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Abstract

We investigate neighbourhood sizes in the enhanced power graph (also known as the cyclic graph)
associated with a finite group. In particular, we characterise finite p-groups with the smallest maximum
size for neighbourhoods of a nontrivial element in its enhanced power graph.
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1. Introduction

All groups considered in this paper are finite unless otherwise stated. To study the
structure of a group, one can look at the invariants of some graphs whose vertices are
the elements of the group and whose edges reveal some properties of the group itself.
More precisely, if G is a group and B is a class of groups, the B-graph associated with
G, denoted by I'g(G), is a simple and undirected graph whose vertices are the elements
of G, and there is an edge between two elements x and y of G if the subgroup generated
by x and y is a B-group.

Several features of a finite group can be detected by analysing the invariants of its
B-graph. We refer to [5] for a survey on this topic and to [10, 11] for related work.
Recent papers deal with the investigation of the (closed) neighbourhood 7 g(x) of a
vertex x in ['g(G), that is, the set of all y in G such that x and y generate a B-group.
When B is the class of abelian groups, then 7 g(x) coincides with the centraliser of x in
G, thus 7 g(x) is a subgroup. However, in general this is not the case when 8 is distinct
from the class of abelian groups. Nevertheless, even though 7 g(x) is not a subgroup
of G in general, it can happen that the characteristics of a single neighbourhood in
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a B-graph could affect the structure of the whole group G. For instance, when B
coincides with the class S of soluble groups, it has been shown that the combinatorial
properties, as well as arithmetic ones, of 7 g(x) may force the whole group to be abelian
or nilpotent (see [2, 3] for more details).

Here we start by considering the class C of all cyclic groups. Cameron in [5] calls
the graph I'c(G) the enhanced power graph. The term enhanced power graph appears
to have originated in [1]. However, this graph was first studied in [12] under the name
cyclic graph. Further investigations under this name occurred in [13]. Recently, this
graph has been investigated in [6—8] and there are still several open questions, as
described in [15].

Our interest in I'c(G) chiefly concerns the cardinality of Z¢(x), discussing the
possible values that can occur for |7 ¢(x)| when x belongs to a p-group G. Denote by
n¢ the maximum of the sizes of all 7¢(x) for x € G \ {1}. Then clearly

exp(G) < ng < |G|,

where exp(G) denotes the exponent of the group G. Whenever G has a nontrivial
universal vertex, that is, a nontrivial element adjacent to any element of G, ng = |G]|.
These groups have been characterised in the soluble case in [8]. Our first goal is to
characterise p-groups G with ng = exp(G). Indeed we prove the following result.

THEOREM L.1. Let G be a finite p-group. Then ng = exp(G) if and only if G is cyclic,
or exp(G) = p, or G is a dihedral 2-group.

It is worth mentioning that a problem connected to closed neighbourhoods has been
addressed in [14]. Going further, one may ask what is the second value that can occur
for ng, and the answer is given by the following proposition.

PROPOSITION 1.2. Let G be a p-group and assume ng > exp(G). Then we have
ng > pa/+1 _ pa +pa/—1‘

We point out that the bound in Theorem 1.2 is sharp in some sense. Indeed,
for G = Cj2 x C,, we have ng = p* — p* + p, where C denotes the cyclic group of
order k.

2. The cyclic graph

In this section we will deal with the enhanced power graph of a group, or what
we like to call the cyclic graph of a group. Recall that the cyclic graph of a group G,
denoted by A(G), is the graph whose vertex set is G \ {1}, and two distinct elements
x,y of G are adjacent if and only if (x, y) is cyclic. When x and y are adjacent we will
write x ~ y. We denote by ng the maximum of the sizes of all Z¢(x) for x € G\ {1}.
We begin with the following useful lemma.

LEMMA 2.1. Let p be a prime and let G be a p-group. Then there exists an element
z € G of order p such that |1 c(z)| = ng.
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PROOF. Observe that there exists an element x € G such that |7¢(x)| = ng. If o(x) = p,
then we are done. Therefore, we assume that o(x) = pX, where k is an integer so that
k >2.Takez = x”"', and observe that x and belong to the same connected component
T in A(G), and that z is the only element of order p in Y. By [6, Lemma 2.2], z ~ y for
any element y € T, and so [Z¢(2)| = |7 ¢(x)| = ng, which implies |7 ¢(z)| = ng. O

By Lemma 2.1 and [6, Lemma 2.2], one can easily see that ng = |Y| — 1, where Y
is a connected component of A(G) containing a vertex of degree ng.

2.1. Abelian p-groups. In this subsection, we focus on Abelian p-groups. In the next
lemma, we compute ng when G is a nontrivial cyclic group.

LEMMA 2.2. If G is a nontrivial cyclic group, then ng = |Gl|.

PROOF. Let x € G such that G = (x). Since o(x) = |G| and G \ (x) = 0, we conclude
that ng = |G]. |

We next compute ng when G is a p-group having exponent p.
LEMMA 2.3. Let p be a prime and let G be a p-group of exponent p. Then ng = p.

PROOF. If G is a cyclic group of order p, then the result follows from Lemma 2.2.
Assume that G is not cyclic, and consider an element x € G such that |7 ¢(x)| = ng. As
o(x) = p, we have ng > p.

Now observe that if y € G\ (x), then (x,y) is not cyclic. Indeed, arguing by
contradiction, let z € G be such that (x,y) = (z). Since G has exponent p, there exist
i,je{l,...,p—1}suchthat x = 7' and y = /. Therefore, from (i, p) = 1 it follows that
(x) = (') = (z) and y € (x), a contradiction. Hence, we conclude that ng = p. O

We now show that if G is a noncyclic abelian group whose exponent is larger than
p, then ng is larger than the exponent of G.

LEMMA 2.4. Let p be a prime and let G be a noncyclic abelian p-group of
exponent exp(G) = p®, where a > 2. Then ng > p®*' — p® + p®~!. As a consequence,
ng > exp(G).
PROOF. As G is abelian, we may assume

G= Cp“l XX Cpar,

where r > 2,1 <a; <--- <@, = aand Cp = (x;) is a cyclic group of order p®.
v—1
P

If a,_; = 1, then the vertex xr( is adjacent to p® — 2 nontrivial elements of (x,)
and to any element of the form x’r_lx’,‘ ,wherei =1,..., p — 1 and k is a positive integer

a—1

less than p® and coprime with p. Hence, there are precisely p® — p®~ choices for k,

which implies
Ic@) > p* + (p— D(p* = p*") = p**' = p* + p* .

. a1 -1 . .
If @,_; > 1, then one can consider the subgroup (x’ ~ ,x,), arguing as in the
previous case. |
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We now collect these lemmas in a proposition where we note that, for an abelian
p-group G, ng equals the exponent of G if and only if G is cyclic or elementary abelian.

PROPOSITION 2.5. Let p be a prime and let G be an abelian p-group. Then
ng = exp(G) if and only if G is either cyclic or elementary abelian.

PROOF. If G is either cyclic or elementary abelian, then the result follows from
Lemmas 2.2 and 2.3. Conversely, assume that ng = exp(G). If G is neither cyclic
nor elementary abelian, then, applying Lemma 2.4, we have ng > exp(G), a
contradiction. ]

2.2. Nonabelian p-groups. We now shift our focus to nonabelian p-groups. When
p is a prime, we take @ to be an integer greater than 1 when p is odd and an integer
greater than 2 when p = 2. We denote by M.+ the group

" -1
M yeer = (x,y | X =yP =1, 0 =X,

Going further, we respectively denote by Dje+1, Syett and Qe+ the dihedral, semidihe-
dral and generalised quaternion groups given by the following presentations:

Dy = (x,y | x¥ =y* =1, ¥ =x71),
Syt = (y |2 =y = 1, 20 =2,
Ot =,y | X5 1=y Y =1, ¥ =x71).

The characterisation of nonabelian p-groups with a cyclic maximal subgroup is well
known (see [9]).

THEOREM 2.6. Let p be a prime and let G be a nonabelian p-group of order p**! with
a cyclic subgroup of order p°.

(i)  Ifpisodd then G is isomorphic 10 M pe+1.
(i) Ifp=2anda =2, then G is isomorphic to either Dg or Qs.
(ii1) If p =2 and a > 3, then G is isomorphic to either Msa+1, Dyar1, Qpa+1 OF Soasi.

We compute n¢ for nonabelian p-groups with a maximal cyclic subgroup of index p.

PROPOSITION 2.7. Let p be a prime and let G be a p-group of order p®*'. Assume that
G has a maximal cyclic subgroup of order p®. Then ng = exp(G) if and only if either
G is cyclic, or exp(G) = p, or G = Dyas1.

PROOF. If G is cyclic or exp(G) = p, then ng = exp(G) by Lemmas 2.3 and 2.2.
Moreover, if G =~ D1, then G has only one cyclic subgroup of order 2¢ while all
the other cyclic subgroups have order 2, which implies ng = exp(G).

Now assume that ng = exp(G). If G is abelian then G is either cyclic or elementary
abelian by Proposition 2.5. Now assume that G is neither abelian nor of exponent p.
From Theorem 2.6 we have to analyse two cases. First assume that G is isomorphic
to M 1. Then (yx)? = xPe=0/ 2r"'+P_which yields a contradiction. Indeed, when p is
odd, we have (yx)? = xP and |Z¢(x?)| > exp(G) as x” is connected to every element of
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(x) and to every element of (yx). If p = 2, then (yx)* = x*" *2 and ZT¢(x*"'*?) contains
more than 2% elements.

Finally, assume that p =2 and G isomorphic to Sy.i. Then (yx)® = x*" and
I Zc(yx)l > exp(G). O

We are now in a position to prove Theorem 1.1.

PROOF OF THEOREM 1.1. By Lemmas 2.2 and 2.3 and Proposition 2.7, we only need
to prove that if ng = exp(G) then G is either cyclic, or exp(G) = p, or G is a dihedral
2-group. Thus, let ng = exp(G), and by way of contradiction assume neither that G is
cyclic, nor exp(G) = p, nor G is a dihedral group of order 2°*P(©*! such that G has
minimal order. Hence, there exists an element x € G such that p < o(x) = exp(G). By
Proposition 2.7, it follows that p - o(x) < |G|, and thus G contains a proper subgroup H
such that x € H and |H| = p - o(x). Then exp(H) = exp(G) and H has a cyclic subgroup
of index p. By Proposition 2.7, H is a dihedral group of order 2 exp(G) since H is
neither cyclic nor such that exp(H) = p. As a consequence G is a 2-group, and by
minimality, |G : H| = 2. If o(x) = 4, then |G| = 16 and an easy computation using GAP
shows that this is a contradiction. Hence, we may assume o(x) > 4. Now assume that
there exists an element a € G \ H such that o(a) > 4. Then a*> € H and o(a®) > 2. This
implies that a® € (x) and |7¢(a?)| > exp(G). Hence, we may assume that o(a) < 4 for
all a € G\ H. First assume that G \ H contains an element a of order 2. If a does not
invert x, then (xa)> = xx* is a nontrivial element of (x), since (x) is normal in G. As
a consequence, |7¢((xa)?)| > exp(G). Now assume that x* = x~!. Let b € H be such
that xX* = x~!. Then x* = x and ab belongs to the centraliser in G of x. Thus, (xab)* =
x* # 1, and |To(x*)| > exp(G). Therefore, we only need to address the case in which
o(a) = 4 for every a € G \ H. If a* € {x) for some a € G\ H, then |I¢(a*)| > exp(G).
This implies that a®> € H \ (x). As a consequence a” inverts x. On the other hand, the
dihedral groups have no automorphisms of order 4 whose square inverts its element
of maximal order (see, for instance, Theorem 34.8(a) of [4]). This final contradiction
proves the theorem. ]
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