ′(w)}= f ′.

Let µ(f )=w′ and µ′(f )=w′′. By the definition of map MF , w′′ �f w′ and
µ1(f ) = w′; observe that w 6= w′. Since (w, f ) is a blocking pair for µ1, we
have w �f w′. This implies that (w, f ) is a blocking pair for µ, leading to a
contradiction. Hence µ1 is stable. An analogous argument shows that µ2 is
also stable; see Figure 1.12 for an illustration.

Figure 1.12 Illustration of the proof of Lemma 1.40.
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Now consider the partial order Lµ = (Sµ,≥) defined in Definition 1.37. Clearly,
µ1 and µ2 are an upper bound and a lower bound of µ and µ′, respectively. It is
easy to see that they are also the unique lowest upper bound and the unique greatest
lower bound of µ and µ′. Therefore Lµ supports the operations of meet and join
given by

µ ∨ µ′ = µ1 and µ ∧ µ′ = µ2,

Finally, it is easy to show that the operations of meet and join satisfy the distributive
property; see Exercise 1.8. Hence we get:

Theorem 1.41. The partial order Lµ = (Sµ,≥) is a finite distributive lattice.

Remark 1.42. If µ,µ′ ∈ Sµ with µ > µ′ then, by definition, workers get
weakly better matches in µ than in µ′. The discussion presented above implies
that firms get weakly worse matches.

Using the finiteness of Lµ, it is easy to show that there are two special matchings,
say µ>,µ⊥ ∈ Sµ, which we will call top and bottom matchings, respectively, such
that, ∀µ ∈ Sµ, µ> ≥ µ and µ ≥ µ⊥. These stable matchings were already singled
out in Section 1.2.1: µ> is the worker-optimal and firm-pessimal matching and µ⊥
is the firm-optimal and worker-pessimal matching; see Figure 1.13.

Figure 1.13 A path from the worker-optimal matching, µ>, to the firm-optimal matching, µ⊥, in
the lattice Lµ. The edge (µ,µ′) indicates that µ′ = ρ(µ), for a rotation ρ with respect to µ.

1.4.1.1 Rotations, and Their Use for Traversing the Lattice

Several applications require stable matchings which are not as “extreme” as µ> and
µ⊥, i.e., they treat the two sets W and F more equitably. These stable matchings can
be found in the rest of the lattice. In this subsection we will define the notion of a
rotation, which helps to traverse the lattice. In particular, we will prove that rotations
help to traverse paths from µ> to µ⊥, as illustrated in Figure 1.13, with intermediate
“vertices” on such a path being stable matchings and an “edge” (µ,µ′) indicating
that µ > µ′; see Lemma 1.45 and Corollary 1.46. By Remark 1.42, the intermediate
matchings on any such path will gradually become better for firms and worse for
workers. For an example of the use of rotations, see Exercise 1.13, which develops an
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efficient algorithm for finding a stable matching that treats workers and firms more
equitably.

Definition 1.43. Fix a stable matching µ 6=µ⊥ and define the function
next : W → F ∪ {�} as follows: for a worker w, find its most preferred firm,
say f , such that f prefers w to µ(f ). If such a firm exists then next(w) = f and
otherwise next(w) = �. A rotation ρ with respect to µ is an ordered sequence
of pairs ρ = {(w0, f0), (w1, f1), . . . , (wr−1, fr−1)} such that, for 0 ≤ i ≤ r− 1:

• (wi, fi) ∈ µ, and
• next(wi) = f(i+1) (modr)

By applying rotation ρ to µ we mean switching the matching of w0, . . . , wr−2, wr−1
to f1, . . . , fr−1, f0, respectively, and leaving the rest of µ unchanged. Clearly this
results in a perfect matching; let us denote it by µ′. We will denote this operation
as µ′ = ρ(µ). For example, in Figure 1.14, the rotation {(1, 1), (2, 2), (3, 4), (4, 5)}
applied to µ yields µ′. Observe that the matched edge (5, 3) is not in the rotation and
remains unchanged in going from µ to µ′.

Figure 1.14

Lemma 1.44. Let ρ be a rotation with respect to µ and let µ′ = ρ(µ). Then:

1. Workers get weakly worse matches and firms get weakly better matches in
going from µ to µ′.

2. µ′ is a stable matching.
3. µ > ρ(µ).

Figure 1.15

Proof 1. Suppose that next(w) = f ; clearly µ(f ) 6= w. Let µ(w) = f ′ and
µ(f ) = w′. By the definition of the operator next, w �f w′. Observe that f �w f ′

is not possible, since then (w, f ) would be a blocking pair for µ. Therefore
f ′ �w f . Hence, after the rotation, the matching of f is improved and that of w
becomes worse. Clearly, this holds for all workers and firms in the rotation; see
Figure 1.15.
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2. Assume that µ′ has a blocking pair, namely (w, f ), where µ′(w) = f ′ and
µ′(f ) = w′. From this blocking pair, we can infer that w �f w′ and f �w f ′.
Now there are two cases:

Case (a). µ(w) = f ′. Assume that µ(f ) = w′′; by part (1) of this lemma we
have w′ �f w′′. Since w �f w′, we get that w �f w′′, hence showing that (w, f )
is a blocking pair for µ and leading to a contradiction; see Figure 1.16.

Figure 1.16 Illustration of proof of Case (a) in Lemma 1.44.

Case (b). µ(w) 6= f ′. If µ(f ) 6= w′ then let µ(f ) = w′′. Since f improves
its match after the rotation, we have w′ �f w′′ and, and since w �f w′′, we
get that w �f w′′. Therefore, whether or not µ(f ) = w′, we have that w �
µ(f ).Clearly, next(w) = f ′. Since f prefers w to its match in µ and f 6= next(w),
we get that f ′ �w f , hence contradicting the above-stated assertion that
f �w f ′; see Figure 1.17.

3. This follows from the previous two statements. Assume that next(w) 6= ⊥,
i.e., next(w) is a firm. We note that this does not guarantee that w will be in a
rotation; see Exercise 1.10. For that to happen, the “cycle must close”, i.e., for
some r, next(wr−1) = f0.

Figure 1.17 Illustration of the proof of Case (b) in Lemma 1.44.

The next lemma will justify Figure 1.13 via Corollary 1.46.

Lemma 1.45. Let µ > µ′. Then there exists a rotation ρ with respect to µ such
that µ > ρ(µ) ≥ µ′.

Proof Define a map g : W →W ∪ {�} as follows:

g(w) =

{
µ(next(w)) if next(w) ∈ F ,

� otherwise.

Let W ′ = {w ∈ W | µ(w) � µ′(w)}. We will prove that the range of g when
restricted to W ′ is W ′ and, for w ∈W ′, g(w) 6= w.
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Let w ∈ W ′. We will first prove that next(w) ∈ F , hence showing that
g(w) ∈W . Let µ′(w) = f ′ and µ(f ′) = w′′. Since µ > µ′, µ is weakly bet-
ter than µ′ for workers. Therefore f ′ �w′′ µ

′(w′′). If w′′ �f ′ w then (w′′, f ′)
will be a blocking pair for µ′, leading to a contradiction. Therefore, w �f ′ w′′.
Hence there is a firm that likes w better than its own match under µ. Among
such firms, let f be one that w prefers most. Then next(w) = f and g(w) =
µ(f ) = w′, say.

Next, we will show that µ(w′) � µ′(w′), hence obtaining w′ ∈ W ′; see
Figure 1.18. Suppose that this is not the case. Since µ > µ′ and µ is not strictly
better than µ′ for w′, we must have that µ′(w′) = µ(w′) = f . Let µ′(w) = f ′.
Since µ > µ′, we have that w �f ′ µ(f ′). Therefore f ′ is a firm that prefers w to
its match under µ. However, since f is the most preferred such firm for worker
w, we get f �w f ′. Furthermore, since µ(f ) = w′, w �f w′. Therefore (w, f ) is a
blocking pair for µ′, leading to a contradiction. Therefore, µ(w′) � µ′(w′) and
hence w′ ∈W ′. Clearly w′ is distinct from w, hence giving g(w) 6= w.

Finally, we will use the map g : W ′ → W ′ to complete the proof. Start
with any worker w ∈ W ′ and repeatedly apply g until a worker is encoun-
tered for a second time. This gives us a “cycle”, i.e., a sequence of workers
w0, w1, . . . , wr−1 such that, for 0 ≤ i ≤ r − 1, g(wi) = wi+1(mod r). Then
ρ = {(w0, f0), (w1, f1), . . . , (wr−1, fr−1)} is a rotation with respect to µ, where
fi = µ(wi) for 0 ≤ i ≤ r− 1. Clearly, µ > ρ(µ) ≥ µ′.

Figure 1.18 Illustration of why w′ ∈ W′ in the proof of Lemma 1.45.

Corollary 1.46. The following hold:

1. Let µ be a stable matching such that µ 6= µ⊥. Then there is a rotation ρ with
respect to µ.

2. Start with µ> as the “current matching” and keep applying an arbitrary
rotation with respect to the current matching. This process will terminate
at µ⊥.

Let Gµ = (Sµ, Eµ) be a directed graph with vertex set Sµ and (µ,µ′) ∈ Eµ if and
only if there is a rotation ρ with respect to µ such that ρ(µ) = µ′. Then any path
from µ> to µ⊥ is obtained by the process given in Corollary 1.46.

Definition 1.47. Let ρ be a rotation with respect to a stable matching µ and let
ρ(µ) = µ′. Then the inverse of the map ρ is denoted by ρ−1. We will call ρ−1

the inverse rotation with respect to the stable matchingµ′. Clearly, ρ−1(µ′) = µ.
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Inverse rotations help traverse paths from µ⊥ to µ> in Gµ, and a combination of
rotations and inverse rotations suffices to find a path from any one matching to any
other matching in Gµ.

1.4.1.2 Rotations Correspond to Join-Irreducible Stable Matchings

Definition 1.48. A stable matching µ is said to be join-irreducible if µ 6= µ⊥
and µ is not the join of any two stable matchings. Let µ and µ′ be two stable
matchings. We will say that µ′ is the direct successor of µ if µ > µ′ and there
is no stable matching µ′′ such that µ > µ′′ > µ′; if so, we will denote this by
µB µ′.

Let µ be a join-irreducible stable matching. By Lemma 1.44 and Corollary 1.46
there is a unique rotation ρ with respect to µ. Let ρ(µ) = µ′. Clearly µ′ is the unique
stable matching such that µB µ′.

Lemma 1.49. Let ρ1 and ρ2 be two distinct rotations with respect to the stable
matching µ, and let µ1 = ρ1(µ) and µ2 = ρ2(µ). Then the following hold:

1. ρ1 and ρ2 cannot contain the same worker–firm pair.
2. ρ1 and ρ2 are rotations with respect to µ2 and µ1, respectively.

Proof 1. Clearly, µ > µ1 and µ > µ2. Consider the set W ′ and the map
g : W ′ → W ′ defined in the proof of Lemma 1.45. It is easy to see that ρ1 and
ρ2 correspond to two disjoint “cycles” in this map, hence giving the lemma.

2. Since ρ1 and ρ2 correspond to disjoint “cycles”, applying one results in a
matching to which the other can be applied.

Notation 1.50. We will denote the set of all rotations used in a lattice Lµ by
Rµ, and the set of join-irreducible stable matchings of Lµ by Jµ.

Lemma 1.51. Let ρ ∈ Rµ. Then there is a join-irreducible stable matching, say
µ, such that ρ is the unique rotation with respect to µ.

Proof Let Sρ = {ν ∈ Sµ | ρ is a rotation with respect to ν}. Let µ be the meet
of all matchings in Sρ . Clearly µ ∈ Sρ and hence ρ is a rotation with respect
to µ. Suppose that µ is not join-irreducible and let ρ′ be another rotation with
respect to µ. By the second part of Lemma 1.49, ρ is a rotation with respect to
ρ′(µ), therefore ρ′(µ) ∈ Sρ . This implies that ρ′(µ) ≥ µ. But µ > ρ′(µ), giving
a contradiction. Uniqueness follows from the fact thatµ is join-irreducible.

Lemma 1.52. Two rotations ρ and ρ′ cannot contain the same worker–firm pair.

Proof Suppose that rotations ρ and ρ′ do both contain the same worker–firm
pair, say (w, f ). By Lemma 1.51, there are two join-irreducible stable matchings
µ and ν such that ρ and ρ′ are rotations with respect to these matchings. Let
µB µ′ and ν B ν′.

Consider the matchingµ∨ν. Since (w, f ) ∈ µ and (w, f ) ∈ ν, we have (w, f ) ∈
(µ∨ν). On the other hand, since (w, f ) is in rotations ρ and ρ′, w is matched to a
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worse firm than f in µ′ and in ν′. Therefore w is matched to a worse firm than f
in µ′∨ν′. But since µ and ν are join-irreducible, (µ′∨ν′) = (µ∨ν), leading to a
contradiction. Hence ρ and ρ′ cannot contain the same worker–firm pair.

Lemmas 1.51 and 1.52, together with the facts that there are n2 worker–firm pairs
and each rotation has at least two worker–firm pairs, give:

Corollary 1.53. The following hold:

1. There is a bijection f : Jµ → Rµ such that if f (µ) = ρ then ρ is the unique
rotation with respect to µ.

2. |Rµ| ≤ n2/2.

1.4.1.3 Birkhoff’s Representation Theorem

Finite distributive lattices arise in diverse settings; Definition 1.54 below gives per-
haps the simplest of these. A consequence of Birkhoff’s representation theorem is
that each FDL is isomorphic to a canonical FDL. In this section we will prove this
for stable matching lattices; the general statement follows along similar lines.

Definition 1.54. Let S be a finite set and F be a family of subsets of S which
is closed under union and intersection. Denote the partial order (F ,⊇) by LF .
Then LF is an FDL with meet and join given by

A ∧ B = A ∩ B and A ∨ B = A ∪ B,

for any two sets A, B ∈ F ; LF will be called a canonical finite distributive lattice.

Definition 1.55. The projection of Lµ onto Jµ is called a join-irreducible par-
tial order and is denoted by πµ = (Jµ,≥). We will say that S ⊆ Jµ is a lower
set of πµ if it satisfies the following: if µ ∈ S and µ > µ′ then µ′ ∈ S.

Let Fπ be the family of subsets of Jµ consisting of all lower sets of πµ. It is easy to
see that Fπ is closed under union and intersection, and therefore that Lπ = (Fµ,⊇)
is a canonical FDL.

Theorem 1.56. The lattice Lµ is isomorphic to Lπ , i.e., there is a bijection
fµ : Sµ→ Fπ such that µ � µ′ if and only if fµ(µ) ⊇ fµ(µ′).

Proof Define a function fµ : Sµ → Fπ as follows. For µ ∈ Sµ, f (µ) is the
set of all join-irreducible stable matchings ν such that µ � ν; let this set be S.
Then S is a lower set of πµ since if µ1,µ2 ∈ Jµ, with µ1 ∈ S and µ1 � µ2
then µ � µ2, therefore giving that µ2 ∈ S. Hence S ∈ Fπ . Next define a
function g : Fπ → Sµ as follows. For a lower set S of πµ, g(S) is the join of all
join-irreducibles ν ∈ S.

We first show that the compositions g • f and f • g both give the identity
function, thereby showing that f and g are both bijections. Then fµ = f is the
required bijection.
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Let µ ∈ Sµ and let f (µ) = S. For the first composition, we need to
show that g(S) = µ. There exist j1, . . . , jk, join-irreducibles of Lµ, such that
µ = (j1 ∨ · · · ∨ jk).4 Clearly, j1, . . . , jk ∈ S and therefore g(S) � (j1 ∨ . . . ∨ jk).
Furthermore, µ � g(S). Therefore, µ � g(S) � (j1 ∨ . . . ∨ jk) = µ. Hence
g(S) = µ.

Let S be a lower set of πµ, let j1, . . . , jk be the join-irreducible stable match-
ings in S, and let µ be g(S), i.e., the join of these join-irreducibles. Let j be a
join-irreducible of Lµ such that µ � j. For the second composition, we need to
show that j ∈ S, since then f (µ) = S. Now,

j ∧ µ = j ∧ (j1 ∨ · · · ∨ jk) = (j ∧ j1) ∨ · · · ∨ (j ∧ jk),

where the second equality follows from the distributive property. Since j is a
join-irreducible, it cannot be the join of two or more elements. Therefore j= j∧
ji for some i. But then ji � j, therefore giving j ∈ S.

Finally, the definitions of f and g give that µ � µ′ if and only if fµ(µ) ⊇
fµ(µ′).

Observe that an instance may have exponentially many, in n, stable matchings,
hence leading to an exponentially large lattice. On the other hand, by Corollary 1.53
it follows that πµ, which encodes this lattice, has a polynomial sized description. The
precise way in which πµ encodes Lµ is clarified in Exercise 1.11.

Corollary 1.57. There is a succinct description of the stable matching lattice.

1.4.2 The Lattice for Settings II and III

The entire development on the lattice of stable matchings for Setting I, presented in
Section 1.4.1, can be easily ported to Setting II with the help of the rural hospital
theorem, Theorem 1.23, which proves that the sets of workers and firms that have
been matched are the same in all stable matchings.

Let these sets be W ′ ⊆ W and F ′ ⊆ F . Let w ∈ W ′. Clearly, it suffices to restrict
the preference list of w to F ′ only. If this list is not complete over F ′, simply add
the missing firms of F ′ at the end; since w is never matched to these firms, their
order does not matter. Applying this process to each worker and each firm yields an
instance of stable matching over W ′ and F ′ which is in Setting I. The lattice for this
instance is also the lattice for the original instance in Setting II.

The lattice for Setting III requires a reduction from Setting III to Setting II,
given in Section 1.2.3, and the Rural Hospital theorem for Setting III, given in
Theorem 1.28. The latter proves that if a firm is not matched to capacity in a stable
matching then it is matched to the same set of workers in all stable matchings. How-
ever, a firm that is matched to capacity may be matched to different sets of workers
in different stable matchings.

4 Observe that every µ ∈ Sµ can be written as the join of a set of join-irreducible stable matching as follows:
If µ is a join-irreducible stable matchings, there is nothing to prove. Otherwise, it is the join of two or more
matchings. Continue the process on each of those matchings.
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Assume that firm f is matched to capacity inµ1 andµ2. A new question that arises
is the following: which of these two matchings does f prefer? Observe that questions
of this sort have natural answers for workers and firms in the previous settings (and
for workers in Setting III) and that these answers were a key to formulating the lat-
tice structure. The new difficulty is the following: if the two sets µ1(f ) and µ2(f )
are interleaved in complicated ways, when viewed with respect to the preference
order of f we will have no grounds for declaring one matching better than the other.
Lemma 1.60 shows that if µ1 and µ2 are stable matchings then such complications
do not arise.

Definition 1.58. Fix a firm f . For W ′ ⊆ W , define min(W ′) to be the worker
whom f prefers the least among the workers in W ′. For W1 ⊆W and W2 ⊆W ,
we will say that f prefers W1 to W2 if f prefers every worker in W1 to every
worker in W2 and we will denote this as W1 �f W2. Thus

W1 = {w ∈W | µ1(w) �w µ2(w)} and W2 = {w ∈W | µ2(w) �w µ1(w)}.

Also let

F1 = {f ∈ F | min(µ2(f )− µ1(f ))�f min(µ1(f )− µ2(f ))} and

F2 = {f ∈ F | min(µ1(f )− µ2(f ))�f min(µ2(f )− µ1(f ))}.

Lemma 1.59. Let (w, f ) ∈ (µ1 − µ2). Then

1. w ∈W1 =⇒ f ∈ F1
2. w ∈W2 =⇒ f ∈ F2.

Lemma 1.60. Let µ1 and µ2 be two stable matchings and f be a firm that
is matched to capacity in both matchings. Then one of these possibilities must
hold:

1. µ1(f )− µ2(f )�f µ2(f ) (see Figure 1.19) or
2. µ2(f )− µ1(f )�f µ1(f ).

Figure 1.19 Illustration of the first possibility in Lemma 1.60. The horizontal line indicates the
preference list of f, in decreasing order from left to right. The markings below the line indicate
workers in set µ1(f) and the dashed markings above the line indicate workers in µ2(f).

Definition 1.61. Let µ1 and µ2 be two stable matchings and f be a firm that
is matched to capacity in both matchings. Then f prefers µ1 to µ2 if the first
possibility in Lemma 1.60 holds and it prefers µ2 to µ1 otherwise. We will
denote these as µ1 �f µ2 and µ2 �f µ1, respectively.
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Using Definition 1.61, whose validity is based on Lemma 1.60, we obtain a partial
order on the set of stable matchings for Setting III. Using the reduction stated above
and facts from Section 1.4.1, this partially ordered set forms an FLD.

1.5 Linear Programming Formulation

The stable matching problem in Setting I admits a linear programming formulation
in which the polyhedron defined by the constraints has integer optimal vertices, i.e.,
the vertices of this polyhedron are stable matchings. This yields an alternative way
of computing a stable matching in polynomial time using well-known ways of solv-
ing linear programs (LPs). Linear programs for Settings II and III follow using the
rural hospital theorem 1.23 and the reduction from Setting III to Setting II given in
Section 1.2.3, respectively.

1.5.1 LP for Setting I

A sufficient condition for a worker–firm pair, (w, f ) to not form a blocking pair with
respect to a matching µ is that if w is matched to firm f ′ such that f �w f ′ then f
should be matched to a worker w′ such that w′ �f w. The fractional version of this
condition appears in the third constraint of LP (1.1); see also Exercise 1.15. The first
two constraints ensure that each worker and each firm are fully matched. Observe
that the objective function in the LP given below is simply 0:

max 0

s.t.
∑

w

xwf = 1 ∀w ∈W ,∑
f

xwf = 1 ∀f ∈ F ,

∑
f�wf ′

xwf ′ −
∑

w′�f w

xw′f ≤ 0 ∀w ∈W , ∀f ∈ F ,

xwf ≥ 0 ∀w ∈W , ∀f ∈ F . (1.1)

By the first two constraints, every integral feasible solution to LP (1.1) is a per-
fect matching on W ∪ F and, by the third constraint, it has no blocking pairs. It is
therefore a stable matching.

Taking αw, βf , and γwf to be the dual variables for the first, second, and third
constraints of LP (1.1), respectively, we obtain the dual LP:

min
∑

w∈W

αw +
∑
f∈F

βf

s.t. αw + βf +
∑

f ′�wf

γwf ′ +
∑

w�f w′
γw′f ≥ 1 ∀w ∈W , ∀f ∈ F ,

γwf ≥ 0 ∀w ∈W , ∀f ∈ F . (1.2)
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Lemma 1.62. If x is a feasible solution to LP (1.1) then α = 0, β = 0, γ = x
is an optimal solution to LP (1.2). Furthermore, if xwf > 0 then∑

f�wf ′
xwf ′ =

∑
w′�f w

xw′f .

Proof The feasibility of (α,β, γ ) follows from the feasibility of x. The objec-
tive function value of this dual solution is 0, i.e., the same as that of the primal.
Therefore, this solution is also optimal. For the solution since γ = x is an opti-
mal solution, if xwf > 0 then γwf > 0. Now the desired equality follows by
applying the complementary slackness condition to the third constraint of LP
(1.1).

Next, we will work towards proving Theorem 1.65 and Corollary 1.66 below. Let x
be a feasible solution to LP (1.1). Corresponding to x, we will define 2n unit intervals,
Iw and If , one corresponding to each worker w and one corresponding to each firm
f , as follows. For each worker w, we have

∑
f∈F xwf = 1. Order the firms according

to w’s preference list; for simplicity, assume it is f1 �w f2 �w · · · �w fn. Parti-
tion Iw into n ordered subintervals such that the ith interval has length xwfi ; if this
quantity is zero, the length of the interval is also zero. Next, for each firm f , we
have

∑
w xwf = 1. Now, order the workers according to f ’s preference list but in

reverse order; assume it is w1 ≺f w2 ≺w · · · ≺w wn, and partition If into n ordered
subintervals such that the ith interval has length xwif .

Pick θ with uniform probability in the interval [0, 1] and, for each worker w, deter-
mine which subinterval of the interval Iw contains θ . The probability that any of
these n subintervals is of zero length is zero, so we may assume that this event does
not occur. Define a perfect matchingµθ as follows: if the subinterval of Iw containing
θ corresponds to firm f , then define µθ (w) = f .

Lemma 1.63. If µθ (w) = f then the subinterval of If containing θ corresponds
to worker w.

Proof Assume that the subinterval containing θ in Iw is [a, b], where a, b ∈
[0, 1]; since it corresponding to f , b−a = xwf . Since xwf > 0, by the second part
of Lemma 1.62 the subinterval corresponding to w in If is also [a, b]. Clearly, it
contains θ .

Lemma 1.64. For each θ ∈ [0, 1], the perfect matching µθ is stable.

Proof Assume that µθ (w) 6= f . Let µθ (w) = f ′ and µθ (f ) = w′, where f �w f ′.
We will show that w′ �f w, thereby proving that (w, f ) is not a blocking pair.
Extending this conclusion to all worker–firm pairs that are not matched by µθ ,
we obtain that µθ is a stable matching.

Since µθ (w) = f ′, θ lies in the subinterval corresponding to f ′ in Iw. In
Figure 1.20, this subinterval is marked as [a, b]. The number θ also lies in the
subinterval corresponding to w′ in If ; this subinterval is marked as [c, d] in
Figure 1.20. Let pf and pw denote the larger endpoints of the subintervals con-
taining f and w in Iw and If , respectively. By the third constraint of LP (1.1),
the subinterval [pw, 1] of If is at least as large as the subinterval [pf , 1] of Iw.
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Figure 1.20

Since f �w f ′, θ lies in [pf , 1] and therefore it also lies in [pw, 1]. Therefore,
w′ �f w and the lemma follows.

Theorem 1.65. Every feasible solution to LP (1.1) is a convex combination of
stable matchings.

Proof The feasible solution x of LP (1.1) has at most O(n2) positive variables
xwf and therefore there are O(n2) non-empty subintervals corresponding to
these variables in the intervals Iw and If . Hence [0, 1] can be partitioned into
at most O(n2) non-empty subintervals, say I1, . . . , Ik, in such a way that none
of these subintervals straddles the subintervals corresponding to the positive
variables. For 1 ≤ i ≤ k, each θ ∈ Ii corresponds to the same stable matching
µi = µθ . Let the length of Ii be αi; clearly

∑k
i=1 αi = 1. Then we have

x =
k∑

i=1

αiµi.

The theorem follows.

Corollary 1.66. The polyhedron defined by the constraints of LP (1.1) has
integral optimal vertices; these are stable matchings.

1.5.2 LPs for Settings II and III

For Setting II, by the rural hospital theorem 1.23, the sets of workers and firms
matched in all stable matchings are the same. Let these sets be W ′ and F ′, respec-
tively. Clearly, it suffices to work with the primal LP (1.1) restricted to these
sets only.

For Setting III, we will use the reduction from Setting III to Setting II given in
Section 1.2.3.

1.6 Exercises

Exercise 1.1 In Setting I, let M be a perfect matching which matches each worker
w ∈ W to a firm f ∈ F such that f ∈ R(w), i.e., f lies in the realm of possibilities
of w. Prove or disprove that M is a stable matching.
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Exercise 1.2 In Setting I, we will say that a perfect matching µ is Pareto optimal if
there is no perfect matching µ′ 6= µ under which each agent is weakly better off,
i.e., for each agent a ∈ W ∪ F , µ(a) �a µ

′(a). Prove that every stable matching is
Pareto optimal. Is the converse true? Give a proof or a counterexample.

Exercise 1.3 Define a preferred couple in Setting I to be a worker–firm pair such that
each is the most preferred in the other’s preference list.
(a) Prove that if an instance has a preferred couple (w, f ) then, in any stable

matching, w and f must be matched to each other.
(b) Prove that if in an instance with n workers and n firms there are n disjoint

preferred couples then there is a unique stable matching.
(c) Prove that the converse of the previous situation does not hold, i.e., there is

an instance which does not have n disjoint preferred couples yet has a unique
stable marriage.

Exercise 1.4 Construct an instance of Setting I that has exponentially many stable
matchings.

Exercise 1.5 Design a polynomial time algorithm which, given an instance of
Setting I, finds an unstable perfect matching, i.e., one having a blocking pair.

Exercise 1.6 In Setting II, let us add a second termination condition to the algo-
rithm, namely terminate when every firm receives at least one proposal. If this
condition holds, match every firm to its best proposal, leaving the rest of the
workers unmatched. Give a counterexample to show that this matching is not
stable.

Exercise 1.7 The following exercises are on the issue of incentive compatibility.
(a) Find an instance (W , F ,�) in which some worker is matched to the last firm

with respect to its preference list in the worker-optimal stable matching. How
many such workers can there be in a instance?

(b) For Setting I, find an instance in which a firm can improve its match in the
worker-optimal stable matching by misreporting its preference list.

(c) For Setting I, find an instance in which two workers can collude, i.e., both
work together, in such a way that one of them does better and the other does
no worse than in the worker-optimal stable matching.

Exercise 1.8 Use the fact that the operations of min and max on two-element sets
satisfy the distributive property to prove that the operations of meet and join for
the lattice of stable matching also satisfy this property.

Exercise 1.9 [2] Prove that lattices arising from instances of stable matching form a
complete set of finite distributive lattices, i.e., every FDL is isomorphic to some
stable matching lattice.

Exercise 1.10 The following exercises are on rotations.
(a) Give an example of a stable matching µ such that next(w) 6= ⊥ and yet w is

not in a rotation with respect to µ.
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(b) Let ρ be a rotation with respect to the stable matching µ. Obtain ρ′ by per-
muting the sequence of pairs in ρ. Show that if the permutation is a cyclic
shift then ρ′(µ) = ρ(µ) but otherwise the matching ρ′(µ) is not stable.

(c) Let ρ be a rotation with respect to the stable matching µ and let ρ(µ) = µ′.
Prove that µ′ is a direct successor of µ, i.e., µB µ′.

(d) Show that any path in Gµ from µ> to µ⊥ involves applying each rotation in
Rµ exactly once. Use this fact to give a polynomial time algorithm for finding
all rotations in Rµ.

(e) Give a polynomial time algorithm for the following problem: given a rotation
ρ ∈ Rµ, find the join-irreducible matching to which it corresponds.

Exercise 1.11 The following exercises are on Birkhoff’s theorem.
(a) Give a polynomial time algorithm for computing the succinct description of

lattice Lµ promised in Corollary 1.53, i.e., πµ.
(b) Let S be a lower set of πµ and let Sρ be the set of rotations corresponding

to the join-irreducibles in S. Let τ be any topological sort of the rotations in
Sρ that is consistent with the partial order πµ. Show that, if starting with the
matching µ⊥, the inverses of the rotations in Sρ are applied in the order given
by τ then the matching obtained in Lµ will be f−1

µ (S). Use this fact to show
that f−1

µ (S) can be computed in polynomial time for any lower set S of πµ.

Exercise 1.12 For any positive integer n, let Sn denote the set of divisors of n. Define
a partial order πn = (Sn,�) as follows: for a, b ∈ Sn, a � b if b|a. Prove that
πn is an FDL with the meet and join of two elements a, b ∈ Sn being the gcd
and lcm of a and b, respectively. Figure 1.21 shows the lattice for n = 60. Give a
characterization of the join-irreducible matchings of π60 and find the projection
of π60 onto the join-irreducible matchings of this lattice. Do the set of lattices
{πn | n ∈ Z+} form a complete set of FDLs, as defined in Exercise 1.9? Prove or
disprove your answer.

Figure 1.21 The lattice of divisors of 60.

Exercise 1.13 [6] For a stable matching µ in Setting I, define its value as follows.
Assume µ(w) = f , and that f is the jth firm on w’s preference list and w is the kth
worker on f ’s list; if so, define the value of the match (w, f ) to be k+ j. Define the
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value of µ to be the sum of the values of all matches in µ. Define an equitable sta-
ble matching to be one that minimizes the value. Give a polynomial time algorithm
for finding such a matching.

Hint: Use the algorithms developed in Exercise 1.11. Also note that the prob-
lem of finding a minimum-weight lower set of πµ is solvable in polynomial time,
assuming that integer weights (positive, negative, or zero) are assigned to the ele-
ments of Jµ. The weight of a lower set S is defined to be the sum of weights of
the elements in S.

Exercise 1.14 Prove Lemma 1.59 and use it to prove Lemma 1.60.
Hint: For the first part of Lemma 1.59, use a blocking pair argument, and, for the
second part, first prove that

|W1| + |W2| =
∑
f∈F1

n1(f )+
∑
f∈F2

n2(f ),

where n1(f ) = |µ1(f )− µ2(f )| and n2(f ) = |µ2(f )− µ1(f )|.

Exercise 1.15 The LP (1.1) for the stable matching problem was derived from a suf-
ficient condition, given in Section 1.5.1, which ensures that a worker–firm pair
(w, f ) does not form a blocking pair with respect to a matching µ. Another suf-
ficient condition is that if f is matched to worker w′ in such a way that w �f w′

then w is matched to a firm f ′ such that f ′ �w f . The fractional version of this
condition is

∀w ∈W , ∀f ∈ F :
∑

w�f w′
xw′f −

∑
f ′�wf

xwf ′≤ 0.

Show that this condition holds for any feasible solution x to LP (1.1).

Exercise 1.16 [13] Suppose that an instance of stable matching in Setting I has an
odd number, k, of stable matchings. For each worker w, order its k matches,
with multiplicity, according to its preference list and do the same for each firm
f . Match w to the median element in its list. Let us call this the median match-
ing. This exercise eventually helps to show that not only is this matching perfect
but it is also stable. Moreover, it matches each firm to the median element in its
list.

First, let µ1, . . . ,µl be any l stable matchings, not necessarily distinct, for an
instance of stable matching in Setting I. For each worker–firm pair (w, f ) let
n(w, f ) be the number of these matchings in which w is matched to f and let
xwf = (1/l)n(w, f ).

Show that x is a feasible solution to LP (1.1), i.e., it is a fractional stable
matching. For any k such that 1 ≤ k ≤ l, let θ = (k/l) − ε, where ε > 0 is
smaller than 1/l. Consider the stable matching µθ as defined by the procedure
given in Section 1.5.1 for writing a fractional stable matching as a convex com-
bination of stable matchings. Show that matching µθ matches each worker w to
the kth firm in the ordered list of the l firms, not necessarily distinct, in which
w is matched to under µ1, . . . ,µl. Furthermore, show that µθ matches each firm
f to the (l − k + 1)th worker in the ordered list of the l workers to which f is
matched.

Using this fact, prove the assertions made above about median matching.
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1.7 Bibliographic Notes

The seminal paper [5] introduced the stable matching problem and gave the deferred
acceptance algorithm. For basic books on this problem and related topics see [4],
[12], [8], and [9].

Theorem 1.32, proving that the worker-proposing DA algorithm is DSIC for
workers, is due to Dubins and Freedman [3] (see also [10]). This ground-breaking
result was instrumental in opening up the DA algorithm to highly consequential
applications, such as school choice; for a discussion of the latter, see Chapter 8. The-
orem 1.35, showing that there is no DSIC mechanism for firms in Setting III, is due
to Roth [10].

John Conway proved that the set of stable matchings of an instance forms a finite
distributive lattice; see [8]. The notion of rotation is due to Irving and Leather [6]
and Theorem 1.56 is due to Birkhoff [1]. The LP formulation for stable matching
was given by Vande Vate [14]; the proof given in Section 1.5.1 is due to Teo and
Sethuraman [13].
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