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CONNECTEDNESS OF THE INVERTIBLES 
IN CERTAIN NEST ALGEBRAS 

KENNETH R. DAVIDSON, JOHN LINDSAY ORR AND DAVID R. PITTS 

ABSTRACT. We show that if fA£ is a nest with no isolated atoms of finite multiplicity, 
then the invertibles in T(X) are connected. The key technical ingredient is that in 
such nest algebras, every operator with zero atomic diagonal part factors through the 
non-atomic part of fA£. In particular, these results apply for the Cantor nest. 

In [3], the first two authors showed that the invertible elements are connected in every 
nest algebra of infinite multiplicity, which means that every atom is infinite rank. In this 
paper, we extend these results to include nests with finite rank atoms, as long as they are 
not isolated points in the order structure of fA£ In particular, this applies to the Cantor 
nest [2, pp. 23, 27] which is atomic with all finite atoms, but is order equivalent to the 
Cantor set which is perfect. 

Our result reduces the connectedness of the invertibles question for arbitrary nests to 
the case of the upper triangular operators with respect to a fixed orthonormal basis en for 
n>\. 

A nest will be a complete chain C\C of closed subspaces of a separable Hilbert space. 
The corresponding nest algebra T(îAt) consists of all operators leaving each element of 
fAt invariant. An interval of fA£ is a projection onto the difference of two subspaces in fA£. 

Minimal intervals of iA£ are called atoms. The expectations A onto the atomic part and 
Ay onto the finite atoms of fA£ are given by 

A(T):=Y,EkTEk + J2FzTFz and Af(T) :=Y;EkTEk 

as Ek runs over the set of all finite rank atoms, and Fi runs over all infinite rank atoms. The 
projection Pf = A/(7) projects onto the sum of these finite rank atoms, and P^ = I — Pj 
is the projection onto the infinite multiplicity part of the nest. 

Likewise Pa = A(7) is the projection onto the atomic part of 9\i and Pc = I — Pa is the 
projection onto the continuous part. 

Every nest is order equivalent to a compact subset Q of the unit interval. Each atom 
corresponds to a component of the complement of Q in [0,1]. Every nest induces a 
spectral measure on Q. The continuous part corresponds to the non-atomic part of this 
measure, and may be supported only on the maximal perfect subset Qo of Q, as the 
isolated points of Q. do not support a non-atomic measure. It is a consequence of the 
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CONNECTEDNESS OF THE INVERTIBLES 413 

Similarity Theorem for nests [1] that each nest fA£ is similar to another nest which has a 
continuous part with full support Qo- In this case, we say that f7\£ has maximal non-atomic 
part. See [2] for an overview of these ideas. 

In [3], some matrix manipulation techniques are combined with the factorization 
results of [5] to show that the invertibles are connected in every nest that has no finite rank 
atoms. That is the starting point for this paper. The key new ingredient is a factorization 
theorem which shows that if Ay(T) = 0, then T can be factored through P^. It is easy 
to see why finite rank atoms cannot be isolated for this result. Then the off diagonal 
part of invertible operators can be shunted over to the infinite part, and eliminated by a 
continuous path of invertibles. 

1. Factorization. 

THEOREM 1.1. Suppose that 0\i is a nest with no isolated atoms of finite multiplicity 
and with maximal non-atomic part. Let T G T(fA0 be such that Af(T) = 0. Then there 
are operators A and B in T(fA0 such that T = APooB. 

PROOF. Notice that P^ meets every interval which is not a finite rank atom. In fact 
one can partition P^ into pairwise orthogonal projections PQ and Pik for /, k > 1 with 
this same property. 

For each finite rank atom Ek of fA£, let Gk be the upper end point of Ek. Since 
EkT = EkTGj- is compact, for each k > 1 we can pick a decreasing sequence N^ in fAf 
with Gk = A/>i Ni%k so that 

(1) " £ i\\EkTNLk\\ < oo. 
a>i 

Set Nomk = I for each k, and define intervals JLk = JV,_I .* — NLk for z, k > 1. 
Choose isometries Vuk mapping Ek into (NLk — Gk)Pik. Notice that V*k belongs to 

T(fA0. Then we can define operators in T(fA0 by 

^ = E ~Kk and B= E iVijtEkTJiJt. 
a>l / i.k>\ 

Note that the factors of 1 / / in the first sum ensure that A is bounded. To see that B is 
bounded, notice that 

#o •= E iViJcEkTJuc 
i>2,k>\ 

is compact by (1). On the other hand, 

B - Bo = ( E Vu) (P/T - E EkTNlJt) 

is bounded as T,k>\ EkTN^k is compact by (1) again. We obtain 

AB = AP{B = PfT, 
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where Pi = E/.*>i Pa- By [4], there are operators A' = A'P0, and B' = P0B
f in f(fAO 

such that A'PQB' = P^. Hence 

(A +A')POQ{B + B'POQT) = AB+A'B'P^T 

= PfT + PooT=T. 

This is the desired factorization. • 

COROLLARY 1.2. Suppose that 9\C is a nest with no isolated atoms of finite multiplicity. 
Let T G T(fAO be such that Af(T) = 0. Then there are operators A, B and P in T(fA0 such 
that P is an idempotent with A/(P) = 0 so that Tfactors as T = APB. 

PROOF. By the Similarity Theorem [ 1 ], there is an invertible operator S such that S9l 
has maximal non-atomic part. Use Theorem 1.1 to factor STS~l as AP^B. Then 

T = (srlAS)(srl PooS)(s-{ BS) 

is the desired factorization. • 

2. Connectedness. 

THEOREM 2.1. Suppose that 9£ Is a nest with no isolated atoms of finite multiplicity. 
Then the set of invertible elements ofcT(9{) is connected. 

PROOF. First we replace 9si by a similar nest with a maximal non-atomic part of 
uniform infinite multiplicity, so that the infinite multiplicity part splits as two unitarily 
equivalent parts. Thus we may decompose 9{ as 

pf9( 0 P^M = PfM 0 (#i e tt2) 

where 9(\ and ^ are identified with POQ9{. Let Pi be the orthogonal projections onto tf 
for/ = 1,2. 

Let T be an invertible element of f (1A0- With respect to the decomposition M = 
Pf9{ 0 POQM, the operator T will have the matrix form 

T = 
A B 
C D 

Moreover, with respect to the decomposition T^rt - 9i\ 0 2£, we may think of D as a 
2 by 2 operator matrix: 

^ 2 1 ^ 2 2 
(2) D = 

By Proposition 2.2 of [3], we may approximate D22 by an element D'22 so that there 
are elements X and Y in T(P2^0 satisfying JKD^^ = 7. Take this approximation to be 
within e/2 where £ = || T_11|_1. Then T may be connected by a straight line to the matrix 
replacing D22 by Z)^. Thus we may (and do) assume for convenience of notation that 
D22 has this property. 
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Now by the proof of Theorem 1.4 of [3], there are invertible matrices in ^(Poo^O 
which, with respect to the decomposition Pœtt = #i ® ^6, have the form 

X = * * 
0 X 

and Y = 

Also, by that same theorem, these matrices are connected to the identity. So Tis connected 
to the identity exactly when 

(3) T' = 

is connected to the identity. Moreover 

\A B] 
[C D\ 

\I 0 
[O Y = 

* * 
0 X 

A i 
A i 

Di2 

D22 

A' B' 
C D' 

* * 

Now by Lemma 1.2 of [3], we may use Gaussian elimination to connect T' to an 
element of the form 

r A" ft" m 
E 0 
0 / 

\A" B" 0-
(4) T"=\C" D" 0 | 

L 0 0 / . 
with respect to the decompositions Pj'H © 9i\ © 9{2 and 5/"' © ty respectively, where 
?{'=Pf!rt®!>{i.L(it 

E0=E- Af(E) -Pt = 

so that A/(E0) = 0. 
Apply Theorem 1.1 to EQ to factor it as 

- MA") 
c" 

B" 
D"-I 

Eo = FP]G = 0 
0 

Fi] [ 0 0 
[G\ G2 

in T(/VfA0- Then notice that 

(5) 
\Af(A") 0 Fi] 

0 I F2\ 
0 0 / J 

\ J ° 
0 / 

0" 
0 
/ . 

= 
A" B" 
C" D" 
G\ G2 

Fx 

F2 

I 

E F 
G I 

is connected to the identity. 
However, as E is invertible, Gaussian elimination now connects this to 

/ -E~lF 
(6) 

/ 
-GE~X 0 

E 0 
0 I~GE~lF 

Since the 2,2 entry is connected to the identity by [3], we have connected the identity to 
T" which completes the desired path. • 

The condition that fA£ have no isolated atoms of finite multiplicity can be slightly 
weakened. 

COROLLARY 2.2. Let 0\[be a nest for which there is a finite bound N on the number 
of consecutive finite rank atoms in the nest. Then the invertibles are connected in T(fA0-
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PROOF. Let Jn be the maximal intervals of 0\[ consisting of finite rank atoms. Given 
an invertible element T of T(iAO, factor it as the product T = DAS where 

D = A(T) + PC and A = YJJnD'xTJn+POQ and S = A~lD']T. 
n 

The first factor connects to the identity in the diagonal, and the second connects to the 
identity by a straight line. To see this latter claim, note that ,4 is the direct sum of operators 
on nests with at most N elements. Hence A has the form / + Q where Q is strictly upper 
triangular and is nilpotent of order at most N. So / + tQ has inverse £jJL0(

—'£?)*• To 
connect the third factor to the identity, replace each interval Jn by a single (finite rank) 
atom and each infinité rank atom Fi with a continuous nest on F ^ . This new nest <M. 
satisfies the conditions of the last theorem, and S belongs to 1(9^). Connect S to the 
identity in T(iftf) by a path St using Theorem 2.1. Then S't := A^(St)~

]St is another such 
path with diagonal part (in M) equal to the identity. This path then lies in T(fAO as well. • 

REMARK 2.3. The discrete intervals of a nest are the maximal open intervals without 
limit points or infinite rank atoms. These intervals consist of finite rank atoms with order 
type LJ, uf, uf + LJ, or n = { 1 , . . . , n}. Every invertible operator in T(fA£) factors as a 
product of two operators. The first has the identity operator as its compression to each 
discrete interval; and the second is the direct sum of invertible operators on each discrete 
interval plus the projection onto the complement of these intervals. 

The first of these factors can be connected to the identity in the same manner as 
in the corollary above. So the problem reduces to dealing with the invertible elements 
for a nest of order type uf + to. However, this case is easily reduced to the analysis 
of the order w nest. Also, since every finite rank matrix has an upper triangular form, 
it is easy to replace finite rank atoms with a set of rank one atoms. This reduces the 
connectedness question for invertibles in arbitrary nest algebras to the standard algebra 
of upper triangular operators with respect to an orthonormal basis en for n > 1. 

3. Products of symmetries. A somewhat stronger result can be obtained from the 
proof of Theorem 2.1. Call a square root of the identity in a unital Banach algebra a 
symmetry. It is easy to see that a symmetry in any Banach algebra can be connected to the 
identity. Hence if an invertible operator can be factored as a finite product of symmetries, 
it can be connected to the identity. Of course, the converse is not always true: the group of 
invertible operators in C[0,1] is connected, but C[0,1] does not contain any symmetries 
which are not scalar multiples of the identity. However, for the nest algebras we consider, 
we have Proposition 3.5 and Corollary 3.6 below which show that each invertible element 
is the product of a diagonal operator and a finite product of symmetries. The following 
lemma is known; we include it for completeness. 

LEMMA 3.1. Let A Ç <B(9{) be a unital weakly closed operator algebra. 
\ I A 

(a) If A G %., the elementary operator E = 

M2(A). 
0 / 

is a product of two symmetries in 
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(b) Let U,VEA satisfy UV = 1 VU ^ I. The operators 

X = 
U 0 

I-VU V and Y = 
V I-VU 
0 U 

are each products of six symmetries. 
(c) Suppose in addition, that H is infinite dimensional, A is an invertible element of 

\ A 0' 
A, and A is isomorphic to &§§ #(#"). Then the operator Z '• 

0 / 
is a product of four 

PROOF. For (a), note that 

E = I 
0 

-A] 
-I 

17 
0 

0 
- / 

For part (b), observe that X and 7 are inverses of each other, hence if one is the product 
of symmetries, so is the other. We show that X is the product of six symmetries. Indeed, 
a computation shows 

(7) 
V I- VU 
0 U 

= 
/ 01 
U l\ 

[0 71 
[/ OJ 

[/ 0] 
[V l\ 

I U 
0 I-2VU 

The second and fourth terms in this factorization are symmetries, while the other two 
terms are products of two symmetries. Part (b) follows. 

Before proving (c), we pause to introduce some notation. For each /', suppose At G 
#0£) and let àmg{A\,A2,...) = © S Ai acting on ©£?, 9i. 

To prove (c) we resort to a modification of a standard trick: use the isomorphism of 
A with Si (g) #(;#) to view Z as diag(4, / , / , . . . ) . Let 

S\ = diag 1 0 A 
A~] 0 

S2 = diag ( 

S3 = diag(/,f( 

54 = diagl7, 

Then Z = S\S2SiS4 is a prod uctof4s 

7 
' 0 
A'1 

'0 71 
7 o l ' 

) A-n 
i 0 J 
[0 7] 
[i oj 

ym metri< 

A' 
0 1 

[0 I" 
[l 0 

0 
A-1 

A' 
0 1 • 

, . . . ) , -

ro A-*' 
'[A 0 
[0 7 

' [7 0 

;s. 

, . . . ) , 

].. . .). 

, . . . ) , 

We remark that part (a) of Lemma 3.1 shows that when performing Gaussian elimi­
nation, two symmetries are needed for each elementary row or column operation. 

Recall from [3] that an operator X in a unital algebra A is interpolating if there are 
elements A, B G A such that AXB = I. 

LEMMA 3.2. Suppose M is a continuous nest. Then each invertible element ofl^M) 
is the product of at most 28 symmetries. 
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PROOF. By the Similarity Theorem, 1(94) and M2^T(94)sj are isomorphic. We will 
show that every invertible operator in Mii^iM)} factors as a product of at most 28 
symmetries. 

Suppose that 

I7?21 ^22 
R = 

is an invertible in Mii^T^M)). The proof of Theorem 1.4 of [3] together with parts (b) 
and (c) of Lemma 3.1 shows that \fR\\ is an interpolating element of 1(94), then R is 
the product of 16 symmetries. 

Now let T be an arbitrary invertible element of Mi (l(94)) • By Proposition 2.2 of [3], 

we may find an invertible element R of M2(l(94)) such that R\\ is interpolating and 

| | 7 - TR-{|| < 1. Write 77T1 = r j , * 

Gaussian elimination, we obtain the factorization, 

. Then A is invertible in 1(94) and performing 

77T1 = 7 ,4 0 
0 / 

/ 0 
0 D-CA~l 

I A~XB 
0 / 

Applying Lemma 3.1 we find that TR 
is the product of 28 symmetries. 

is the product of 12 symmetries, so T = TR XR 

LEMMA 3.3. Let 94. be a nest. If every atom of 94. has infinite dimension, then every 
invertible element of 1(94) is the product of at most 44 symmetries. 

PROOF. First note that if % is an infinite dimensional Hilbert space, and R G #(3C) is 
invertible, then R is the product of at most 16 symmetries. To see this, consider the polar 
decomposition of R, R = UP. Then U is a normal operator, so by spectral theory, U may 
be factored as U = U\ Ui, where both U\ and U2 have an infinite dimensional eigenspace 
corresponding to the eigenvalue 1. Now by Lemma 3.1(c), each of U\ and U2 may be 
factored as the product of 4 symmetries, so U is the product of 8 symmetries. Similar 
considerations show that P is the product of 8 symmetries, so R is the product of no more 
than 16 symmetries. Moreover, note that the terms in the factorization of Lemma 3.1(c) 
have norms at most max{||Z||, ||Z_11|}. Thus the 16 terms in the factorization ofR are all 
bounded by max{||/?||, \\R~l \\}. Consequently, an invertible operator which is the direct 
sum of bounded operators is also the product of 16 symmetries which are the direct sum 
of the corresponding factors of each summand. 

Given the previous lemma, we may assume that 94 has some infinite atoms. Now let 
T be an invertible element of 1{94) and factor T as T = AB, where A = (Pc + A(T)) and 

B = (Pc + A(r)) T. Now A(r) belongs to the direct sum of at most countably many 
copies of #(3C), where X is an infinite dimensional Hilbert space. So by the preceding 
paragraph, A is the product of at most 16 symmetries in ^{94) Pi (1(94)} . As in [3], we 
may view B as an element of a continuous nest algebra, so by Lemma 3.2, we see that T 
is the product of at most 16 + 28 = 44 symmetries. • 
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REMARK 3.4. The method used for factoring an invertible operator in #(X) into the 
product of symmetries above is simple, yet crude. A result of Radjavi [6] shows that it 
is possible to factor such operators into the product of 7 symmetries. For an interesting 
survey of factorization problems, see [7]. 

PROPOSITION 3.5. Suppose that fA£ is a nest with no isolated atoms of finite multiplicity. 
Then each invertible element T of^ftQ may be written as T - (&f(T) + Poo)S, where S 
is the product of at most 80 symmetries belonging to T(iA0-

PROOF. We shall examine the proof of Theorem 2.1 carefully. Let T be an invertible 
element of T(fA0- As in the proof of Theorem 2.1, we first assume that lower-right corner, 
D22, of D (see line 2) is an interpolating operator. 

Using Lemma 3.1 repeatedly, we see that twelve symmetries are needed for passing 
from T to V in line 3, an additional four are required to pass from T to T" (see line 4), 
four more are needed in line 5, and finally (using Lemma 3.3), 4 + 44 = 48 are required 
for line 6. Hence we require a total of 12 + 4 + 4 + 48 = 68 symmetries to connect T to 
the identity. 

For a general invertible operator T, we use an argument similar to that used in the 
final paragraph of the proof of Lemma 3.2 to conclude that T will factor as a product of 
at most 68 + 12 = 80 symmetries. • 

Finally, we show that the group of invertibles in nest algebras which have no more 
than N atoms of finite rank in a row is generated by the invertibles in the diagonal and 
the symmetries belonging to the algebra. 

COROLLARY 3.6. Let 9£be a nest for which there is a finite bound N on the number 
of consecutive finite rank atoms in the nest. IfTE T(fA0 is an invertible operator, then 
T is the product of a diagonal operator and finitely many symmetries. The number of 
symmetries is bounded by 81 + [log2(A0l-

PROOF. As in the proof of Corollary 2.2, T factors as T = DAS, where D belongs to 
the diagonal, S is an operator to which Proposition 3.5 applies and A-®At is the direct 
sum of operators Ai9 where each At belongs to a nest thd with no more than N elements. 

Let n be chosen so that 2w~l < N < 2n. By taking fMJ- to be the ordinal sum of 9& with 
a nest of2"—N elements and adding a direct sum of the identity to A» we may assume 
without loss of generality that each Ai belongs to the algebra of a nest with 2n elements. 

Since n < 1 + log2(iV), it thus suffices to show that if M is a nest with 2n elements, 
and A G T(f&f) satisfies EAE = ±E for each atom of ftf, then A is the product of at most 
n + 1 symmetries each of whose norms do not exceed \\A\\ \\A~l ||. 

To see this, let P G M be the projection which is the sum of exactly 2n~l atoms of 
M. Then the matrix for A relative to the decomposition of M = Ptt © P 1 ^ has a 2 x 2 

(8) 

ormA = 

in ^12" 
0 A22. 

An 

0 
An 
Art. 

, and factors as 

An 0 ] 
0 -A22. 

'I A^An' 
0 - / 
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The second term in this factorization is a symmetry whose norm is no greater than 
||y4|| | |^_1 | |. The first term of the factorization is the direct sum of smaller operators 
whose dimension is half the size of the original block operator. Using a similar argument 
on each of the summands A\\ and A22, an easy induction shows that A may be factored 
into the product of at most n + 1 symmetries whose norms are bounded by ||^|| | |V4_ , | | .H 

REMARK 3.7. Unfortunately, we have been unable to provide a bound on the number 
of symmetries required for the factorization in Corollary 3.6 which is independent of N 
while also maintaining control of the norms of the symmetries. We are able to show that 
if fÂ  is a nest with TV elements, then each operator in T(!A0 of the form / + nilpotent is 
the product of four symmetries belonging to T(fA0, but we have been unable to show 
that the norms of the symmetries are bounded, even for N fixed. 

REFERENCES 

1. K. R. Davidson, Similarity and compact perturbations of nest algebras, J. Reine Angew. Math. 
348(1984), 286-294. 

2. , Nest Algebras, Pitman Research Notes Math. Ser. 191, Longman Scientific and Technical Pub. 
Co., London, New York, 1988. 

3. K. R. Davidson and J. L. Orr, Connectedness of the invertibles in infinite multiplicity nest algebras, Bull. 
London Math. Soc, to appear. 

4. D. R. Larson and D. R. Pitts, Idempotents in nest algebras, J. Funct. Anal. 97(1991), 162-193. 
5. J. L. Orr, Triangular algebras and ideals of nest algebras, preprint. 
6. H. Radjavi, The group generated by involutions, Proc. Roy. Irish Acad. Sect. A 81(1981), 9-12. 
7. P. Y. Wu, The operator factorization problems, Linear Algebra Appl. 117(1989), 35-63. 

Pure Mathematics Department 

University of Waterloo 

Waterloo, Ontario 
NIL 3G1 
e-mail: krdavids@math.uwaterloo.ca 

Mathematics Department 
University of Nebraska 

Lincoln, Nebraska 68588-0323 

U.S.A. 

e-mail: jorr@unlinfo. uni. edu 

Mathematics Department 

University of Nebraska 
Lincoln, Nebraska 68588-0323 
U.S.A. 
e-mail: dpitts@unlinfo2. uni. edu 

https://doi.org/10.4153/CMB-1995-060-6 Published online by Cambridge University Press

mailto:krdavids@math.uwaterloo.ca
https://doi.org/10.4153/CMB-1995-060-6

