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Abstract
There are many types of approaches for Paraphrase Identification (PI), an NLP task of determining
whether a sentence pair has equivalent semantics. Traditional approaches mainly consist of unsupervised
learning and feature engineering, which are computationally inexpensive. However, their task perfor-
mance is moderate nowadays. To seek a method that can preserve the low computational costs of
traditional approaches but yield better task performance, we take an investigation into neural network-
based transfer learning approaches. We discover that by improving the usage of parameters efficiently for
feature-based transfer, our research goal can be accomplished. Regarding the improvement, we propose a
pre-trained task-specific architecture. The fixed parameters of the pre-trained architecture can be shared
by multiple classifiers with small additional parameters. As a result, the computational cost left involving
parameter update is only generated from classifier-tuning: the features output from the architecture com-
bined with lexical overlap features are fed into a single classifier for tuning. Furthermore, the pre-trained
task-specific architecture can be applied to natural language inference and semantic textual similarity tasks
as well. Such technical novelty leads to slight consumption of computational and memory resources for
each task and is also conducive to power-efficient continual learning. The experimental results show that
our proposed method is competitive with adapter-BERT (a parameter-efficient fine-tuning approach) over
some tasks while consuming only 16% trainable parameters and saving 69-96% time for parameter update.

Keywords: Parameter-efficient feature-based transfer; Paraphrase identification; Natural language inference; Semantic
textual similarity; Continual learning

1. Introduction
Measuring semantic relatedness of two pieces of text entails a wide range of tasks in Natural
Language Processing (NLP). When the measurement comes to sentence level, it involves three
common NLP tasks: Paraphrase Identification (PI) for determining whether a sentence pair has
equivalent semantics; Natural Language Inference (NLI) for inferring relation between a sen-
tence pair; and Semantic Textual Similarity (STS) for scoring semantic similarity of a sentence
pair. Many types of approaches have been published in the previous works (Chandrasekaran and
Mago 2020) for PI task and two of its variations (NLI and STS). In this article, we propose a new
method to improve the usage of parameters efficiently for feature-based transfer, a transfer learn-
ing approach involving customizing a task-specific architecture for PI. In this section, we first
introduce the research goal that motivates our proposed method based on the relevant techni-
cal background. Then in the second subsection, we describe the benefit for a real-world scenario
based on our technical novelty.
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1.1 Technical background and research goal
When it comes to PI, there exist a wide range of traditional approaches that are relatively effective
for the task: (1) lexical overlap features such as n-gram overlap (Wan et al. 2006) and machine
translation evaluation metrics (Madnani, Tetreault, and Chodorow 2012); (2) using external lex-
ical knowledge like WordNet (Fellbaum, 1998; Fernando and Stevenson 2008); (3) modeling
divergence of dependency syntax between two sentences (Das and Smith 2009); (4) distributional
models with matrix factorization (Guo and Diab 2012; Ji and Eisenstein 2013). The traditional
approaches mainly consist of unsupervised methods and feature engineering. Their demand for
computational resources is low while task performance is moderate nowadays. For example, the
computational cost involving parameter update for processing the lexical overlap features is only
consumed by classifier-tuning, but the task performance is comparatively less effective as reflected
by MRPC task (Dolan, Quirk, and Brockett 2004) in the ACL link.a In light of that fact, we come
up with our research question—how can we preserve the low computational costs of traditional
approaches but yield better task performance? To seek an approach to it as our research goal, we
take a further investigation on current neural network-based transfer learning approaches.

With the advent of various deep neural network models (Dong et al. 2015; Vaswani et al. 2017;
Howard and Ruder 2018; Yang et al. 2019), transfer learning approaches have achieved state-of-
the-art performance on many NLP downstream tasks including PI. Basically, there are two most
common transfer learning techniques in NLP: fine-tuning and feature-based transfer. As for fine-
tuning, the parameters of pre-trained language models like BERT (Devlin et al. 2019) need to
be fine-tuned. On the other hand, feature-based transfer does not require parameter update of
pre-trained embedding models like ELMo (Peters et al. 2018); however, the parameters of any
customized task-specific architectures need to be updated. For both transfer learning techniques,
they follow the same convention: entire architectural parameters need to be initialized and then
updated for each individual task dataset (see 1 & 2 in Figure 1).

Accompanied by the successful performance, there comes one challenge to transfer learning
approaches: expensive computational resources (Strubell, Ganesh, and McCallum 2019). As fine-
tuning tends to achieve better performance than feature-based transfer shown in recent works
(Howard and Ruder 2018; Devlin et al. 2019), recently proposed resource-lean approaches are
mainly based on BERT (Devlin et al. 2019) architecture, focusing on model compression such as
network layers repeating (Lan et al. 2019) and knowledge distillation (Sanh et al. 2019). The effec-
tiveness of these compressed models can reduce the size of entire architectural parameters, but
cannot go beyond the aforementioned convention, and thus, whether the usage of the parameters
is efficient remains uninvestigated.

Still, the adapter module proposed by Houlsby et al. (2019a) is based on the research direction
regarding parameter efficiency—only a comparatively small number of task-specific parameters
are initialized and then updated for every single task (see 3 in Figure 1). Houlsby et al. (2019a)
applied the adapter module to BERT (Devlin et al. 2019) for testing effectiveness, and the adapter-
BERT attained within 0.4% of the performance of full fine-tuning, adding only 3.6% parameters
per task. Such performance level reflects the fact that there is no need to initialize and then to
update entire architectural parameters for each task. Instead, focus should be shed on the efficient
usage of parameters. Most recently, the research direction has a tendency to extract an optimal
subset of architectural parameters (de Wynter and Perry 2020) and also works for autoregressive
models like P-tuning (Liu et al. 2021) for GPT (Radford et al. 2019).

The efficient usage of architectural parameters also resonates with a current trendb in NLP
community, which encourages researchers to empirically justify the model complexity beyond
benchmark performance. However, to the best of our knowledge as of writing, direct research
attempts regarding parameter efficiency are rarely made for feature-based transfer. In the last

ahttps://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art).
bhttps://sites.google.com/view/sustainlp2020/home?authuser = 0.
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Figure 1. Parameters that need to be updated for each PI, NLI, or STS task. The underlined denotes our work.

two years, only one indirect attempt was conducted, the PAR (Paraphrase-Aware Retrofitting)
method proposed by Shi et al. (2019), aiming to address unstable semantics of contextualized
word embeddings of shared words when context is paraphrased. Besides, for any customized task-
specific architecture, although it is an option to train task datasets through continual learning
(Thrun 1998), the parameters of the re-trained network are inclined to forget how to perform
previous tasks—catastrophic forgetting (McCloskey and Cohen 1989; French 1999).

While related works are centered around language model-based fine-tuning, we discover that
one advantage of feature-based transfer tends to be neglected and consequently left unexplored. As
various task-specific architectures are customized for a particular task like PI, we discover that it is
viable to fix the architectural parameters trained on a single task dataset and then transfer the fixed
parameters to other task datasets. With this discovery, while yielding better task performance,
feature-based transfer can enjoy the low computational costs as traditional approaches do: the
initialization of pre-trained architectural parameters is required only once, and there is no need of
further parameter update for different tasks (see 4 in Figure 1), the only computational costs are
consumed by classifier-tuning. The technical scenario cannot be realized by languagemodel-based
fine-tuning. For example, task-specific parameters of adapter module (Houlsby et al. 2019b) tuned
on task A cannot be directly used for task B without any modification. However, in this article, we
show that it is feasible to feature-based transfer.

For readability in the rest of this article, we use the acronym PEFBAT (Parameter-Efficient
Feature-BAsed Transfer) to denote our proposed method. The technical novelty of PEFBAT is
that the fixed parameters of the pre-trained task-specific architecture can be shared by multiple
classifiers with small additional parameters. This mechanism can address our research goal. For
each PI, NLI, or STS task, the computational cost left involving parameter update is only generated
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Figure 2. Parameter-efficient feature-based transfer for power-efficient continual learning.

from classifier-tuning: the features output from the architecture combined with lexical overlap
features are fed into a single classifier for tuning. Such technical novelty is also conducive to a
real-world scenario, which is another contribution of PEFBAT described in the next subsection.

1.2 Practical use in real-world scenario
Similar to adapter module (Houlsby et al. 2019b), PEFBAT can be applied to continual learning,
but the differences exist from two aspects. Since the former is languagemodel-based (e.g., adapter-
BERT when it is applied to BERT model), it can handle more than sentence-pair tasks. On the
other hand, although PEFBAT can address only three types of sentence-pair tasks, it exhibits a
more power-efficient manner: for each task arriving from customers, only a single classifier needs
to be instantiated (see Figure 2). The power cost is measured by the time required for parameter
update of each task, which directly reflects the demand for computational resources. For example,
in the case of Multi-Layer Perceptron (MLP)c with batch size 32 and epochs 100, for small datasets
likeMRPC (Dolan et al. 2004) (4k training data), training aMLP takes up approximately 1minute.
For large datasets like QQP (Iyer, Dandekar, and Csernai 2017) (363k training data), training a
MLP can be finished in 37minutes. More importantly, each task performance is not compromised
by catastrophic forgetting as each classifier is tailored individually for each task.

Furthermore, additional parameters per task contained in each classifier are small (0.479M
trainable parameters explained in Section 4), which can be considered as parameter-efficient
model expansion, as the size of 230 classifiers for 230 tasks from customers amounts to a sin-
gle BERT-base model. Although using only engineered features also consumes less computational
and memory resources, PEFBAT can yield better task performance, and thus, it is comparatively a
good fit in terms of power-efficient continual learning.

cThe GPU device that we use for our experiments is NVIDIA RTX 2080 TI.
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2. Related works
There have been many approaches proposed in the previous works for PI (Chandrasekaran and
Mago 2020). In this section, we discuss the traditional and transfer learning approaches that are
related to our work. The strengths of the traditional approaches are integrated into PEFBAT.
The transfer learning approaches, although adopt different strategies, are related to parame-
ter efficiency. Besides, we extend our discussion on two topics: (1) task-specific DNNs, which
are the conventional strategy adopted for feature-based transfer, and (2) the solutions to catas-
trophic forgetting in continual learning, because PEFBAT can be considered as a variant of
parameter-efficient model expansion.

2.1 Traditional approaches
In PEFBAT, the lexical overlap features (Wan et al. 2006) are combined with the transferred
features (the features output from our pre-trained task-specific architecture) as input to each
individual classifier. This technique is not unusual for feature-based transfer; for example, Yin
and Schütze (2015a) combined the machine translation metrics (Madnani et al. 2012) with the
flattened features output from their Bi-CNN architecture. In our case, the combination is based
on a particular consideration—mutual complementation. As the Jaccard distanced illustrated in
Figures 3 and 4 for two paraphrase corpora,e lexical overlap features are noticeably cost-effective
for task datasets like PAN (Madnani et al. 2012) (Figure 3); however, they become unviable when
lexical overlaps are indistinguishable between paraphrase and non-paraphrase sentence pairs in
task datasets like PAWS-wiki (Zhang, Baldridge, and He 2019) (Figure 4). The combination can
have the transferred features enjoy their merits while their demerits can be improved by the trans-
ferred features. We delve deeper into the mutual complementation in Section 4 based on our
experimental results. From another perspective that is not directly related to our work, lexical
overlap features are also beneficial to paraphrase generation task. While the quality of gener-
ated paraphrases can be decided by state-of-the-art models like Sentence-BERT (Reimers and
Gurevych 2019) shown in a recent work (Corbeil and Abdi Ghavidel 2021) for data augmenta-
tion, some works still consider lexical overlap features as criteria: Nighojkar and Licato (2021)
use BLEURT (Sellam, Das, and Parikh 2020) metric to calculate reward for sentence pairs that
are mutually implicative but lexically and syntactically disparate; Kadotani et al. (2021) use edit
distance to decide whether source and target sentences require drastic transformation, so that
the training order of curriculum learning (Bengio et al. 2009) can be determined for better per-
formance of paraphrase generation; Jaccard distance is used in Meng et al. (2021)’s work as one
metric for filtering generated paraphrase candidates.

Ji and Eisenstein (2013) utilize TF-KLD weighting scheme to assign weights to each feature
(single word) in distributional models. The weighted distributional models then can generate
discriminative sentence latent representations after matrix factorization, which are conducive
to PI. This approach has achieved competitive performance on MRPC (Dolan et al. 2004) task
with this special feature engineering process. Inspired by Ji and Eisenstein (2013), the pre-trained
task-specific architecture of PEFBAT is also designed to generate the features containing discrim-
inative semantics (details are presented in Section 3). In the meanwhile, two of their limitations
are not reflected in PEFBAT: (1) the TF-KLD weighting scheme relies on transductive learning
(Gammerman, Vovk, and Vapnik 1998) to weight unseen words for optimal performance; (2) the
scheme is strictly MRPC-dependent, and therefore it is not applicable to other PI task datasets or
real-world scenarios. TF-KLD-KNN proposed by (Yin and Schütze, 2015b) can address the first
limitation, but is not viable for the second limitation.

dAll the tokens are converted into small case without stemming or removing stopwords and punctuation.
eJaccard distance calculated for two PI corpora take into account training, development (if it exists), and test sets.
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Figure 3. PAN.

Figure 4. PAWS-wiki.

2.2 Transfer learning approaches
Shi et al. (2019) have discovered that in many cases, contextualized embeddings of shared words
in paraphrased contexts change drastically. To minimize the difference of the shared words,
they propose a PAR (Paraphrase-Aware Retrofitting) method: to reshape input representations
of contextualized models with an orthogonal transformation matrix. They apply the PAR method
to ELMo (Peters et al. 2018) to test its effectiveness. The task-specific architecture (orthogonal
transformation matrix) placed prior to embedding models is referred to as retrofitting methods
(Faruqui et al. 2015; Yu et al. 2016; Glavaš and Vulić, 2018): to incorporate semantic knowl-
edge from external resources into word embeddings. The external resources that Shi et al. (2019)
used to train their task-specific architecture are the paraphrase sentence pairs from three corpora:
PAN (Madnani et al. 2012), Sampled Quora (Iyer et al. 2017), and MRPC (Dolan et al. 2004).
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The parameters of the trained architecture then can be used for PI, NLI, and STS tasks, which is
parameter-efficient.

The adapter module (Houlsby et al. 2019a) comprises the network layers with comparatively
small size of parameters stitched into BERT (Devlin et al. 2019) layers, aiming to address param-
eter efficiency for language models. For every task, the parameters of BERT layers remain fixed
while the ones of adapter module are updated. Such design results in a model that is compact
and extensible: a small number of additional parameters per task without forgetting how to per-
form previous tasks. The adapter module can be considered as a variation of layer transfer. The
technique is commonly adopted in the field of computer vision. For example, in the task of image
classification (Deng et al. 2009), Yosinski et al. (2014) discovered that by transferring only the bot-
tom layer of the network trained on source data, decent performance can be obtained for target
data by only re-training the top layers, because the image data tend to share similar patterns at the
lower layers of the network. The adapter module exhibits similar property as it automatically pri-
oritizes higher layers (Houlsby et al. 2019a), which matches the popular strategy in fine-tuning
(Howard and Ruder 2018). PEFBAT also benefits from the strategy: pre-trained embeddings
plus task-specific architecture (fixed parameters at lower layers), and classifier (parameters at
higher layers updated for different tasks). In Section 4, adapter-BERT is considered as our upper
bound.

2.3 Task-specific DNNs
When it comes to feature-based transfer, it is a vital step to customize a task-specific archi-
tecture. The input of the architecture is pre-trained word embeddings (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014; Mikolov et al. 2018; Peters et al. 2018), and output is
typically flattened features connected to a classifier. The conventional strategy adopted for the
task-specific architecture is task-specific DNNs. One successful embodiment is Siamese neural
network (Bromley et al. 1993), which shows the key insight of extracting interaction features from
input word embeddings of two sentences at multiple levels of granularity (unigram, short n-gram,
long n-gram, and sentence levels). A comparatively effective implementation of Siamese archi-
tecture is Bi-CNN (Yin and Schütze 2015a; He, Gimpel, and Lin 2015; Yin et al. 2016): using
two sub-networks (double convolutional layers) to process word embeddings of two sentences.
In the Bi-CNN architecture, each sentence of a sentence pair at the beginning is represented as a
matrix, in which every column vector corresponds to a word embedding. Then the matrix repre-
sentations of two sentences are processed by convolution filters with n-gram width and multiple
types of pooling at different network layers, during which, interaction features representingmulti-
granular semantics are extracted from the gradually processed matrix representations. The final
step is to connect the flattened multi-granular interaction features to a classifier for supervised
learning.

Siamese architecture implemented by Bi-CNN is not the only approach to extracting multi-
granular interaction features. For example, the RAE model proposed by Socher et al. (2011) first
uses recursive neural network (also known as TreeRNN) to pre-train embeddings at word, phrase,
and sentence levels. Those pre-trained embedding representations are denoted as multi-granular
nodes. Then for the nodes of a sentence pair, a n1 × n2 similarity matrix is computed as interac-
tion features, where n1 and n2 are the number of nodes of two sentences, respectively, and each
similarity is the Euclidean distance between two nodes. Finally, the similarity matrix is fed into a
dynamic pooling layer to fix its size for supervised learning, as each sentence pair has different size
of nodes. The RAEmodel is comparatively less effective than Bi-CNN in terms of the performance
on MRPC task (Dolan et al. 2004). As explained in Yin and Schütze (2015a)’s work, this is due to
unavailability of highly accurate parsers for tree structure.

PEFBAT can yield competitive performance level compared to Bi-CNN (demonstrated in
Section 4), although its mechanism for PI (described in Section 3) is different. From technical
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perspective, unlike Bi-CNN, the task-specific architecture of PEFBAT is pre-trained, and therefore
there is no need of further parameter update for each task, which is parameter-efficient and
cost-friendly.

2.4 Continual learning
Continual learning (Thrun 1998), also known as lifelong learning, never-ending learning, or incre-
mental learning, is a machine learning technique of training tasks sequentially using a single
instance of a model. The task range of continual learning nowadays is typically the same task
but in different domains; for example 20 QA tasks in bAbi corpus (Weston et al. 2015), permuted
handwritten digits recognition (van de Ven and Tolias 2019), text classification tasks with differ-
ent class (deMasson d’Autume et al. 2019), and so on. A recent research attempt (Sun, Ho, and Lee
2020) has managed to handle 5 disparate NLP tasks by following decaNLP (McCann et al. 2018)
to treat all tasks as QA format. The biggest problem for continual learning is catastrophic forget-
ting (McCloskey and Cohen 1989; French 1999)—the network trained on a new task is inclined
to forget how to perform previous tasks. The common solutions to catastrophic forgetting can be
concluded into three categories listed below.

(1) regularization-based methods: the paradigm of this method is EWC (Elastic Weight
Consolidation) (Kirkpatrick et al. 2017), the key mechanism of which is to add constraints
to the parameters that are sensitive to previous tasks. As a result, those sensitive parameters
are not modified to a large extent when a new task is being trained.

(2) parameter-efficient model expansion: from earlier works like Net2Net (Chen, Goodfellow,
and Shlens 2016) and Progressive Neural Networks (Rusu et al. 2016) to adapter module
(Houlsby et al. 2019b) nowadays, the major concept of this solution is to expand a model
by adding additional parameters per task. It can also work out in a reverse way—initiate
a large network at the beginning and then distribute a portion of parameters to each task
(Hung et al. 2019).

(3) memory replay: the main idea of this solution is to keep a small number of old data of
previous tasks, and the old data can be either real data (de Masson d’Autume et al. 2019)
or generated pseudo-data (Sun et al. 2020). With this benefit, a new task can be trained
together with the old data in a multi-task learning manner (Caruana 1998), which is con-
sidered as the upper bound of continual learning. It is also shown in GEM (Gradient
Episodic Memory) (Lopez-Paz and Ranzato 2017) that the old real data can be used to
prevent gradient update from being biased towards a new task during optimization.

Curriculum learning (Bengio et al. 2009), although not as common as the categories above, is
also a solution to catastrophic forgetting. It seeks to find out a proper learning order of tasks. A
well-known study of curriculum learning is taskonomy (task + taxonomy) proposed by Zamir
et al. (2018), which explores the learning order of various image-related tasks; for example detect-
ing 3D edges and normal vectors of images first can help learn point matching and reshading
effectively.

PEFBAT can be considered as a variant of the second solution. The limitation of the second
solution is that when task number grows larger and larger, it will eventually use up memory
resources. However, as we discussed in Section 1.2, PEFBAT can alleviate this problem as param-
eters contained in each classifier is small—the size of 230 MLP classifiers for 230 tasks is equal
to a single BERT-base model. If we use SVM instead of MLP as the classifier for small tasks like
MRPC (Dolan et al. 2004) without sacrificing task performance, the total size becomes further
smaller. Hence, PEFBAT is not only a solution to catastrophic forgetting but also competent in
power-efficient continual learning.
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Figure 5. Modeling of initial sentence-pair representations.

3. Proposedmethod
Our technical motivation towards PEFBAT is introduced in Section 1.1. In this section, we move
into the implementation details and mechanism of PEFBAT. We first describe the modeling of
initial sentence-pair representations and the objective of our pre-training. Then how to pre-train
the task-specific architecture of PEFBAT using the representations is described in the second sub-
section. The third subsection explains the discriminative features that our pre-trained task-specific
architecture can output, which are presented together with other features in the last subsection.

3.1 Initial sentence-pair representations and objective of pre-training
In this work, the crucial semantics conveyed in a single sentence are represented by the three
components (see the upper part of Figure 5). The entity and action components basically describe
“what is the state or activity that somebody or something is on.” The modification component
conveys the semantics that modify the entity and action components. For example, “in a particular
way” can be interpreted as either adverbs that modify verbs or determiners and adjectives that
modify nouns.

The concatenation of three components plays the important role in measuring semantic
similarity of a sentence pair (see the lower part of Figure 5). In addition, to facilitate PI, the
reward component (details explained in Sections 3.2.1 and 3.2.2) containing (non)paraphrase-like
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characteristics is combined with the other three components to form the initial sentence repre-
sentations of a sentence pair. The objective of our pre-training, therefore, is to have the initial
representations generate discriminative latent representations. The latter contains discriminative
features, which is conducive to PI.

3.2 Latent space pre-training
To generate discriminative sentence latent representations, we refer to Ji and Eisenstein (2013)’s
work by taking advantage of labeled data, and our concrete strategy in this article is the dual
weighting scheme shown in Figure 6. The paraphrase weighting scheme is used to weight five
components of a sentence belonging to paraphrase sentence pairs. Then the concatenation of
five weighted components is mapped to its latent representation for pre-training the paraphrase
latent space. The same step is applied to pre-training the non-paraphrase latent space, where the
components of non-paraphrase sentences are weighted by the non-paraphrase weighting scheme.
Besides, two reward components are used to represent (non)paraphrase-like characteristics, which
is the best setting for pre-training. Later in Section 4, an ablation study is performed for validation.

The two pre-trained latent spaces are namely our task-specific architecture, the fixed param-
eters of which can be used for multiple PI, NLI, and STS tasks. During inference shown in
Figure 7, for each sentence of any sentence pairs, two types of weighted components based on
the dual weighting scheme are first concatenated, respectively, and then two latent representa-
tions can be obtained after two concatenations are projected from two pre-trained latent spaces,
respectively—paraphrase and non-paraphrase latent representations. They contain discriminative
features, which is described at length in Section 3.3.

Before stepping into further implementation details, we introduce the embeddings, toolkits,
and corpus resource that are employed for pre-training. As we consider the application to low-
resource natural languages with limited labeled and unlabeled data (Hedderich et al. 2021) as our
future work (discussed in the last section), the choice of the resources is based on the consideration
of “lightness”: requirement of small training data size and easy availability.
Corpus Resource: The corpus that we use is only the training dataset of Microsoft Research
Paraphrase Corpus (MRPC) (Dolan et al. 2004) consisting of 4076 sentence pairs, in which 2753
pairs are labeled as paraphrase, which is so far the smallest English paraphrase corpus.
Pre-trained Embeddings: We choose fastText (Mikolov et al. 2018) trained with subword infor-
mation on CommonCrawl as our pre-trained embeddings because it is not deep learning
architecture-based, which is applicable to low-resource natural languages (Mohiuddin and Joty
2020). Moreover, it achieves better performance than GloVe (Pennington et al. 2014) trained on
CommonCrawl in SentEval framework (Conneau and Kiela 2018).
Toolkits: Considering easy availability, we utilize part-of-speech tags (POS-tags) provided by
NLTKf for categorizing entity, action, andmodification components. The scikit-learn toolg is used
for distributional models and matrix factorization.

3.2.1 Five components
Categorizing words as the elements of entity, action, and modification components is based on
three specific sets of POS-tags shown below.

• Entity set: singular noun, plural noun, singular proper noun, plural proper noun, personal
noun

fhttps://www.nltk.org/.
ghttps://scikit-learn.org/stable/.
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Figure 6. Mapping mechanism of pre-training.

Figure 7. During inference, each sentence of any sentence pairs can obtain two types of latent representations.

• Action set: base form verb, past tense verb, present particle verb, past participle verb,
present verb, third person present verb

• Modification set: determiner, predeterminer, adjective, comparative adjective, superla-
tive adjective, possessive pronoun, possessive ending, existential there, modal, adverb,
comparative adverb, superlative adverb, particle, to

Suppose the sentence “He likes apples.” has three word embeddings (0.1, 0.1, 0.1) for ‘he’, (0.2,
0.2, 0.2) for ‘likes’, and (0.3, 0.3, 0.3) for ‘apples’, then the entity component is [(0.1, 0.1, 0.1)
+ (0.3, 0.3, 0.3)]/ 2 = (0.2, 0.2, 0.2); the action component is (0.2, 0.2, 0.2)/ 1 = (0.2, 0.2, 0.2);
the modification component is (0, 0, 0). If the word embedding of a word does not exist in the
embedding space, our strategy is to skip it, because the sentences in MRPC corpus are derived
from old news resources, rarely containing newly coined words like “infodemic.”

Each reward component is initiated as a vector with the same length as fastText word embed-
dings (300), and the values of all dimensions are initially set to 1.0. Two weighted reward
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Table 1. Dual weighting scheme.

Components Paraphrase weighting scheme Non-paraphrase weighting scheme

Entity if digit-count≤ 4: if digit-count> 4:
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entity= 1.5 ∗ Entity Component Entity= 1.5 ∗ Entity Component
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

else: else:
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Entity= 0.5 ∗ Entity Component Entity= 0.5 ∗ Entity Component
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Action Action= 1.5 ∗ Action Component Action= 0.5 ∗ Action Component
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Modi. Modi.= 0.5 ∗Modification Component Modi.= 1.5 ∗Modification Component
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RC1 if sent-len≥ 23 or sent-len-diff ≤ 5: if sent-len< 23 or sent-len-diff > 5:
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RC1 = 1 ∗ Reward Component 1 RC1 = 1 ∗ Reward Component 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

else: else:
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RC1 = 0.2 ∗ Reward Component 1 RC1 = 0.2 ∗ Reward Component 1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RC2 if Jaccard distance≤ 0.6: if Jaccard distance> 0.6:
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RC2 = 1 ∗ Reward Component 2 RC2 = 1 ∗ Reward Component 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

else: else:
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RC2 = 0.2 ∗ Reward Component 2 RC2 = 0.2 ∗ Reward Component 2

components are meant to provide strong or weak rewards for the concatenation of components.
With their functionality, sentence pairs that have (non)paraphrase-like characteristics tend to
obtain similar latent representations in (non)paraphrase latent spaces.

3.2.2 Dual weighting scheme
Our dual weighting scheme is summarized in Table 1, which is utilized to determine whether a
component should be strongly or weakly weighted. In the scheme, our weighting criteria are based
on two elements: “label” (universal to all task datasets) and “occurrence difference” (manually
adjustable for different task datasets).

For both reward components, our weighting criterion is “occurrence difference.”We utilize the
characteristics-based thresholds (see Figures 8, 9, and 10) to determine strong or weak rewards.
The main threshold is Jaccard distance (abbreviated as j-dist shown in Figure 10) (Jaccard 1912).
We perform PI onMRPC (Dolan et al. 2004) using Jaccard distance and found out at 0.6, accuracy
and F1 score increase significantly. Thus, the threshold of 0.6 is utilized to determine one reward
component. However, during inference, when the threshold of j-dist is adjusted for other task
datasets, using the weighting criterion of “occurrence difference” is empirically proved enough
in Section 4, which is time-saving. Only for pre-training our latent spaces, we need to ensure
every default setting is well set. The sentence length (abbreviated as sent-len shown in Figure 8)
and absolute difference of sentence length (abbreviated as sent-len-diff shown in Figure 9) are the
main factors that can affect Jaccard distance, so we combine their thresholds together to determine
another reward component so as to assist the one determined by j-dist. To briefly sum up, the
three thresholds are considered as a whole package to determine whether two reward components
should be weighted strongly or weakly, which is the way to represent whether a sentence pair
exhibits (non)paraphrase-like characteristics.
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Figure 8. Sentence length.

Figure 9. Absolute difference of sentence length.

For the three word embedding components (entity, action, and modification), our weighting
criterion is “label.” As adverbs like negation (not) convey discriminative semantics, we assign
more weight to the modification component if a sentence pair is labeled as non-paraphrase. On
the other hand, the entity and action components basically describe “what is the state or activity
that somebody or something is on” (mentioned earlier in this subsection), which is the principal
requirement for semantic similarity of sentences, so we assignmore weight to the entity and action
components if a sentence pair is labeled as paraphrase. The weighting criterion of “label” is uni-
versal to all task datasets. The digit-count threshold (see Figure 11) is the assumption wemake that
when there are too many digital numbers occurring in a sentence pair, the influence of semantics
represented in the entity component should be lessened. To verify this assumption, we also pre-
train another two latent spaces without the threshold. In Section 4, we conduct the experiments
using the latent spaces pre-trained “with digit-count” or “without digit-count.” Below we provide
an example from MRPC training dataset, where the sentence pair is labeled as non-paraphrase
and digit-count is 6 (6 digital numbers in total are included in both sentences).
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Figure 10. Jaccard distance.

Figure 11. Digit-count.

(1) Yucaipa owned Dominick’s before selling the chain to Safeway in 1998 for $2.5 billion.
(2) Yucaipa bought Dominick’s in 1995 for $693 million and sold it to Safeway for $1.8 billion

in 1998.

3.2.3 Target latent representations
We use distributional models with matrix factorization to generate latent representations for all
sentences in the training dataset of MRPC (Dolan et al. 2004). For factorization, we follow Guo
and Diab (2012)’s work by choosing Singular Value Decomposition (Deerwester et al. 1990) and
the length of 100 for latent dimensionality. Moreover, we normalize the factorized matrix, as the
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latent representations are the target layer of our architecture, and the activation function is tanh.
As a result, all values in the factorized matrix are included within an open interval (−1, 1).

Furthermore, we refine the latent representations for paraphrase pairs. Suppose the latent rep-
resentations for a sentence S1 and a sentence S2 of a sentence pair are (0.9, 0.8, 0) and (0.7, 0.8,
0.6), respectively, the pair shares a latent representation by averaging the elementwise addition of
two vectors; in this case, the shared latent representation is (0.8, 0.8, 0.3). The rationale of shar-
ing is that paraphrase pairs should have similar or even identical dimension values. By doing so,
two initial sentence representations of any paraphrase sentence pair can be mapped to the same
latent representation during pre-training, and therefore during inference, paraphrase pairs tend
to obtain similar latent representations after mapping from paraphrase latent space.

3.2.4 Hyperparameters of pre-training andmethod of determining weights
For each sentence in the training dataset of MRPC (Dolan et al. 2004), the concatenation of its five
weighted components is mapped to its latent representation. As mentioned earlier in this subsec-
tion shown in Figure 6, all (non)paraphrase sentences are used to pre-train the (non)paraphrase
latent space based on (non)paraphrase weighting scheme.

Since the size of training dataset is small, back-propagation is performed for each mapping,
following vanilla Stochastic Gradient Descent (vanilla SGD). The loss is accumulated from all
samples of each training epoch, and the accumulation is averaged at the end of each epoch.
The hyperparameters of our pre-training are input vector length (1500), target vector length
(100), activation function (tanh), loss function (LSE), epochs (500), learning rate (5e-4), and
optimization (vanilla SGD).

Before formal pre-training, we first tune the weights with small training epochs (≤ 50). The
determined weights are illustrated in Table 1. For both reward components, the strong and weak
weights are 1 and 0.2, respectively; 1.5 and 0.5 (we call it “weight pair”) are set for the three word
embedding components. How they are determined is described below.

(1) First, we hypothesize that 1 is the optimal strong weight for both reward components,
because if too big it will make the dimensions of other input components less significant;
when too small it cannot be considered as a strong weight.

(2) Then we keep the “weight pair” (1.5 & 0.5) as it is, and begin to tune the weak weight from
0.1 to 0.2 for the best optimization of pre-training. After only 3 epochs of pre-training, we
observe that the error loss decreases significantly in case of 0.2, and hardly drops when 0.1
is used. Therefore, we decide 0.2 as the weak weight for both reward components.

(3) After the decision of the weak weight, we start to tune the “weight pair.” We use only 50
epochs to pre-train our latent spaces and experiment with different pairs from (1.1, 0.9) to
(1.9, 0.1) at the pivot of 1.We found out that with the pair of (1.5, 0.5), better discriminative
similarity (explained in the next subsection) can be achieved.

After the weights are determined, we set out to formally pre-train the two latent spaces with
the full training epochs of 500 (4 GPU3 hours). We save the latent spaces at every 50 epochs
during pre-training and choose the optimally pre-trained ones—that can be used to achieve the
optimal PI performance on the test dataset of MRPC—for different PI, NLI, and STS tasks. The
experimental results in Section 4 show that our pre-trained latent spaces are not overfitting and
limited to MRPC. As for reproducibility, we conduct pre-training several times without setting a
particular seed, and the experimental results do not fluctuate extremely (details are provided in
the next subsection).
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Table 2. Dsicriminative similarities are shown for the spaces pre-trained “with digit-count”.

Lp(S1) & Lp(S2) Lp(S1) & Lp(S2) Lnp(S1) & Lnp(S2) Lnp(S1) & Lnp(S2)

Sentence pairs Mean Std. Mean Std.

Paraphrase 0.808 0.150 0.810 (+0.002) 0.143
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Non-paraphrase 0.681 0.192 0.728 (+0.047) 0.158

Table 3. Dsicriminative similarities are shown for the spaces pre-trained “without digit-count”.

Lp(S1) & Lp(S2) Lp(S1) & Lp(S2) Lnp(S1) & Lnp(S2) Lnp(S1) & Lnp(S2)

Sentence pairs Mean Std. Mean Std.

Paraphrase 0.817 0.139 0.808 (−0.009) 0.142
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Non-paraphrase 0.711 0.167 0.730 (+0.019) 0.164

3.3 Discriminative similarity
Asmentioned earlier in Section 3.1, the objective of our pre-training is to have two initial sentence-
pair representations to generate the latent representations containing discriminative features. This
effect is reflected by discriminative similarity, which is explained in this subsection.

As shown earlier in Figure 7, each sentence of any sentence pairs can obtain two types of latent
representations based on two pre-trained latent spaces. For conciseness, paraphrase latent rep-
resentation obtained for a sentence is abbreviated as Lp(S), and Lnp(S) is an abbreviation for
non-paraphrase latent representation. Based on the optimally pre-trained latent spaces, we calcu-
late the cosine similarities for Lp(S1) & Lp(S2) and Lnp(S1) & Lnp(S2), using the sentence pairs in
the training dataset of MRPC. The results are shown in Tables 2 and 3.

Compared to the mean cosine similarity in the paraphrase latent space, non-paraphrase sen-
tence pairs tend to have higher cosine similarity (≈ 0.73) in the non-paraphrase latent space, while
paraphrase sentence pairs tend to remain the same or decrease marginally (≈ 0.81). We call this
phenomenon “discriminative similarity.” The “with digit-count” assumption makes the discrimi-
native similarity comparatively more noticeable, as the mean cosine similarity of non-paraphrase
sentence pairs is 0.681 in the paraphrase latent space, which is lower than 0.711 when “without
digit-count” is the case.

To exploit the advantage of discriminative similarity for PI, the cosine similarities for Lp(S1)
& Lp(S2) and Lnp(S1) & Lnp(S2) are incorporated into our feature set as the primary features. All
the features are collectively presented in the next subsection.

Furthermore, we use the discriminative similarities (the examples with concrete figures are
shown in the parentheses of Tables 2 and 3) to measure the reproducibility of our latent space pre-
training. We additionally pre-train both types of latent spaces for 5 times, respectively, using the
same hyperparameter setting mentioned in Section 3.2.4 with different random seeds. The results
are shown in Figures 12 and 13. In both figures, it is consistent that non-paraphrase pairs tend
to have high similarities in non-paraphrase latent space while paraphrase pairs tend to maintain
the same or decrease slightly. Out of five runs of pre-training, compared to the previously pre-
trained spaces whose discriminative similarities are shown in Tables 2 and 3, the results of 5th run
of both types can yield nearly identical PI, NLI, or STS task performance while the others decrease
marginally. The results of reproducibility test confirm that our pre-training is robust for random
seeds.
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Figure 12. Reproducibility test for “with digit-count”.

Figure 13. Reproducibility test for “without digit-count”.

3.4 Features
Our latent space-related features (1-12) and lexical overlap features (13-19) are summarized in
Table 4. The features serve as input to multiple independent classifiers for different task datasets.
Inspired by Ji and Eisenstein (2013), 1-4 are concatenated as basic features. Although 9-12 are
not directly related to our latent spaces, they are created along with 7-8 to augment the discrim-
inative similarity (5-6) for every sentence pair. Besides the fine-grained n-gram overlap features
(14-18) (Wan et al. 2006), we also enrich the granularity level by 13 (sentence level) and 19 (char-
acter level) (Popović 2015). As mentioned first in Section 2.1, both types of features are mutually
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Table 4. Latent space-related features and lexical overlap features.

Features

1 Lp(S1)+ Lp(S2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 |Lp(S1 − Lp(S2)|
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Lnp(S1)+ Lnp(S2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 |Lnp(S1)− Lnp(S2)|
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 cosine similarity between Lp(S1)&Lp(S2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 cosine similarity between Lnp(S1)&Lnp(S2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 euclidean distance from Lp(S1) to Lnp(S1)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 euclidean distance from Lp(S2) to Lnp(S2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 |entity_count(S1)− −entity_count(S2)|
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 |action_count(S1)− −action_count(S2)|
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 |digit_count(S1)− −digit_count(S2)|
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 word_mover_distance(entity_action_tokens_S1, entity_action_tokens_S2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 Levenshtein_edit_distance(S1, S2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 unigram recall/precision
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 bigram recall/precision
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 trigram recall/precision
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17 BLEU recall/precision
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18 absolute difference of sentence length
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19 chrf recall/precision (1-6)

complementary to each other, and we delve deeper into this by performing a concrete analysis in
Section 4.

4. Experimental results
The experimental results presented in this section are to verify what we claimed in the previous
sections. First, to test the effectiveness of two weighted reward components, the ablation study
is performed. Then we apply the pre-trained latent spaces to multiple PI, NLI, and STS bench-
marks to confirm the pre-trained task-specific architecture of PEFBAT is useful for different tasks.
The experimental results presented in the last subsection explain the mutual complementation
mentioned in Sections 2.1 and 3.4.

4.1 Ablation study for reward components
As the implementation details introduced in Section 3.2.2, three thresholds (sent-len with sent-
len-diff to assist j-dist) are considered as a whole package to determine whether two reward
components should be weighted strongly or weakly, which is the way to represent whether a sen-
tence pair exhibits (non)paraphrase-like characteristics. With their functionality, sentence pairs
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that have (non)paraphrase-like characteristics tend to obtain similar latent representations in
(non)paraphrase latent spaces, which is conducive to the generation of discriminative features.

To verify our claim, the results of ablation study are presented in this subsection. Note that two
things listed below are invariable in the study.

(1) No matter for a single sentence or a sentence pair, three word embedding components
(entity, action, and modification) convey the principal semantics in the initial sentence
representation, so they are deemed as a must in our work and not changed in the study.
This is validated by one good experimental result produced by the latent spaces pre-trained
without the participation of two weighted reward components.

(2) The maximum number of the reward component is two, namely total dimensionality is
600 (300 each), because when the number exceeds two, the latent spaces are not trainable—
the error loss hardly drops. Even though the spaces were trainable, we would not increase
the number as too many reward components would depreciate the effectiveness of word-
embedding components.

The models that participate in the ablation study are concluded below.

• baseline: our baseline is pure feature engineering: the lexical overlap features (13-19) in
Table 4.

• origin: the two latent spaces are pre-trained based on the implementation details described
in Section 3.2.

• no j-dist: the two latent spaces are pre-trained based on the implementation details
described in Section 3.2 except that the reward component weighted by j-dist is removed
during pre-training.

• no sent-factor: the two latent spaces are pre-trained based on the implementation details
described in Section 3.2 except that the reward component weighted by the combination
of sent-len and sent-len-diff is removed during pre-training.

• no reward: the two latent spaces are pre-trained based on the implementation details
described in Section 3.2 except that the two weighted reward components are removed
during pre-training.

• extra factor: the total dimensionality of two reward components is 600. So besides j-dist,
sent-len and sent-len-diff , we include the thresholds of the lexical overlap features (13-19)
in Table 4 to weight two reward components together. The 600 dimensionality is evenly
distributed by the thresholds. Accordingly, this model is the two latent spaces pre-trained
based on the implementation details described in Section 3.2 except that the two reward
components are weighted by multiple thresholds during pre-training.

As for evaluation, we perform PI on MRPC (Dolan et al. 2004) using the SVM7 with linear
kernel as the classifier, and metric is accuracy and F1 score.h Except the baseline, the other mod-
els produce the latent space-related features (1-12), which are combined with the lexical overlap
features (13-19) in Table 4 as input to the classifier. The experimental results are shown in Table 5,
from which we can conclude the following three main points.

Firstly, the performance of “extra factor” model, regardless of pre-trained type, is not satisfac-
tory. The results are within our expectation, because using lots of characteristics-based thresholds

hUnlike other tasks like VUA-18 (Leong, Beigman Klebanov, and Shutova., 2018) and VUA-20 (Leong et al. 2020) for
metaphor detection, target labels are extremely unevenly distributed with 90 and 10%, where recall should also be considered
as a critical metric for evaluation given similar F1 score. However, since there is no such task in our experiments, we use the
two metrics only.

https://doi.org/10.1017/S135132492200050X Published online by Cambridge University Press

https://doi.org/10.1017/S135132492200050X


Natural Language Engineering 1085

Table 5. The experimental results of the ablation study. The bold values indicate the best
performance for both pre-trained types.

Models Pre-trained type Accuracy (%) F1 score (%)

baseline - 75.2 82.6

origin “with digit-count” 77.6 84.4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no j-dist “with digit-count” 76.8 83.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no sent-factor “with digit-count” 76.9 84.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no reward “with digit-count” 77.2 84.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

extra factor “with digit-count” 76.5 83.4

origin “without digit-count” 78.2 84.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no j-dist “without digit-count” 76.4 83.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no sent-factor “without digit-count” 77.3 84.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

no reward “without digit-count” 77.1 84.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

extra factor “without digit-count” 76.6 83.5

to weight two reward components is tantamount to pure feature engineering, as the effectiveness
of three word embedding components is lessened.

Secondly, the performance of “no reward” model, although is lower than “origin” in both pre-
trained types, reflects the fact that the three weighted word-embedding components are fairly
robust to convey important semantics in the initial sentence-pair representations. As shown in
the table, it is competitive with the other two models (“no j-dist” & “no sent-factor”) containing a
single weighted reward component in the initial sentence-pair representations.

Thirdly, the performance of “origin” is competitive with various task-specific DNNs.1 While
performance level is similar, our pre-trained latent spaces have an additional advantage: the
fixed parameters can be used for other task datasets as well, which is parameter-efficient and
demonstrated in the next subsection. In addition, two sub-points listed below need to be further
explained.

(a) The pre-trained type “with digit-count” is the assumption we make in Section 3.2.2 that
when there are too many digital numbers occurring in a sentence pair, the influence of
semantics represented in the entity component should be lessened. Therefore, the thresh-
old of digit-count is used to determine whether the entity component should be weighted
strongly or weakly. Although the assumption is less effective for MRPC, it can indeed
take effect in some other benchmarks, which is shown in the experimental results in
Section 4.2.

(b) The functionality of two weighted reward components is to have sentence pairs with
(non)paraphrase-like characteristics tend to obtain similar latent representations in
(non)paraphrase latent spaces. As a result shown in Tables 2 and 3, non-paraphrase sen-
tence pairs tend to have higher cosine similarity (≈ 0.73) in the non-paraphrase latent
space, while paraphrase sentence pairs have the tendency to remain the same or decrease
marginally (≈ 0.81). The discriminative similarity is further justified in this ablation study.
As shown in Tables 6 and 7, the phenomenon is not reflected by “no reward” model: for
both types of sentence pairs, they all tend to have higher cosine similarities in paraphrase
latent spaces. This is the main reason why “origin” outperforms “no reward.” Later in
Section 4.3, we delve deeper into the utility of discriminative similarity.
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Table 6. Discriminative similarity is not reflected by “no reward” model “with digit-count”.

Lp(S1) & Lp(S2) Lp(S1) & Lp(S2) Lnp(S1) & Lnp(S2) Lnp(S1) & Lnp(S2)

Sentence pairs Mean Std. Mean Std.

Paraphrase 0.778 0.164 0.763 (−0.015) 0.174
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Non-paraphrase 0.682 0.182 0.654 (−0.028) 0.207

Table 7. Dsicriminative similarity is not reflected by “no reward” model “without digit-count”.

Lp(S1) & Lp(S2) Lp(S1) & Lp(S2) Lnp(S1) & Lnp(S2) Lnp(S1) & Lnp(S2)

Sentence pairs Mean Std. Mean Std.

Paraphrase 0.755 0.170 0.746 (−0.009) 0.184
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Non-paraphrase 0.644 0.196 0.644 (0.000) 0.201

In addition, the latent spaces with randomly initialized parameters without pre-training
achieve on-par performance with the baseline, which justifies the usefulness of pre-training. We
also take a probe into the replacement; for example, we replace j-dist with the Levenshtein dis-
tance (feature 13 in Table 4) to weight one reward component, but the results do not outperform
“origin.”

4.2 Pre-trained latent spaces with manually adjustable thresholds
The experimental results shown in this subsection is to verify three of our claims: (1) the pre-
trained latent spaces are not limited to MRPC (Dolan et al.); (2) PEFBAT can also handle NLI
and STS tasks other than PI tasks; (3) PEFBAT is capable of power-efficient continual learning.
We apply the pre-trained latent spaces to multiple benchmarks including six PI tasks, two NLI
tasks, and two STS tasks. Besides, the task performance achieved by adapter-BERT (Houlsby et al.
2019b) is considered as our upper bound, because without the consideration of power efficiency,
it is so far a relatively high-end implementation of parameter-efficient method. Before stepping
into the details, we underline that all the tasks are tested with the fixed parameters of pre-trained
latent spaces without task-specific re-training. Our open-source code is available under this
link.i

Metrics & adjusted thresholds: We experiment with six PI tasks, two NLI and STS tasks, respec-
tively, and the results are summarized in Table 8. For the PI tasks including MRPC (Dolan et
al. 2004), PAN (Madnani et al. 2012), QQPj (Iyer et al. 2017), Twitter-URL (Lan et al. 2017),
and PARADE (He et al. 2020), accuracy/F1 scores are reported; except for PAWS-wiki (Zhang
et al. 2019), we report accuracy/AUC scores complying with the metric presented in the origi-
nal paper. Accuracy scores are reported for two NLI tasks: SICK-E (Marelli et al. 2014) and SciTail
(Khot, Sabharwal, and Clark 2018). Pearson/Spearman correlations are reported for two STS tasks:
SICK-R (Marelli et al. 2014) and STS-B (Cer et al. 2017).

The “default thresholds” are namely the thresholds shown in Table 1, which are determined by
the characteristics of the training dataset of MRPC (Dolan et al. 2004). The “adjusted thresholds”
indicate that wemanually adjust the thresholds to weight corresponding components according to
the characteristics of different training datasets. For example, the thresholds of sent-len-diff and

ihttps://github.com/ryuliuxiaodong/latentspace.
jDue to the unavailable labels of test dataset constrained by the policy of GLUE benchmark (Wang et al. 2018), the task

performance of QQP is reported on the development dataset.
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Table 8. The experimental results scored on ten tasks. For clear illustration, the omitted unit of all accuracy metrics is %. The number below each task name is the size of training
dataset. The underlined values indicate better performance than the upper bound.

MRPC PAN QQP Twitter-URL PAWS-wiki PARADE SICK-R STS-B SICK-E SciTail

4k 10k 363k 42.2k 49.4k 7.5k 4.4k 5.7k 4.4k 23k

Default thresholds 77.6/84.4 93.3/93.3 81.2/74.5 88.3/69.3 74.1/78.6 74.5/71.4 82.1/76.7 72.3/72.0 85.6 79.3

“with digit-count”


Adjusted thresholds - 93.5/93.5 81.4/74.6 88.4/70.1 74.7/79.6 75.0/71.1 - - - 79.4

“with digit-count”


Default thresholds 78.2/84.8 93.5/93.4 81.5/74.7 88.3/68.6 74.5/79.9 73.6/68.4 82.3/76.9 72.3/71.8 85.2 79.4

“with digit-count”


Adjusted thresholds - 93.6/93.5 81.3/75.1 88.3/69.1 74.8/80.4 73.7/68.6 - - - 79.8

“with digit-count”


Trainable parameters < 0.001M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M ≈ 0.48M


Parameter update 10 3 37 5 6 2 3 3 3 4

(minutes)

Upper bound 82.5/86.7 95.4/95.4 84.7/79.6 88.2/73.9 86.7/93.6 72.7/70.9 86.2/80.4 83.2/81.4 84.8 88.6

(adapter-BERT)


Trainable parameters ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Training epochs 20 10 3 10 10 20 50 50 50 3


Parameter update 17 21 183 70 86 30 50 60 50 13

(minutes)
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j-dist are adjusted to 8 and 0.8, respectively for PARADE (He et al. 2020) task. In addition, the
“adjusted thresholds” only works for the task datasets labeled with binary class, including five PI
tasks and one NLI task SciTail (Khot et al. 2018) whose sentence pairs are labeled with entails or
neutral.
Classifier settings and adapter-BERT implementation: For small task datasets like MRPC contain-
ing less than 10k sentence pairs, we make attempts on both the SVM7 with linear kernel andMLP,
and report the one with better task performance. The rest of tasks with relatively big data size are
tested with only MLP. Accuracy is our measurement to tune classifiers. When tuning the SVM,
we use development dataset to determine hyperparameter c by means of grid search and then
combine it with training dataset to train the classifier. As for MLP, we use the widely adopted
hyperparameters for fine-tuning BERT (Devlin et al. 2019); the small difference is that our train-
ing epochs are 100 for all tasks and batch size is in {8, 16, 32}. Thus, the development dataset
is directly combined with the training dataset to train the classifier. Our MLP structure for PI
tasks is “432 - 900 (ReLU) - 100 (ReLU) - 2 (softmax + cross entropy)” (0.479M parameters in
total).

For NLI and STS tasks, the hidden layers of MLP are the same, but output length and loss
functionmight be different (see classifier-tuning examples in our open-source code9). As reflected
in Yin et al. (2016)’s work, seven linguistic features like the number of hypernyms in a sentence
pair are particularly useful for NLI tasks. We append them to our PI features and thus the input
length of MLP for NLI tasks is 439. However, the seven additional linguistic features improve STS
tasks marginally and can bring side effect to PI tasks, and therefore are not utilized.

Our MLP structure is uniform and heuristics-based. Although it is possible to achieve better
task performance by tailoring task-specific settings—such as different layer length, dropout rate,
layer normalization, etc.—for different tasks, we decide to use the simplest classifier setting to test
the effectiveness of PEFBAT for a pure academic demonstration.

We use bert-for-tf2k implementation for adapter-BERT. In light of adapter’s performance on
GLUE benchmark (Wang et al. 2018), we choose the adapter size 64 based on BERT-base (≈ 3M
trainable parameters) and follow the recommended hyperparameters presented in the original
paper. For each task, we perform fine-tuning with four different training epochs {3, 10, 20, 50},
and report the one that achieves optimal performance. An exception is QQP (Iyer et al. 2017),
because 3 epochs are sufficient to process its large size of data.
Discussion on performance:We discuss our task performance from three facets: the effect of “with
digit-count” assumption; default and adjusted thresholds; the consumption of computational and
memory resources.

The with digit-count model works for the task datasets that are sensitive to digits. In particular,
PARADE (He et al. 2020) comprises computer science-related literature, and thus digits are com-
mon in its sentence pairs. As a result, the latent spaces pre-trained with the digit-count threshold
contained in the dual weighting scheme are comparatively effective for this task, which validates
the assumption that when there are too many digits occurring in a sentence pair, the influence
of semantics represented in the entity component should be lessened. On the other hand, the
assumption is not always effective. For example, PAWS (Zhang et al. 2019) is created to measure
models’ sensitivity to word order and syntactic structure. As expected, the without digit-count
model is comparatively effective for this task. To summarize, there is no absolutely right or wrong
about this assumption, because from the perspective of continual learning, tasks from customers
definitely vary to some extent—some resemble PARADE while some do not.

The adjusted thresholds can improve corresponding tasks to some extent but not significantly,
which reflects the fact that our latent spaces pre-trained with default thresholds are already useful
for various tasks, and not only limited to MRPC (Dolan et al. 2004). This is further validated

khttps://github.com/kpe/bert-for-tf2.
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Table 9. The experimental results of ten tasks tuned with only 3 training epochs on adapter-BERT. The underlined values
indicate decreased performance. The bold underlined values indicate significantly decreased performance.

MRPC PAN QQP Twitter-URL PAWS-wiki PARADE SICK-R STS-B SICK-E SciTail

4k 10k 363k 42.2k 49.4k 7.5k 4.4k 5.7k 4.4k 23k

Adapter-BERT 74.3/83.0 94.2/94.1 84.7/79.6 87.3/72.2 57.7/58.4 71.0/70.4 58.9/53.5 69.1/65.2 56.9 88.6


Trainable
parameters

≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M ≈ 3M

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Training
epochs

3 3 3 3 3 3 3 3 3 3

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Parameter
update

3 7 183 22 26 5 3 4 4 13

(minutes)

by the task performance of PARADE and SICK-E: the default thresholds based on the with digit-
countmodel outperform the upper bound. Asmentioned earlier in this subsection, the adjustment
only works for the task datasets labeled with binary class, and we recommend it for practical use.
To make the reuse of PEFBAT convenient, we have coded programming interfaces including the
function of adjusting thresholds, which can be found in our open-source code.9

Our task performance can be categorized into three groups: the ones that outperform the upper
bound (Twitter-URL and SICK-E in terms of accuracy, PARADE in terms of accuracy and F1
score); moderate difference to the upper bound (MRPC, PAN, QQP, and SICK-R); noticeable
difference to the upper bound (PAWS-wiki, STS-B, and SciTail). The performance level is fairly
competitive as the consumption of computational and memory resources is substantially light. As
shown in Table 8, the trainable parameters are only 16% of the upper bound in the case ofMLP, and
the time saved for parameter update ranges from 69% (1 - 4/13) to 96% (1 - 2/50). An exception is
the classifier tuned for MRPC, but this case is based on the SVM classifier, which consumes CPU
resource not as expensively as GPU computation (Strubell et al. 2019). It is obvious that tuning
adapter-BERT (Houlsby et al. 2019b) on the small tasks is more expensive than fine-tuning origi-
nal BERT (Devlin et al. 2019). This is mainly because of the requirement of large training epochs:
20 epochs for MRPC and PARADE; 50 epochs for SICK-E, SICK-R, and STS-B. It can be argued
that tuning adapter-BERT with only 3 training epochs for each task can consume less computing
time and outperforms PEFBAT. To confirm if this is the case, we perform additional experiments,
and the results are presented in Table 9. Except for QQP and SciTail whose previous epochs are 3,
only the performance of three tasks (PAN, Twitter-URL, and PARADE) decreases marginally, but
the rest drops significantly. Besides, although corresponding computing time indeed decreases a
lot, it is still above ours. With the advantage of slight consumption of computational and memory
resources for each task, PEFBAT is capable of power-efficient continual learning, especially when
tasks arriving from customers increase exponentially.

4.3 Analysis of discriminative similarity
Two experimental results are quite surprising to us. Firstly, PARADE (He et al. 2020) is so far
the most difficult PI task for the BERT-family, according to the evidence provided in the original
paper. However, PEFBAT (75.0/71.1) outperforms not only adapter-BERT (72.7/70.9) (Houlsby et
al. 2019a) but also BERT-large (73.6/70.9) (Devlin et al. 2019) and SciBERT (74.1/72.3) (Beltagy,
Lo, and Cohan 2019) in terms of accuracy. Secondly, PAWS (Zhang et al. 2019) is created to
measure models’ sensitivity to word order and syntactic structure. Supposedly, our performance
level should not be satisfactory, but when compared to the experimental results reported in the
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Figure 14. Sentence-pair distributions (predicted test dataset of PARADE) at each level of Jaccard distance from 0.70 to 0.80.

original paper, PEFBAT outperforms the baseline BOW (55.8/41.1) significantly and is better than
most task-specific DNNs without pre-training using PAWS unlabeled corpus.

To explore the rationale behind the performance, we perform statistical analysis to examine
the effectiveness of our discriminative similarity, namely the features 5-6 in Table 4. At the same
level of Jaccard distance between sentence pairs, lexical overlap features are supposedly hard to
differentiate between paraphrase pairs and non-paraphrase pairs, then to what degree does our
discriminative similarity enhance the ability of differentiation? The visualization to illustrate the
analysis is presented in Figures 14, 15, and 16.

The analysis is performed during the process of evaluating the test dataset of PARADE (based
on with digit-count adjusted thresholds). At 0.78 of Jaccard distance shown in Figure 14, we dis-
cover that paraphrase and non-paraphrase have nearly identical number of sentence pairs (10
and 11, respectively), and the accuracy of PI is 67% (see Figure 15) surpassing 52% if twenty-
one sentence pairs are all guessed as true negative. Then the cosine similarities of those sentence
pairs in paraphrase and non-paraphrase latent spaces are presented in Figure 16 corresponding to
the features 5-6 in Table 4. In Figure 16, a hypothetical boundary line is drawn, which can have
the two features achieve accuracy of 67% already with 9 true positive pairs and 5 true negative
pairs, although the real numbers of true positive and negative pairs are 8 and 6, respectively, as
shown in Figure 14. The combination of 8 and 6 is better than 9 and 5 as the numbers of para-
phrase and non-paraphrase sentence pairs are 10 and 11, respectively, at 0.78 of Jaccard distance.
We believe that it is our design of the features 7-12 (explained in Section 3.4) that augments the
features 5-6.

To respond to what we mentioned in Sections 2.1 and 3.4, our latent space-related features
are crucial when lexical overlaps are indistinguishable between paraphrase and non-paraphrase
sentence pairs, while lexical overlap features are the strong basis when dealing with task datasets
like PAN (Madnani et al. 2012) (see Figure 3). Both types of features are mutually complementary
to each other.
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Figure 15. Accuracies of paraphrase identification (predicted test dataset of PARADE) at each level of Jaccard distance from
0.70 to 0.80.

Figure 16. Cosine similarities in (non)paraphrase space for sentence pairs (PARADE test dataset) at Jaccard distance 0.78.

5. Conclusion and future work
In this article, for PI task, we proposed a new method (PEFBAT) to improve the usage of param-
eters efficiently for feature-based transfer. Our motivation, research goal, and implementation
details were described in Sections 1 and 3, respectively. PEFBAT can also handle NLI and STS
tasks, and its essence is a pre-trained task-specific architecture, the fixed parameters of which can
be shared by multiple classifiers with small additional parameters. As a result, for each task, the
computational cost left involving parameter update is only generated from classifier-tuning: the
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features output from the architecture combined with lexical overlap features are fed into a sin-
gle classifier for tuning. Such technical novelty can lead to slight consumption of computational
and memory resources for each task and is also capable of power-efficient continual learning. In
Section 4, we experimented with multiple benchmarks, and the results showed that PEFBAT is
competitive with adapter-BERT over some tasks while consuming only 16% trainable parameters
and saving 69-96% time for parameter update.We also performed the ablation study and technical
analysis to help further understand the mechanism of PEFBAT.

One of our future work is to apply PEFBAT to low-resource natural languages with limited
labeled and unlabeled data (Hedderich et al. 2021). Given any research project, we will put this
idea into practice, as there are three main reasons listed below that PEFBAT is implementable to
low-resource settings.

(1) Nowadays, what we can benefit from transfer learning mechanism becomes a common
sense: transferring the parameters of a network trained on large corpora to the related
problems with little data. However, we have managed to leverage the mechanism in a
reverse fashion. Our task-specific architecture (two latent spaces) is pre-trained with the
training dataset of MRPC (Dolan et al. 2004), which is the smallest English paraphrase cor-
pus. Nevertheless, the fixed parameters of pre-trained latent spaces can be used by other
task datasets as well, which is beneficial to the scenario of limited labeled data.

(2) It is shown in Mohiuddin and Joty (2020)’s work that fastText (Mikolov et al. 2018) is
implementable to low-resource natural languages. The rationale is obvious as fastText
is not deep learning architecture-based, which is beneficial to the scenario of limited
unlabeled data.

(3) POS-tags provided by the NLTK6 can be implemented using HMMs (Hidden Markov
Models),l a probabilistic approach to assigning tags. Since the approach is also not deep
learning architecture-based, there is no strict requirement of large labeled data for training
parameters.

We also consider another future work by applying PEFBAT to cloud environment (Houlsby
et al. 2019b). As PEFBAT is capable of power-efficient continual learning, and thus given enough
research funds, whether it can also provide the same power-efficient manner for cloud environ-
ment is an interesting topic for us. We plan to launch an AWS EC2 instance to deploy PEFBAT,
and then provide classifier interfaces for customers. Suppose the MLP classifiers that customers
use have the same size as we use in this article (0.479M parameters per classifier), then each clas-
sifier accounts only for approximately 3.7MB memory given that one parameter needs 8-byte
memory. We hold a positive attitude towards this future work, as when we perform simulation by
running 20 classifiers in parallel on our local device,3 parameter update is as fast as we run them
individually. Our goal is to guarantee at least 1000 classifiers can run in parallel given a powerful
EC2 instance, as tasks arriving from customers can be simultaneous.
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