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The problem of axisymmetric supersonic laminar flow separation over a compression
corner has not been considered within the framework of triple-deck theory for
several decades, despite significant advances in both theoretical methods and numerical
techniques. In this study, we revisit the problem considered by Gittler & Kluwick (J. Fluid
Mech., vol. 179, 1987, pp. 469-487), using the numerical method of Ruban (Zhurnal
Vychislitel’noi Matematiki i Matematicheskoi Fiziki, vol. 18, issue 5, 1978, pp. 1253—-1265)
and Cassel et al. (J. Fluid Mech., vol. 300, 1995, pp. 265-285), termed the Ruban—Cassel
method (RCM). The solution shows good agreement with the results of Gittler & Kluwick
(J. Fluid Mech., vol. 179, 1987, pp. 469—-487) for a scale external radius of 1 and scale
angles from 1 to 6. However, for scale angles above 6.8, a wave packet appears. This
wave packet is similar to that reported by Cassel et al. (J. Fluid Mech., vol. 300, 1995,
pp. 265-285) for two-dimensional supersonic flow. As the external scale radius increases
(from 1 to 10), the axisymmetric solution converges towards the two-dimensional solution
for equivalent scale angle values. For a scale external radius of 10, the wave packet appears
at a scale angle of 3.8, compared with the value of 3.9 by Cassel et al. (J. Fluid Mech., vol.
300, 1995, pp. 265-285). Inspection of the velocity profiles reveals that inflection points,
while ubiquitous in shear flow, do not seem to play a relevant role in the appearance of the
wave packet for the axisymmetric flow. Axisymmetric effects become more important as
the scale external radius decreases below 0.5. A larger scale angle is necessary to produce
a flow structure equivalent to that of the two-dimensional case. For scale external radius
0.1, the pressure gradient is substantially diminished and the solution is devoid of a second
shear-stress minimum.
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1. Introduction

Axisymmetric configurations are frequently employed in supersonic aerodynamics to
eliminate three-dimensional and highly nonlinear effects that complicate the interpretation
of experimental and theoretical results. Early experiments concerning Mach-5.3 flow
over a hollow cylinder/flare by Ginoux (1971) observed spanwise variations in skin
friction in the reattachment region. Similarly, Benay et al. (2006) considered Mach-5
flow over a hollow cylinder/flare experimentally. Their results also revealed periodic but
steady streamwise streaks in the reattachment region. Navier—Stokes simulations showed
that experimental heat-flux values where 2.5 times larger than calculated laminar ones,
therefore indicating a transitional shear layer. More recently, experiments were carried
out by Lugrin et al. (2022), again at Mach 5. They also reported streamwise streaks near
reattachment, together with oblique modes travelling inside the shear layer.

Modern numerical research has aimed at explaining the origin of these streaks through
high-fidelity simulations and stability calculations. The three-dimensional simulations
of Brown et al. (2009) showed that unforced steady-state axisymmetric flow becomes
unsteady for Reynolds numbers larger than a critical value. Lugrin et al. (2021) performed
high-fidelity simulations of a hollow cylinder/flare at Mach 5 with random forcing and
showed that oblique first modes were the cause of streaks at reattachment. Li & Hao (2023)
carried out both simulations and global stability analysis for supersonic flow over a hollow
cylinder/flare at Mach number 2.25. Their former global stability criterion formulated for
two-dimensional flow (Hao er al. 2021) was extended to the axisymmetric case.

This study follows our earlier paper (Exposito, Gai & Neely 2021) of the analysis of
supersonic boundary layer separation over a compression corner. The boundary layer
theory is one of the most powerful predictive frameworks with which to extract meaningful
information from complex flow phenomena. The modern version of the boundary layer
theory, namely ‘interactive boundary layer theory’ or ‘triple-deck theory’, considers the
effect of the boundary layer growth on the inviscid, external flow. It was independently
developed by Stewartson & Williams (1969) and Neiland (1969). The boundary layer is
split into three ‘decks’, based on the similarity parameter ¢ = Re~ /8, where Re is the
characteristic Reynolds number. In the lower deck, of height 0(85), the flow is viscous
and incompressible; in the middle deck, of height 0(84), it is inviscid and rotational; and
in the top deck, of height O(e?), it is inviscid and irrotational. The relationship between
boundary layer growth and pressure is determined by the ‘interaction law’. Different
configurations and flow conditions can be studied by changing the interaction law. This
includes subsonic flow (Messiter 1970; Stewartson 1970), supersonic flow (Werle & Vatsa
1974; Rizzetta, Burggraf & Jenson 1978; Smith 1988; Smith & Khorrami 1991; Cassel,
Ruban & Walker 1995) and hypersonic flow with wall cooling (Brown, Stewartson &
Williams 1975; Kerimbekov, Ruban & Walker 1994).

The application of the triple-deck theory to axisymmetric, supersonic flow becomes
significantly simpler than its application to the general three-dimensional problem, due
to symmetry. The interaction law for axisymmetric, supersonic flow was proposed by
Kluwick, Gittler & Bodonyi (1984) based on the axisymmetric wave equation of Lighthill
(1945) and Ward (1948):

—%l/xwx_g da, 11
P="%"R] . <R>3§S’ (D

as expressed by Gittler & Kluwick (1987). Here, a(x, 1) is the net displacement function
of the boundary layer; R is the scale external radius of the axisymmetric body, which is
assumed to be significantly larger than the boundary layer height (§/R < 1); and W(y) is
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Figure 1. Triple-deck structure of the interaction region at an axisymmetric compression corner. Starred
quantities are physical variables.

the Ward function

wor= [ S (12)
=) B+ a '

where K and /; are Bessel functions, and A is the integration variable.

Figure 1 shows the triple-deck structure of the interaction region for an axisymmetric
compression corner. Historically, the development of the axisymmetric supersonic
triple-deck theory has closely followed that of the two-dimensional flow. Consider, for
example, the free-interaction problem. In this case, a pressure perturbation is added to
the Blasius boundary layer that develops over a flat plate. The evolution of the boundary
layer is studied by solving triple-deck equations. The solution for the two-dimensional case
was first obtained by Stewartson & Williams (1969), using a streamwise marching method.
When reversed flow was obtained as a consequence of separation, the numerical algorithm
was no longer suitable to solve this problem. The approximation of Reyhner & Fliigge-Lotz
(1968), which neglects the convective term in regions of reverse flow, was applied by
Williams (1975) to extend the solution downstream of separation. A constant pressure
plateau of 1.8 (in triple-deck scaling) was obtained downstream for the flat plate. The
axisymmetric compressive free-interaction problem was considered by Kluwick, Gittler &
Bodonyi (1985). In their study, the approximation of Reyhner & Fliigge-Lotz (1968) was
also employed. They found that for an infinite external radius of an axisymmetric body, the
pressure plateau was equivalent to that of the two-dimensional case. As the external radius
decreases, the pressure plateau also decreases and asymptotically reaches a constant value
(Kluwick et al. 1985).

The triple-deck theory was then employed to describe separated flow over a compression
ramp with a® > 0, where o™ is the geometric angle of the corner. For the two-dimensional
problem, supersonic flow over a compression corner was considered by Stewartson (1970)
using linearised theory, and by Ruban (1978) and Rizzetta et al. (1978) using finite
differences. Kluwick et al. (1984) considered both the linear and nonlinear version for
the axisymmetric case. Compared with the two-dimensional case, the asymptotic pressure
downstream of an axisymmetric compression corner of angle « is p ~ «R/x, where x
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is the streamwise coordinate and « is the scale angle. The pressure downstream of the
ramp asymptotically tends to 0 as a consequence of the expansion of the streamtube area
downstream of the corner, a phenomenon named ‘over-expansion’ (Gittler & Kluwick
1987). The shear-stress distribution was found to recover its flat plate value asymptotically
far downstream of the corner. As the external radius is reduced, both pressure and
shear-stress values at the corner decrease; and as the external radius is increased, pressure
and shear-stress tend towards constant values similar to the two-dimensional case. Using
the spectral method of Burggraf & Duck (1982), shear-stress and pressure distributions
were obtained for scale angles up to 5 for several values of external radius. Incipient
separation was found to occur at o & 3.39. In their subsequent paper (Gittler & Kluwick
1987), pressure and shear-stress distributions for scale angles up to 9 were obtained. They
solved the axisymmetric, supersonic triple-deck equations using both finite-differences
and spectral methods. Again, the approximation of Reyhner & Fliigge-Lotz (1968) was
used to eliminate the convective term. Secondary separation was not observed for scale
angles up to 9. To our knowledge, there has not been another study since of axisymmetric,
supersonic flow separation over a compression corner using triple-deck theory. Despite
significant advances both in fluid dynamic theory and computational power, important
flow phenomena such as secondary separation and unsteadiness in separated axisymmetric
supersonic flows have not been discussed within the framework of triple-deck theory to
date. Our aim was to extend and improve upon the results of Gittler & Kluwick (1987),
who used the steady form of the triple-deck equations. However, we unexpectedly found a
wave packet similar to that reported by Cassel ef al. (1995) for two-dimensional flow. The
present paper contains our analysis and discussion of this feature.

2. Governing equations

The unsteady triple-deck equations for supersonic flow over an axisymmetric compression
corner are the continuity and momentum equations for incompressible flow in the lower
deck:

du v

i oo, 2.1

P + % (2.1)
du  du  du p  u

ou ow w9 0w 22
o TtV T T a2 2.2

and the interaction law (1.1). All variables are scaled using triple-deck scalings, which are
given by Gittler & Kluwick (1987),

* \ —3/2 X — L*
x=C3BPMME — 138 (-}:) — . (2.3a)
T, e’L
T* -3/2 75 R*
_—5/83/4002 _ 11/8 [ Lw .
* *
_ —1/453=1/2/142 1/4P — P
p=C A2 2 — ) e e (2.3¢)
* &2 ot
T* -1/2 &
u=C 18 VM2 —1)1/8 (-W) ”* , (2.3d)
T eus,
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3/8 y=3/4 112 18 ( T Ty

v=C_C" / A~ / |MOO — ll_ / <é) %, (23@)
5/8 13/411s2 18 (T o2 g

a=COBPMME 1 (—W) —_— 2.3f)

> T, eSL*

-3/2

R=C3B8 4 Mm% —1)7/8 (T—;;) R—*. (2.39)

T, g3L*

Here, C is the Chapman constant, A the Blasius constant, M the Mach number, 77, the
wall temperature, 77 the free stream temperature, x* the longitudinal coordinate, L* the
flat-plate length, r* the radial coordinate, R* the external radius, f(x) the surface shape,
p* the pressure, p* the density, T* the temperature, u* the longitudinal velocity, v* the
radial velocity and a* the displacement thickness, with the asterisk indicating dimensional
quantities.

In our computations, the interaction law is expressed in terms of the total displacement
function, A(x, t) = a(x, t) + f(x). It is obtained from the boundary condition

u—y+A asy— oo. 2.4)
At the wall, the usual no-slip boundary conditions apply,
u=v=0, aty=0. (2.5
The boundary conditions upstream of the corner are equivalent to those of the
two-dimensional case,
u—y asx— —oo, (2.6a)
p— 0 asx— —oo. (2.6b)

Using the shear stress T = du/dy, the following boundary condition downstream of the
corner applies:

20RAi(0)

ry=1— 1 [m%-¢<-§)], 2.7)
341 (0) (§> X573

where Ai(z) is the Airy function and ¢ (z) is the digamma function (Kluwick et al. 1984).
For large values of x, this expression is equivalent to the boundary condition T — 1.

The following boundary condition applies downstream of the domain (Gittler &
Kluwick 1987):

R R «x R3
p—oal—4+2—=Ih—-4+0|— as x — o0; (2.8)
X xR x3

therefore, pressure decreases following a hyperbolic curve at the downstream end of the
domain.

3. Asymptotic limits of the interaction law

Before proceeding with nonlinear simulations, it is instructive to explore the behaviour
of the interaction in the limits of large (R >> 1) and small (R < 1) scale external radius.
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Figure 2. Ward function for values of y between 0 and 100.

The Ward function is a fast decaying function, as shown in figure 2. The largest values are
obtained for arguments y close to y = 0, while for y > 1, the function rapidly decreases
to zero. Considering y = (x — £)/R, there is an interval of values & for which the Ward
function is of order one, and much smaller than one outside of this interval. For example,
for £ =x, W(0) =0.5 =0(1), and for £ = x — 10R, W(10) = 0.01 < 1. We therefore
explore the interval £ € [x — RF*1 x], where k is a constant,

1 X x_g 1 x_Rk+l x_%_
E/OOW<R)_5§_R/OO W(R) e
1 [f x—£&
— w —d 3.1
+R/X_Rk—l ( R ) sg G-

It is assumed that the first term is negligible, whereas the second term can be simplified
by evaluating the Ward function at the midpoint, thereby integrating the derivative

x . k .
l/ . W(x 5) %dg W(R /2)/ da M[alx I

R J,._ R o0& Rk+1 8§ R
(3.2)
The interaction law (1.1) is then approximated as
da  W(RK)2)
p= ~ox + T/[alx — al,_pe+1]. (3.3)
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To further simply this expression, we consider the Taylor expansion of the Ward function
to order ny,

(- A)"l
. ni klk
W(R"/2) =~ 34
R/2) kz - / /1(K2+75212) (3.4)
as well as that of the term a|,_pe+1 to order no,
a k41 ) k+1 kz
al,pet = ale+ o x(—R )4 - ~al, + Z o R 3.5)
k=1
The approximation of the pressure is
(=
da 1| &~ Rbk oo T k2)
ox R\ =2 Jo AKT+ 2D = k
For a large radius R > 1, the two-dimensional interaction p = —da/dx must be
recovered. The largest exponent of R must obey the following relationship:
—14+mk+nk+1) <O0. (3.7)

If both expansions n; and ny are equal, it is found that the constant £ must be such
that k < —1/2 for the above relation to be valid. This is physically consistent, since for
k < 0,& = x — R tends towards x in the limit R — oo, which eliminates the integral from
the interaction law, resulting in the two-dimensional interaction law. For the specific case
k = —1, ignoring terms of order O(R™2) in the expansion of the displacement function
leads to the relation

da W(R'/2)
e\t TR

) + O(R™?), (3.8)
ox

which approaches the two-dimensional expression for R > 1.
For the case R < 1, the series (3.6) is convergent if the largest exponent obeys the
opposite relation,

—14+mk+mnk+1) >0. (3.9

Again, for the case of uniform expansions, it is easy to show that the relation is met for
any non-negative value of k. Selecting k = 0 and neglecting terms of order O(R?), we have

L _da (W2
ot (1w

) + O(R?). (3.10)
ox

This relation is consistent with numerical results shown in the following sections, which
indicate that a decrease in external radius leads to a more significant over-expansion effect,
therefore reducing the pressure gradient induced by the corner. Note that in the case where

R =W(1/2) = O(1), (3.10) does not hold.
1001 A54-7
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4. Numerical method

4.1. General formulation
The Ruban—Cassel method (RCM) employs the shear stress formulation of the triple-deck
equations. The momentum equation (2.1) is

at ot It 0%t

hihd - = 4.1
ot T TV T a2 @1
Using the stream function u = dv/dy, v = —dy/dx, the velocities are recovered from
the shear stress solution with
82
v =T 4.2)
9y?
The displacement function is expressed as
y
A(x,t) = lim (u —y) = lim / (r — D dy, 4.3)
y—>00 y—>00 Jq
and the boundary conditions are
T—>1 asx— Fo0. 4.4)
Using the following relationship:
0 0
P (4.5)
ax ay y=0

the interaction law (1.1) is written as

ot %A A 1o [F x—E\ [(0A df
a—yyzo—‘w+@+mf_ww( o) (- @)e o

Rewriting (4.6) as

W =1@ 4O 4 @ 4.7)
where each term is
K]
M = 8—t , 4.8)
y y=0
o _ _PA 49
T = _ﬁ’ (4.9)
S
t® = L (4.10)
1 x — A

f<4>=—i/ w5 (A Z Y g, @.11)

Rox J_« R 0&  d&

we can see that the terms (1 =t 4+ t® were already discretised by Ruban (1978)
and Cassel et al. (1995). Our discretisation is equivalent to theirs. The initial condition
corresponds to that of the lower part of a Blasius boundary layer, u = y. The solution
is advanced in time at a constant time step A¢, with wall-normal derivatives evaluated
implicitly. Streamwise and wall-normal velocities are evaluated at the former step via
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the streamfunction. The streamwise and wall-normal dimensions are divided into / — 1
and J — 1 elements of step sizes Ax and Ay. Each mesh node is indicated by the
subscripts i and j, which correspond to the streamwise (i =1, ..., /) and wall-normal
(j=1,...,J) dimensions, respectively. This formulation leads to a tridiagonal system of
equations, which is solved with a Thomas algorithm that provides values N; and M;. These
coefficients are then employed to obtain wall shear-stress values with the interaction law.
The reader is referred to the study of Cassel et al. (1995) for the exact expression of these
coefficients.

4.2. Axisymmetric interaction law

Regarding 7, we first apply the Leibniz rule

@w_L19 7 (x—g)(a_A_g)
T _Rax/_ooW r ) e a)®

_m %_g l * i x—£& %_%
RS- [ () G- )]e e

Equation (4.12) is split into the following terms:

@ _ WO (oA df

T = R (ax dx)’ (4.13a)
w_ L[ Ay (x=8) 24
Tp _R/—oo P |:W< B )as]df, (4.13b)
w_ L[ Ay (=Y
) = R/_oo = [W( A )dg}dé. (4.13¢)

The derivatives of the Ward function are denoted by G(z) = dW(z)/dz and D(z) =
d*W(z) /dzz, where 7z = (x — £)/R. These are known and can be calculated with a
Gauss—Laguerre formula.

Consider streamwise station x;. As described by Cassel et al. (1995), the discretisation
of the displacement function at this station can be obtained with the wall-shear stress at
station i,

Ymax
/ (t —1)dy =Niti1 +M;, 4.14)
0

where v, is the domain height. Applying second-order differences, the value of © f§4) at
X is

L@ _ W@O) | (Nitx1Tit1,1 — Ni—1,1Ti-1,1 n Misn —Mi1\ _ df
A R 2Ax 2Ax dx

:| . (4.15)

]

The term ng4) is solved using integration by parts and the trapezoidal rule

1 AXx i Xi— X

4 k

‘[él) = EG(O)(NiTi,l + M;) + SRS E |:(Nk‘fk’1 +Mk)D( ! R )
k=2

Xi — Xg—1
+ (Ng—1Tk—1,1 + My—1)D (T)] . (4.16)

Note that (4.16) turns the tridiagonal matrix of Ruban (1978) at the wall into a lower
triangular matrix, together with the diagonal corresponding to i + 1. The term ‘L'é4) is also

1001 A54-9


https://doi.org/10.1017/jfm.2024.1147

https://doi.org/10.1017/jfm.2024.1147 Published online by Cambridge University Press

D. Exposito

approximated with the trapezoidal rule

i
@) Ax xi —x¢\ df
[ — G =
fei T TR Z[ ( R ) dx

2
k=2

Xi—Xp—1\ df
G2 —=1) =L
k - ( R ) dx

] . (4.17)
k—1

Considering the approximations of the two-dimensional case, (4.6) is finally expressed
as
i
Y an -+ ua+an+E i =di+di, fori=2,... N.—1, (4.18)
k=1

where the coefficients ¢;”, ¢;, Z*;r and d; are given by Ruban (1978), and the coefficients ¢

and 0~l,~ are obtained from the expressions of 1(4) s Té4) and ré4) .

The pressure at the wall is obtained from the interaction law. The following
transformation was applied:

. 2 X . 2 y
X = — arctan <—> , y= —arctan <—> , (4.19a,b)
b1 a o1 b

which clips the domain from (—o0,0) < (x,y) < (00, Ymax) to a rectangle (—1,0) <
x, 9 < (1, Ymax), where P is the chosen height of the computational domain. The
constants a and b allow for grid clustering around x = 0 and y = 0. The steady state was
considered reached when the first-order derivative of the wall shear-stress with respect to
time was less than 5 x 10~*. The surface shape f(x) was again identical to that of Cassel
et al. (1995),

f) = Salx+ 2 + YA, (4.20)

where the rounding parameter r was chosen as r = 0.5. Gittler & Kluwick (1987)
employed a slightly different shape function,

0, X< -—p,
2
X X p
Fx) = 4= —p<x< 4.21
(x) a[4p+2+4], p=x=p, (4.21)
ox, X > p,

where p is a constant, taken as p = 1. We found differences between both shape functions
to be negligible.

5. Results and discussion
5.1. Small scale angles

Figure 3 shows pressure distributions for R = 10, « = 6 and R = 0.1, ¢ = 6 for I = 401
and J = 51, and three domain height values y;,x = 8, 16 and 32. For R = 10, it can be
seen that the solution is independent on the domain height for y,,,x = 8 as employed by
Gittler & Kluwick (1987). However, for R = 0.1, an uncommon numerical error arises for
Ymax = 8, which leads to negative values of pressure perturbation. For this case, domain
height independence is observed at y,,,, = 16. Therefore, all calculations were performed
with a domain height of y,q, = 16.

Grid independence was achieved with / =401 and J = 51. Figures 4 and 5 show
shear-stress and pressure distributions over the wall for scale anglesa = 1, ..., 6 and scale
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Figure 3. Pressure distributions for (a) R = 10 and (b) R = 0.1 for scale angle « = 6 and three domain height
values yuar = 8 (blue), 16 (green) and 32 (red). Green and red lines collapse at the same points. Numerical
configuration: I = 401, J = 51.

0.8 1
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0.2 4
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—0.4 ~ T
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Figure 4. Wall shear-stress distribution for scale external radius R = 1 and for scale anglesa =1, ...,6
from blue to red. Numerical configuration: I = 401, J = 51, yya = 16.

external radius R = 1. Both shear-stress and pressure distributions agree well with small
angle solutions of Gittler & Kluwick (1987). The shear-stress minimum shifts downstream
of the corner once the separation bubble grows for larger scale angles. Incipient separation
is seen to occur for scale angles 3 < o < 4. In particular, it is « = 3.3 according to the
RCM, which compares well with the value o & 3.39 found by Gittler (1984). Shear-stress
values downstream of the corner are greater than unity due to over-expansion, but they
asymptotically tend towards unity downstream. As mentioned in § 1, the phenomenon of
over-expansion had been described by Gittler & Kluwick (1987) as being due to the sudden
expansion caused by the increasing stream tube area in the radial direction.
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Figure 5. Pressure distribution for scale external radius R = 1 and for scale angles @ = 1, ..., 6 from blue to
red. Numerical configuration: I = 401, J = 51, ypa = 16.
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Figure 6. (a) Pressure and (b) shear-stress distributions for scale angle « = 7 and scale external radius R = 1.
Numerical configuration: / = 401, J = 51, y;ax = 16.

5.2. Wave packet

For large scale angles (o > 6.8), a wave packet as shown in figure 6 first appears at scale
angle 6.8 close to the corner, and persists for larger scale angles. This wave packet appears
similar to that of the two-dimensional case, described by Cassel et al. (1995) and also
discussed by Exposito et al. (2021). The studies of Smith & Bodonyi (1985) and Tutty
& Cowley (1986) provided the theoretical framework for inviscid instabilities arising as
a consequence of the appearance of inflection points in velocity profiles. The numerical
data of Cassel et al. (1995) and Fletcher, Ruban & Walker (2004) supported this view.
However, the study of Exposito et al. (2021) showed that a similar wave packet could be
triggered at stable flow conditions for values of the corner radius r that induce a large
pressure gradient. It must be noted here that Gittler & Kluwick (1987) do not comment
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Figure 7. Scale angles at which a wave packet first appears for different values of scale radius (blue circles)
and polynomial fit (blue solid line). Here, « = 8.4, 6.8,5.3,4.6,3.8and R = 0.5, 1, 2.5, 5, 10, respectively.

on the possibility of a wave packet in their study, which is probably due to their use of
steady-state triple-deck equations.

Figure 7 shows scale angles at which a wave packet first appears, for different values
of scale external radius. The same mesh (401 x 51) was employed in all cases. Since
decreasing external radius causes significant flow expansion over the corner, a larger scale
angle is needed to induce a pressure gradient and therefore trigger the appearance of a
wave packet. These results seem to be in line with the observations of Li & Hao (2023),
who found that a decrease in cylinder radius delays the emergence of global instability.
For an external radius of 10, the scale angle at which a wave packet is first observed is 3.8,
very close to the two-dimensional value of 3.9 observed by Cassel ef al. (1995) and 3.7
found by Fletcher et al. (2004).

A trivial instability analysis equivalent to that of Tutty & Cowley (1986) for the
axisymmetric case shows that the axisymmetric terms of the interaction law do not
interfere in a meaningful manner with terms corresponding to the two-dimensional case.
Therefore, we assumed that the mechanism through which the wave packet appears should
be identical to that of the two-dimensional case, namely the appearance of an inflection
point in the steamwise velocity profile close to the wall. Figure 8 shows velocity and
8%u/dy* profiles at the corner for scale angles/scale radius pairs corresponding to those
shown in figure 7. A coarse mesh 201 x 21 needed to be employed to suppress the
appearance of the wave packet, and the domain height was extended to y;;,x = 50. While
profiles for scale external radius R = 10 are similar to those of Cassel et al. (1995),
inflection points were not observed for any pair. Recent studies have suggested alternative
mechanisms for the appearance of the wave packet. Exposito, Gai & Neely (2022) found
that the steady-state version of the algorithm of Cassel et al. (1995) generated spurious
oscillations that do not correspond to a physical phenomenon. Another study by Exposito,
Gai & Neely (2023) suggested that the leading mechanism for the appearance of wave
packets is a dispersive error created by the numerical algorithm owing to the presence of
discontinuities in triple-deck solutions. Logue, Gajjar & Ruban (2014) studied the stability
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Figure 8. (a) Velocity and (b) Bzu/ 8y2 profiles for o = 8.4 (blue), 6.8 (cyan), 5.3 (green), 4.6 (yellow) and
3.8 (red), and R = 0.5, 1, 2.5, 5, 10, respectively. Numerical configuration: I = 201, J = 21, yqr = 50.

of steady-state supersonic triple-deck flow over a compression corner and stated that an
explanation for the appearance of the wave packet remained unavailable.

More recently, Broadley, Hewitt & Gajjar (2023) considered linear perturbations to the
steady-state compression-ramp solution. They suggested that the eigenrelation provided
by Tutty & Cowley (1986) could be temporarily met at a time snapshot during the
unsteady evolution of the nonlinear solution, thereby producing a persistent wave packet
that prevents a steady-state solution from being obtained with the unsteady equations.
Our solutions seem to indicate that inflection points do not play an important role in the
appearance of the wave packet; however, a more detailed study focusing on the unsteady
flow evolution is necessary to ensure this. A steady-state and linear stability analysis
akin to that of Broadley et al. (2023) for the axisymmetric case could also improve our
understanding of this problem.

5.3. External radius effects

Figure 9 shows the wall shear-stress (figure 9a) and pressure (figure 9b) distributions for
scale external radius R = 10 and scale angles « = 1, 2, 3. For this configuration, a wave
packet first appears for scale angles larger than 3.8. Curves are similar to those obtained for
the two-dimensional case (Rizzetta et al. 1978; Ruban 1978; Cassel et al. 1995), albeit with
minor axisymmetric effects. Regarding wall shear-stress values (figure 9a), axisymmetric
effects are most noticeable for the largest scale angle downstream of the corner, where
shear-stress values exceed those of the flat plate. For scale angles 1 and 2, the solution
mirrors that of two-dimensional flow. Incipient separation is observed at a scale angle of
2.1, compared with the value of 1.9 for two-dimensional flow reported by Cassel et al.
(1995). The over-expansion effect is noticeable in the pressure distribution downstream of
the corner for all scale angles (figure 9b). The rate of decrease in pressure seems slightly
larger downstream of the corner than at the right-hand side of the domain. This is probably
due to the larger displacement function of the boundary layer close to the corner, which
exacerbates axisymmetric effects.

Figure 10 shows the wall shear-stress (figure 10a) and pressure (figure 10b) distributions
for scale radius R = 5 and scale angles o = 1, 2, 3, 4. The wave packet appears for scale
angles larger than 4.6. Incipient separation is obtained for a scale angle of 2.5, which is
larger than the value of 2.1 observed for scale external radius R = 10. The over-expansion
effect is clearly more noticeable than for larger external scale radii, as can be seen in
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Figure 9. (a) Wall shear-stress and () pressure distributions for scale external radius R = 10 and for scale
angles @ = 1, 2, 3 from blue to red. Numerical configuration: / = 401, J = 51, yax = 16.
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Figure 10. (a) Wall shear-stress and (b) pressure distributions for scale external radius R = 5 and scale angles
o = 1,2, 3,4 from blue to red. Numerical configuration: / = 401, J = 51, y;ax = 16.

shear-stress values downstream of the corner. However, the flow structure within the
separated region remains relatively similar to that of the two-dimensional case.

Results for radius R = 1 were shown in previous sections. Figure 11 shows results for
radius R = 0.5 and scale angles « = 1, 2, 3, 4, 5, 6. In this case, the wave packet appears
for scale angles larger than 8.4. Incipient separation is first observed for scale angle 4.
Shear-stress profiles shown in figure 11(a) suggest a flow structure similar to that of larger
scale external radii. For equivalent scale angles, smaller separated regions are obtained
compared with the two-dimensional case. The second shear-stress minimum similarly
appears at a larger scale angle (6 compared with the value of 3.5 for two-dimensional flow).
Pressure distributions, show in figure 11(b), are also similar to those of larger external radii
but reduced in terms of magnitude due to the lower pressure gradient.

Figure 12 shows results for radius R = 0.1 and scale angles o« = 1,2,3,4,5,6. No
wave packet was observed for this value of scale external radius. Incipient separation
was not obtained for the range of scale angles considered here, as can be seen in
figure 12(a), showcasing shear-stress values. Due to the low value of R, the phenomenon
of over-expansion is significant. The streamwise extent of the interaction is substantially
smaller than that for R = 0.5 and larger radii, suggesting that axisymmetric effects do not
vary linearly with the inverse of R but are more noticeable for R < 0.5. For all scale angles,
only one shear-stress minimum is obtained, which is then followed by a local maximum
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Figure 11. (@) Wall shear-stress and (b) pressure distributions for scale external radius R = 0.5 and scale
angles o = 1,2, 3,4, 5, 6 from blue to red. Numerical configuration: I = 401, J = 51, y;ax = 16.
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Figure 12. (a) Wall shear-stress and (b) pressure distributions for scale external radius R = 0.1 and scale
anglesa = 1, 2, 3,4, 5, 6 from blue to red. Numerical configuration: I = 401, J = 51, ypa = 16.

downstream of the corner. From figure 12(b), showing pressure values, it can be seen
that this corresponds to the compression of the boundary layer downstream of the corner.
Pressure values are much lower than that corresponding to larger radii; therefore indicating
that larger scale angles are necessary to disturb the boundary layer as the scale external
radius is reduced. The underlying assumption of the model, that the boundary layer height
is much smaller than the external radius, should be invalid for sufficiently small values of
R. Bodonyi, Smith & Kluwick (1985) considered axisymmetric flow past a slender body
where the boundary-layer thickness is of the order of the external radius and showed that
a more complicated interaction (compared with the two-dimensional case) between the
boundary layer and the external flow can potentially develop.

6. Conclusions

The method of Ruban (1978) and Cassel et al. (1995) was adapted to consider unsteady
supersonic flow over an axisymmetric compression corner. The steady-state version of
this problem had been considered earlier by Gittler & Kluwick (1987). Scale external radii
from 0.1 to 10 have been calculated. For scale external radii from 1 to 10, wall shear-stress
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and pressure distributions are similar to those corresponding to the two-dimensional case,
except for minor axisymmetric effects in the form of shear-stress and pressure decrease in
the limit x — oo. For an external radius of 10, a wave packet first appears for scale angle
values larger than 3.8, compared with the value of 3.9 for two-dimensional flow observed
by Cassel et al. (1995). As the scale external radius decreases, the adverse pressure gradient
over the corner is reduced due to the phenomenon of over-expansion as reported by Gittler
& Kluwick (1987). A larger scale angle is required to trigger the appearance of a wave
packet. Inspection of 9%u/dy? profiles for scale external radius / scale angle pairs that
first manifest a wave packet does not reveal an inflection point for any pair. The instability
could be triggered during the unsteady evolution of the flow as suggested by Broadley et al.
(2023) for the two-dimensional case. To ascertain this, an analysis involving steady-state
simulations and a stability analysis should be performed and compared with the unsteady
solution.

For a scale external radius of 0.5, axisymmetric effects become important. Larger scale
angles are necessary to produce a flow structure similar to that of the two-dimensional
case. For example, the second shear-stress minimum manifests at a scale angle of 6,
compared with the value of 3.5 for two-dimensional flow. For an external radius of 0.1, no
second shear-stress minimum is observed. The streamwise extent of the interaction is lower
than that corresponding to R = 0.5. Absolute shear-stress and pressure values are also
reduced with decreasing external radius, corresponding to a weaker pressure perturbation
due to larger axisymmetric effects.
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