
J. Fluid Mech. (2023), vol. 960, A27, doi:10.1017/jfm.2023.187

The unsteady overtopping of barriers by gravity
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The collision of a gravitationally driven horizontal current with a barrier following release
from a confining lock is investigated using a shallow water model of the motion, together
with a sophisticated boundary condition capturing the local interaction. The boundary
condition permits several overtopping modes: supercritical, subcritical and blocked flow.
The model is analysed both mathematically and numerically to reveal aspects of the
unsteady motion and to compute the proportion of the fluid trapped upstream of the barrier.
Several problems are treated. Firstly, the idealised problem of a uniform incident current
is analysed to classify the unsteady dynamical regimes. Then, the extreme regimes of
a very close or distant barrier are tackled, showing the progression of the interaction
through the overtopping modes. Next, the trapped volume of fluid at late times is
investigated numerically, demonstrating regimes in which the volume is determined purely
by volumetric considerations, and others where transient inertial effects are significant.
For a Boussinesq gravity current, even when the volume of the confined region behind
the barrier is equal to the fluid volume, 30 % of the fluid escapes the domain, and a
confined volume three times larger is required for the overtopped volume to be negligible.
For a subaerial dam-break flow, the proportion that escapes is in excess of 60 % when
the confined volume equals the fluid volume, and a barrier as tall as the initial release is
required for negligible overtopping. Finally, we compare our predictions with experiments,
showing a good agreement across a range of parameters.

Key words: gravity currents, shallow water flows, hydraulics

1. Introduction

Many environmental fluid flows fall under the broad category of gravity currents, where a
density difference between the current and its surrounding ambient drives predominantly
horizontal fluid motion (Simpson 1997; Ungarish 2020). Examples include flood events
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such as those caused by the collapse of a dam (Stoker 1957), open channel hydraulics
(Chow 2009), the spreading of toxic gas (Rottman, Simpson & Hunt 1985), oil spillages
(Hoult 1972), cold fronts (Simpson 1997), katabatic winds (Simpson 1997), salinity
currents (Simpson 1982) and turbidity currents (Simpson 1982). It is important to
understand these fluid motions, especially for hazardous environmental currents, in order
to ameliorate their effects on people, the environment and infrastructure.

Canonical problems in this area include ‘dam-break’ and ‘lock-release’ flows, where
an initially quiescent and homogeneous layer of dense fluid is confined behind a barrier
which is instantaneously removed to generate a current propagating along a horizontal
bed. The two terms usually distinguish between regimes of different relative densities:
for ‘dam-break’ flows, the liquid current is substantially denser than the ambient air,
so that the ambient can be neglected; whilst for ‘lock-release’ flows the density of the
current is comparable to that of the ambient, and often the two densities are assumed to be
sufficiently close that the Boussinesq approximation is valid (Ungarish 2020). These flows
are not only important for their applications, but are amenable to analytical study, and may
be investigated using laboratory experiments (e.g. Simpson 1997; Ungarish 2020).

In an environmental setting, gravity currents typically have a vastly greater horizontal
length scale than vertical. This extreme aspect ratio means that, to leading order, the
pressure is hydrostatic, and vertical integration of the governing equations yields the
shallow water equations (e.g. Ungarish 2020). However, if the density of the current is
comparable to that of the ambient, then the front of the gravity current forms a ‘head’ at
which it uplifts the ambient on a horizontal length scale of the same order as the depth
of the current. Thus, hydrostatic pressure is not a valid approximation locally (Porcile
et al. 2022), and the dynamics must be captured by alternative means. Many authors have
pursued investigations of the local dynamics, for example von Kármán (1940), Benjamin
(1968), Simpson & Britter (1979), Huppert & Simpson (1980), Borden & Meiburg (2013),
Konopliv et al. (2016), Ungarish (2017) and Ungarish & Hogg (2018). For the purposes
of constructing a shallow water model, the crucial result is that ū = Fr

√
g′h̄, where ū

and h̄ are the dimensional velocity and depth of the current local to the head, and g′ is
the reduced gravity (see § 2). The value of the Froude number Fr is determined either
experimentally or from a simplified analytical model of the region local to the head. By
selecting a value, or expression, for Fr we establish a dynamic boundary condition for the
shallow water model of the current. When the ambient is deep in comparison with the
current, and the density ratio between the two is constant, then the Froude number may
be considered constant (Benjamin 1968). In this regime it has been possible to establish
a similarity solution for the two-dimensional motion that arises after a sufficient time
following initiation (Fannelop & Waldman 1972; Hoult 1972; Gratton & Vigo 1994), where
the complete exact solution is also available (Hogg 2006).

It is unusual for environmental gravity currents to flow across a horizontal bed, and often
the dynamics of the current is at least partially controlled by the topography. A particularly
dramatic interaction occurs when the topography transitions from horizontal to an adverse
incline, the height of the crest being of order the depth of the current, while the streamwise
extents of the incline and crest are much smaller than the length of the current (although
potentially still larger than the depth of the current). Due to the extreme scales, the current
interacts with this incline as a barrier, i.e. the fluid will be abruptly slowed and deepen, and
may pour over the barrier depending on its height and the local properties of the current.

Early work in this area focussed on the flow over a barrier, where the distal upstream and
downstream flow conditions were the same. This investigation began with experimental
work performed by Long (1954), where a barrier was placed at the bottom of the
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Figure 1. Diagram from Baines & Davies (1980, with permission) of the dynamical regimes in obstacle
dragging experiments, modified for inclusion here. In the above figure h̄0 and ū0 are the dimensional depth
and velocity far upstream and downstream, and B̄ is the dimensional height of the barrier.

channel and instantaneously put in motion, so that in the frame of the obstacle the
fluid impulsively mobilised. Analysis by Long (1954) and Houghton & Kasahara (1968)
classified the dynamics, and this analysis was compiled by Baines & Davies (1980) and
Baines (1995) into figure 1. This figure shows several dynamical regimes, wherein the
fluid may simply flow over the obstacle subcritically or supercritically, or else shocks may
be generated and the flow may become blocked. Interestingly, there is a parameter regime
where multiple dynamical modes coexist, the history of the flow determining which is
realised. It was shown numerically by Pratt (1983) that it is possible to switch between the
different dynamical regimes in a hysteresis loop by keeping the upstream and downstream
flow conditions constant and altering the elevation of the obstacle with time. A similar
hysteresis loop was found experimentally by Lawrence (1987) keeping the obstacle height
constant and varying the flow conditions.

The case of different distal upstream and downstream conditions has been investigated
using the collision of a horizontally uniform current with a barrier. This problem
was examined theoretically by Rottman et al. (1985), who used a shallow water
model to calculate the upstream depth for flow over a barrier with a vertical face,
and Lane-Serff, Beal & Hadfield (1995) calculated the proportion of the incident
flux that overtopped. Experimental verification of these results has been performed
by Pari, Kashefipour & Ghomeshi (2017). Additionally, Ermanyuk & Gavrilov (2005)
experimentally measured the forces exerted on the barrier, and further investigation of this
scenario by Gonzalez-Juez, Meiburg & Constantinescu (2009) modelled the motion using
DNS (direct numerical simulations). Both DNS and ‘box model’ analysis (horizontally
uniform shallow water) were used in Gonzalez-Juez & Meiburg (2009) to determine the
flow downstream of the barrier. The classification of dynamical regimes for collision is
similar to, but distinct from, that in figure 1; see Cozzolino et al. (2014) and our § 3.

We now turn our attention to unsteady incident currents, which have been less
extensively studied. Greenspan & Young (1978) investigated the collision of a ‘dam-break’
flow with a barrier. Their study established an asymptotic expression for the initial
deepening of the fluid layer adjacent to the barrier following the collision. This analysis
has been significantly extended by Hogg & Skevington (2021) to provide a quasi-analytical
calculation of the reflection of the flow by the barrier, revealing the rate at which the
fluid deepens and the energy losses by the reflected bore. Greenspan & Young (1978) also
provided numerical simulations of their model of shallow water overtopping along with

960 A27-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

18
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.187


E.W.G. Skevington and A.J. Hogg

comparisons with experiment, although their model assumes that the surface elevation of
the fluid is constant on the incline of the barrier, and this requires an unphysical assumption
about the dissipation of energy as the fluid flows up the incline (see Appendix A).

In the present work the focus is on the unsteady collision of currents from lock-release
and dam-break initial conditions with a barrier. In particular, we explore how the
overtopping dynamics changes over time, that is the transitions between subcritical,
supercritical and blocked flow, and how the evolution of this dynamics depends on the
dimensionless parameters of the problem. In addition, we are interested in how the barrier
traps fluid, and we calculate the portion of a finite release that remains upstream of the
barrier.

The paper is structured as follows. In § 2 we develop a shallow water model of the
collision, wherein the barrier is represented by a boundary condition that captures the
energy conserving interaction, modifying the condition by Cozzolino et al. (2014) and
generalising the condition by Skevington & Hogg (2020) (see Appendix A for a discussion
of conditions used by other authors). This boundary condition is studied in detail in § 3
(with additional details in Appendix B), classifying the type of solution seen locally to the
boundary. This classification is similar to that in figure 1, except we impose supercritical
flow beyond the barrier, making the solution unique. We then proceed to classify the time
evolving states seen in our dynamic collision process, when the barrier is sufficiently close
to the release so the current is unaffected by its finite extent (§ 4.1), and when the barrier is
sufficiently far so the current is in similarity form (§ 4.2 using results from Appendix C).
We present numerical simulations of the shallow water model in § 5, where we examine
how the portion of fluid that overtops the barrier depends on the parameters of the problem.
Finally, in § 6 we compare our predictions with the experimental results of Greenspan &
Young (1978) and Gonzalez-Juez & Meiburg (2009), showing a good correspondence and
validating the model. We conclude in § 7.

2. Problem formulation

2.1. Governing equations
We model the two-dimensional motion of relatively dense fluid following instantaneous
release from a quiescent state in a lock of dimensional depth Z and length X surrounded
by a relatively deep and dynamically passive ambient. This two-dimensional model is
equivalent to a laterally uniform three-dimensional flow along a rectangular channel.
Driven by its density difference with the ambient, the released fluid flows along the
underlying impermeable boundary forming a gravity current. On the assumption that
the motion is shallow (Z � X) and predominantly parallel with the basal boundary, the
pressure adopts a hydrostatic distribution to leading order. Neglecting mixing with the
ambient and assuming the inclination of the bed is small, the dimensionless governing
equations are the nonlinear shallow water equations (e.g. Peregrine 1972; Ungarish 2020)

∂h
∂t

+ ∂

∂x
(uh) = 0, and

∂

∂t
(uh) + ∂

∂x

(
u2h + h2

2

)
= −h

db
dx

, (2.1a,b)

which represent conservation of mass and the balance of momentum respectively. We
have non-dimensionalised the horizontal coordinate x by X; the time t by X/

√
g′Z; the

depth of the fluid h(x, t) and bed elevation b(x) by Z; and the velocity of the fluid u(x, t)
by
√

g′Z, where g′ ≡ g(ρf − ρa)/ρf > 0 is the reduced gravity, g is the acceleration due
to gravity, ρf is the density of the flowing layer and ρa is the density of the dynamically
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passive ambient. When considering volumes of fluid, we scale by the width of the implied
rectangular channel, and therefore calculate the area in the two-dimensional model.

In regions where u and h are continuous (2.1) may be written in terms of the
characteristic invariants α ≡ u + 2h1/2 and β ≡ u − 2h1/2 (e.g. Stoker 1957)

∂α

∂t
+ λ∂α

∂x
+ db

dx
= 0, where λ ≡ u + h1/2, (2.2a)

∂β

∂t
+ μ

∂β

∂x
+ db

dx
= 0, where μ ≡ u − h1/2. (2.2b)

We term the curves dx/dt = λ as the α-characteristics, and dx/dt = μ as the
β-characteristics. When b is constant then α is constant on α-characteristics and β is
constant on β-characteristics. The flow is subcritical when the characteristics move in
opposite directions, that is λμ < 0 or equivalently |u| < h1/2; supercritical when the
characteristics move in the same direction, that is λμ > 0 or equivalently |u| > h1/2;
and critical when one of the characteristics is stationary, that is λμ = 0 or equivalently
|u| = h1/2.

Along shock curves x = xs(t) where the solution is discontinuous (but b is continuous)
we enforce conservation of the mass and momentum fluxes (e.g. Stoker 1957), given by

[(u − s)h]+− = 0, and
[
(u − s)2h + h2

2

]+

−
= 0, (2.3a,b)

respectively, where s ≡ dxs/dt and [ f (x, t)]+− ≡ f (x+
s (t), t) − f (x−

s (t), t). In addition, we
require that any shocks absorb characteristics of one family, consistent with the Lax
entropy condition (Lax 1957). Shocks for which λ− > s > λ+ are termed α-shocks and
satisfy h− > h+, s > u− > u+, whilst those with μ− > s > μ+ are termed β-shocks and
satisfy h− < h+, u− > u+ > s.

The domain is 0 ≤ x ≤ xf (t), and the initial conditions are h(x, 0) = 1, u(x, 0) = 0,
xf (0) = 1. The bed is horizontal up until the barrier at x = L1 ≥ 1, that is b(x) = 0 for
0 ≤ x < L1, and the fluid is confined to the rear by an insurmountable barrier imposing
u(0, t) = 0, which we call the back wall. The motion during t > 0 is due to the removal of
the lock at x = 1 which produces a moving front obeying (Benjamin 1968)

ẋf ≡ dxf

dt
= u = Fr h1/2 at x = xf (t), (2.4)

where Fr is the frontal Froude number, which is dependent on the density ratio ρf /ρa. By
this definition of Fr, Boussinesq currents (ρf /ρa ≈ 1) take a theoretically derived value
of

√
2 (Benjamin 1968; Ungarish & Hogg 2018) and experimentally measured value of

1.19 (Huppert & Simpson 1980), while dam-break flows operate in the limit Fr → ∞ and
the front corresponds to vanishing height h(xf , t) = 0. In our analysis we will assume that
Fr > 0 is constant. The configuration is shown in figure 2.

A barrier is located across the range L1 < x < L2, and over this interval db/dx ≥ 0 with
the crest at elevation B ≡ b(L2), thus the overall angle of the incline is θ ≡ arctan (BZ/εX)
where ε ≡ L2 − L1. We assume the barrier is steep relative to the scales of the current, so
that 1 � B/ε = (X/Z) tan θ . Note that this does not prevent θ from being small because
Z � X. For the current to be able to surmount the barrier we require that B � 1 (it will
turn out that we require B < 2, § 4.1), so 0 < ε � 1.

Because the barrier is short relative to the length of the current, we neglect the O (ε)
effects of its finite extent by including it as a boundary condition at x = L. That is, in
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Figure 2. The flow configuration, showing the dimensionless variables. Panel (a) shows the early time release
with a moving front, and panel (b) the flow over the barrier during subcritical overtopping. The vertical scale
is exaggerated and the horizontal axis nonlinearly scaled to show the current and the barrier. In dotted is the
initial release, in solid is the depth field, and dashed lines are used to indicate measurements for the barrier.

the model we analyse in all subsequent sections, the bed elevation is set to zero across
all of 0 < x < L, where x = L is the location of the boundary condition which models
the barrier. In principle, we may set the boundary to be at any location L1 < L < L2, but
to minimise the error in measuring the volume of fluid that escapes the domain (§ 5) we
ensure that the confined volume (that is, the volume of the region behind the barrier) Vc is
the same as in the configuration with ε non-vanishing, where

Vc ≡
∫ L2

0
B − b(x) dx. (2.5)

That is, we choose L ≡ Vc/B.
In what follows we denote the velocity and depth of the fluid at the base of the barrier by

ub and hb. When considering the configuration with non-vanishing ε these are expressed
by ub(t) = u(L1, t) and hb(t) = h(L1, t), whereas at the crest of the barrier the velocity and
depth are uc(t) = u(L2, t) and hc(t) = h(L2, t). The overtopping model developed below
provides a dynamical connection between the states at the base and the crest and leads to
conditions on ub and hb. For our simplified model of the interaction between the current
and barrier, which is accurate in the limit ε → 0+, we impose these as conditions at x = L,
that is the consideration of the barrier provides constraints on ub(t) = u(L, t) and hb(t) =
h(L, t). We will also utilise the flow state just upstream of the barrier, in the simplified
model this is given by ul(t) = limx→L− u(x, t) and hl(t) = limx→L− h(x, t).

To develop a boundary condition that captures the effect of the barrier on the fluid, we
use its relative shortness, ε � 1, which implies the time scale of the fluid flow local to the
barrier is vastly smaller than that of the flow in the bulk. Thus, the dynamics is quasi-static
and steady state analysis may be applied. Following Long (1954, 1970) and Baines (1995),
we assume the flow to be continuous between the base and the crest (shocks are known
to be unstable, see Baines & Whitehead 2003). Thus, the dimensionless energy density
E ≡ 1

2 u2 + h + b and volume flux q ≡ uh are constant in space and time, with qb, Eb the
values evaluated at the base of the barrier, and qc, Ec at the crest. At constant q and b
the energy takes its minimal value at critical flow, h = q2/3, at which E = 3

2 q2/3 + b. For
larger energies there are two possible corresponding values of u and h, a subcritical state
and a supercritical state. For the fluid to overtop the barrier the energy at the crest Ec must
be at least the critical energy there,

Ec ≥ Ec|crit = 3
2 q2/3

c + B = 3
2 q2/3

b + B, (2.6a)
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thus
�Eb ≡ Eb − Ec|crit = �E(ub, hb, B) ≥ 0, (2.6b)

where
�E(U ,H ,B) ≡ 1

2U 2 + H − 3
2(U H )2/3 − B (2.6c)

is the energy discrepancy. Note that this analysis assumes there is no energy dissipation as
the fluid flows over the obstacle, which is justifiable for shallow sloped barriers. For steeper
slopes, Skevington & Hogg (2020) showed, for open channel flows, how to account for the
small amount of dissipation present. This is not pursued here.

We assume that the flow downstream of the barrier is downhill and supercritical, and
conclude that there are three possible modes that can be exhibited.

(i) Supercritical overtopping. The flow on the incline is supercritical, ub > h1/2
b , and

satisfies �Eb > 0, which imposes no boundary condition on the bulk flow.
(ii) Subcritical overtopping. The flow on the incline is subcritical and transitions to

supercritical beyond the crest. Thus, it is critical at the crest, and the appropriate
boundary condition is �Eb = 0, taking the solution in 0 ≤ ub ≤ h1/2

b .
(iii) Blocked flow. If �Eb < 0 then the fluid cannot overtop the barrier, and the

appropriate boundary condition is qb = 0.

The strict inequality on energy for the case of supercritical overtopping ensures the
stability of the continuous flow on the incline. For supercritical flow with �Eb = 0, a
small perturbation to the values of ub, hb may cause �Eb to become negative, at which
point an upstream propagating bore will be generated, transitioning to one of the other two
modes.

Identifying which of the three modes is selected depends on the flow local to the
barrier ul, hl. As discussed by Cozzolino et al. (2014), there is a choice of whether to
permit supercritical overtopping in some cases. By the experimental measurements of
Greenspan & Young (1978) we expect that slopes of θ = 60◦, perhaps greater, are able
to produce a supercritical jet of overtopping fluid for an incident dam-break flow, and to
capture this flow regime we permit supercritical overtopping when ul > h1/2

l and �El ≡
�E(ul, hl, B) > 0. Otherwise, if a solution exists to imposing subcritical overtopping then
this boundary condition is used, else we impose blocked flow. Collectively, we term all
three modes and the method of selection the critical barrier boundary condition, and we
examine the consequence of its imposition in § 3.

Works by other authors (e.g. Greenspan & Young 1978; Rottman et al. 1985) have
used a different outflow condition where a constant surface elevation is imposed rather
than conservation of energy. In Appendix A we show that the surface elevation model
is unphysical, and that the conservation of energy condition is the physically permitted
condition that minimises the change in surface elevation.

The model is validated by comparison with experiment in § 6, showing a good
correspondence. However, we first analyse the properties and predictions of the model
in §§ 3–5 to give context to the comparison.

2.2. Numerical methods
We simulate using the transformed shallow water system presented in Skevington (2021a).
The numerical method employs the central upwind scheme by Kurganov & Levy (2002).
This is a finite volume scheme which requires reconstruction in each cell, for this purpose
we use the suppressed minmod limiter from Skevington (2021b). Boundary conditions are
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implemented using techniques developed in Skevington (2021a), which ensure the solution
is locally continuous at the boundaries for almost all time, and that there is no drift off error
in the algebraic boundary conditions.

3. Boundary-Riemann problem adjacent to a barrier

In this section we analyse the flow predicted by the governing equations (2.1) and the
critical barrier condition at the right end of the domain when a uniform initial state is
imposed. Mathematically, this configuration corresponds to a boundary-Riemann problem
and its solution provides considerable insight into the manner in which the boundary
condition controls the flow. This is the same problem as considered by Cozzolino et al.
(2014), although we choose supercritical outflow whenever multiple solutions exists. We
present the solution to the boundary-Riemann problem in this section because it is used
extensively later. This initial configuration may alternatively be viewed as a transformation
of the problem posed in § 2 by introducing coordinates x̂ = (x − L)/δ̂, t̂ = (t − t0)B1/2/δ̂

so that the local behaviour at time t0 can be examined over a region of size δ̂ where
ε � δ̂ � 1 so that the variables are initially constant and the domain is x̂ ≤ 0, t̂ ≥ 0. It is
convenient to rescale the dependent variables as

ĥ = h
B

, and û = u
B1/2 , (3.1a,b)

so that, in the new variables, the barrier is of unit height. The initial conditions are
therefore written as

ĥ(x̂, 0) = ĥi, and û(x̂, 0) = ûi, (3.2a,b)

and the initial Froude number is Fi ≡ ûi/ĥ1/2
i , and similarly for other subscripts. There are

three types of solution possible, and all may be written as functions of ŷ ≡ x̂/t̂ because the
solutions are constant on the linear trajectories x̂ ∝ t̂. That is, at t̂ = 0 the variations in ĥ
and û are localised at x̂ = 0, and then spread with the width increasing in proportion to t̂
while maintaining their shape.

The simplest solution type is a uniform state which satisfies, for all t̂ > 0,

û = ûi, and ĥ = ĥi (3.3a)

(see figures 3f,i and figure 4d,i). Alternatively the solution may take the form of a β-fan,
which is a simple wave across which α is constant and takes the value in the initial uniform
state α̂ = ûi + 2ĥ1/2

i , while β varies as a function of ŷ, that is

û =

⎧⎪⎨
⎪⎩

ûi, ŷ ≤ μ̂i,

(2ŷ + α̂)/3, μ̂i ≤ ŷ ≤ μ̂b,

ûb, μ̂b ≤ ŷ,
and ĥ =

⎧⎪⎨
⎪⎩

ĥi, ŷ ≤ μ̂i,

(ŷ − α̂)2/9, μ̂i ≤ ŷ ≤ μ̂b,

ĥb, μ̂b ≤ ŷ,
(3.3b)

where μ̂i ≡ ûi − ĥ1/2
i and μ̂b ≡ ûb − ĥ1/2

b (see figures 3a–e and 4a–c). The final case is
when the solution is a β-shock between two uniform regions,

û =
{

ûi, ŷ < ŝ,
ûb, ŝ < ŷ,

and ĥ =
{

ĥi, ŷ < ŝ,

ĥb, ŝ < ŷ,
where ŝ ≡ ûbĥb − ûiĥi

ĥb − ĥi
, (3.3c)

which must satisfy the shock condition (2.3b) (see figures 3g,h and 4e–h).
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Figure 3. The velocity, û, and depth, ĥ, as functions of x̂/t̂ for those initial uniform states (ûi, ĥi) marked in
figure 5 with ĥi = 2. In dotted lines are plotted ĥ = 1, the height of the barrier, and û = 0. The plotted solutions
are at the following initial Froude numbers: (a) Fi = −2.5, (b) Fi = −2, (c) Fi = −1.3, (d) Fi = −0.5858,
(e) Fi = −0.2, ( f ) Fi = 0.2047, (g) Fi = 1.1, (h) Fi = 1.8963, (i) Fi = 2.5.
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Figure 4. The velocity, û, and depth, ĥ, as functions of x̂/t̂ for those initial uniform states (ûi, ĥi) marked
in figure 5 with ĥi = 0.5. In dotted lines are plotted ĥ = 1, the height of the barrier, and û = 0. The plotted
solutions are at the following initial Froude numbers: (a) Fi = −2.5, (b) Fi = −2, (c) Fi = −1, (d) Fi = 0,
(e) Fi = 0.5, ( f ) Fi = 0.8660, (g) Fi = 1.8, (h) Fi = 2.8284, (i) Fi = 3.5.

In the remainder of this section, for a given initial state we specify which of the outflow
behaviours (supercritical, subcritical or blocked) occurs, and which of the three solution
types is observed. This yields a division of the (ûi, ĥi)-plane into six regimes as shown
in figure 5. Figure 5(b) is similar to figure 1, except that the axes are exchanged for
consistency with, and the clarity of, later figures. The similarity is due to the upstream
dynamics on the dividing curves being the same for the two problems, although the
dynamics within some regimes differs (specifically A-IV, also A-V and A-VI are not
present in figure 1). To aid the construction of regimes we define �Êi ≡ �E(ûi, ĥi, 1),
which is the scaled energy discrepancy associated with the initial conditions, and �Êb ≡
�E(ûb, ĥb, 1), which is that associated with the boundary values.

The first two regimes are easy to find.
Supercritical overtopping (regime A-I in figure 5, see figures 3i and 4i) occurs when

ûi > ĥ1/2
i and �Êi > 0, no boundary condition need be applied, resulting in a uniform

state (3.3a). The boundary of this regime is the curve �Êi = 0 (see figures 3h and 4h).
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ûb = 0,
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α̂
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Ê i 
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Ê i 
=

 0
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(a)

Figure 5. Classification of the overtopping flow in the boundary-Riemann problem (§ 3) subject to the critical
barrier boundary condition in (a) the (ûi, ĥi)-plane and (b) the (Fi, B/hi)-plane. The regions are labelled with
the corresponding dynamical regime, and the dividing curves between them are labelled with their specifying
equations. The dashed curve is the continuation of the dividing curve if supercriticality were not prioritised in
the boundary condition. Points marked with × are the parameter values for figures 3 and 4, and those marked
with �/ © /� are the values for figure 15. The overtopping regimes are: A-I, supercritical; A-II, subcritical
with β-shock; A-III, blocked with β-shock; A-IV, subcritical with β-fan; A-V, blocked with β-fan; A-VI, dry.

A dry region (regime A-VI in figure 5, see figures 3a and 4a) is created adjacent to the
barrier when ûi < −2ĥ1/2

i , and results in a β-fan (3.3b) with ĥb = 0, μ̂b = ûi + 2ĥ1/2
i . The

boundary of this regime is the curve ûi = −2ĥ1/2
i , equivalently αi = 0 (see figures 3b and

4b) on which the depth vanishes precisely at the barrier.
The remaining solution regimes are constructed using the results in Appendix B, which

yield the following method. We identify the depth attained at the barrier for the boundary
condition ûb = 0, which we denote by ĥb0. When ûi = 0 then ĥb0 = ĥi; when ûi < 0 the
solution is a β-fan and because α is constant across the domain

ĥb0 =
(

ĥ1/2
i + ûi

2

)2

; (3.4a)

and when ûi > 0 the solution is a β-shock and, by (2.3b), we seek the ĥb0 > ĥi solution to

(ĥb0 + ĥi)(ĥb0 − ĥi)
2 = 2û2

i ĥiĥb0. (3.4b)
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Overtopping of barriers

The boundary between the blocked and subcritical overtopping regimes occurs when ûb =
0 and ĥb = 1, thus from (3.4) the curve separating the regimes in the (ûi, ĥi)-plane satisfies
ĥb0 = 1. Solutions on this curve are plotted in figures 3(d) and 4( f ).

Blocked flow with a β-fan (regime A-V in figure 5, see figures 3c and 4c) occurs when
ĥb0 ≤ 1 and ûi < 0, for which ûb = 0, ĥb = ĥb0.

Blocked flow with a β-shock (regime A-III in figure 5, see figure 4e) occurs when ĥb0 ≤
1 and ûi > 0, for which ûb = 0, ĥb = ĥb0. Regimes A-V and A-III are separated by a
dividing curve on which ĥi ≤ 1 and ûi = 0, corresponding to blocked flow in a uniform
state (see figure 4d).

Subcritical overtopping with a β-fan (regime A-IV in figure 5, see figure 3e) occurs
when ĥb0 ≥ 1 and �Êi > 0, for which ûb, ĥb satisfy

�Êb = 0,

ûb + 2ĥ1/2
b = ûi + 2ĥ1/2

i ,

1 ≤ ĥb ≤ min(ĥb0, ĥi).

⎫⎪⎪⎬
⎪⎪⎭ (3.5a)

Subcritical overtopping with a β-shock (regime A-II in figure 5, see figures 3g and 4g)
occurs when ĥb0 ≥ 1 and �Êi < 0, for which ûb, ĥb satisfy

�Êb = 0,

(ĥb + ĥi)(ĥb − ĥi)
2 = 2(ûb − ûi)

2ĥiĥb,

max(1, ĥi) ≤ ĥb ≤ ĥb0.

⎫⎪⎪⎬
⎪⎪⎭ (3.5b)

Regimes A-IV and A-II are separated by a dividing curve on which ĥi ≥ 1 and �Êi = 0,
corresponding to subcritical outflow in a uniform state (see figure 3f ).

The division of the (ûi, ĥi)-plane is plotted in figure 5(a), where black lines show
division between the different dynamical regimes and are labelled with the equations that
specify them. We note that across most of the domain the values at the barrier ûb, ĥb vary
continuously as functions of ûi, ĥi, and so states on the dividing curves can be constructed
as a limit from either side. The only exception is across the boundary of the supercritical
regime, where ûb and ĥb are discontinuous as functions of ûi, ĥi. By our choice of boundary
condition in § 2, the solutions on this curve are the limit from the subcritical side (see
figures 3h and 4h).

It is also informative to view the regimes in the plane where velocity is measured
relative to the local wave speed, Fi ≡ ui/h1/2

i = ûi/ĥ1/2
i = ûl/ĥ1/2

l |t̂=0, and barrier height
relative the height of the incident current, B/hi = ĥ−1

i = ĥ−1
l |t̂=0, see figure 5(b). This

is particularly useful when the oncoming current has a specified Froude number Fr at
its front, only a single vertical slice through the (Fi, ĥ−1

i )-plane is required. For this
purpose, it is useful to know that the curve �Êi = 0 intersects with the ûb = 0, ĥb = 1
curve when (Fi, ĥ−1

i ) ∈ {(0, 1), (4.47, 6.90)}. Thus, for 0 < Fr < 1, a barrier slightly
taller than the current prevents overtopping, and otherwise there is subcritical overtopping.
For 1 < Fr < 4.47, relatively tall barriers prevent overtopping, moderate height barrier
cause subcritical overtopping and relatively short barriers cause supercritical overtopping.
For Fr > 4.47, very tall barriers prevent overtopping, and all others cause supercritical
overtopping.
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4. Unsteady overtopping of a barrier

Using the behaviour local to a barrier governed by the critical barrier boundary condition,
we investigate the unsteady dynamics of the system formulated in § 2. In this section we
consider the collision of the gravity current with the barrier in two extreme cases: first,
when the barrier is sufficiently close to the release that there is no effect of the back wall of
the lock prior to collision; and, second, when the barrier is far enough from the release that
the current takes on similarity form prior to collision. As time progresses the outflow may
transition between supercritical overtopping, subcritical overtopping, and blocked flow. In
what follows, we elucidate both the initial mode at collision and how the flow transitions
between modes over time.

4.1. Barrier close to initial release
We assume that the barrier is sufficiently close that the presence of the back wall is not
felt by the front of the current prior to impact. At the instant of release, the influence of
the lock’s removal creates a wave that travels to the back wall, which is then reflected
forward towards the front of the gravity current (Hogg 2006). We neglect the influence of
this forward propagating reflected wave in this section, which requires that the barrier is
sufficiently close to the initial release (see § 5). Formally we let L = 1 + δ̃ for some ε �
δ̃ � 1, and define x̃ = (x − 1)/δ̃, t̃ = t/δ̃ so that, as δ̃ → 0, the initial release occupies
x̃ < 0 and the barrier is at x̃ = 1. At the instant of release the solution is a β-fan originating
at x̃ = 0 that joins two uniform regions, and given explicitly by

u = 2F
F + 2

, h =
(

2
F + 2

)2

, (4.1a)

where

F =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for
x̃
t̃

≤ −1,

2 + 2(x̃/t̃)
2 − (x̃/t̃)

, for − 1 ≤ x̃
t̃

≤ 2
Fr − 1
Fr + 2

,

Fr, for 2
Fr − 1
Fr + 2

≤ x̃
t̃

≤ 2Fr
Fr + 2

(4.1b)

is the local Froude number. We express the solution in terms of F rather than directly in
terms of x̃/t̃ (e.g. Ungarish 2020) for analytical simplicity in what follows. Note that F
increases monotonically with x̃/t̃ from 0 to Fr across the β-fan (the middle case in (4.1b)).

The solution (4.1) is valid until the front reaches the barrier, which occurs at time
t̃ = (Fr + 2)/(2Fr). To illustrate our analysis of the subsequent dynamics we use plots
produced from numerical simulation (figure 6). These simulations were performed on a
mesh of 1000 cells on −2 ≤ x̃ ≤ 1 initiated at the instant of collision, with a non-reflecting
boundary condition imposed at x̃ = −2 so that this boundary does not influence the
ensuing dynamics.

The initial interaction with the barrier is now discussed. We emphasise that our model
does not include mixing between the current and ambient fluid, which may occur during
the initial collision between Boussinesq flows and relatively deep barriers. We note that
the dilute fluid generated by this interaction will largely be transported downstream out
of the domain, and should not affect the subsequent motion. The interaction corresponds
to the boundary-Riemann problem solved in § 3. In particular, since Fr > 0, we find that
four initial behaviours may occur, depending on Fr and the relative height of the barrier:
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Figure 6. The depth, h, and velocity, u, as functions of the scaled spatial coordinate, x̃, at various instances of
time. The pairs of plots (a,b), (c,d) (e, f ) and (g,h) are at parameter values of B and Fr marked on figure 7. The
times are indicated by differing colours, with values given by the legends in (b,d, f,h). In (a,b) Fr = 4.5, B =
0.85, the times correspond to the instant of collision (blocked flow), a time just prior to critical overtopping,
and three later times. In (c,d) Fr = 15, B = 0.85, the times correspond to the instant of collision (supercritical
overtopping), a time just prior to overtopping ceasing, a time just prior to critical overtopping starting, and
four later times. In (e, f ) Fr = 15, B = 1.05, the times correspond to the instant of collision (supercritical
overtopping), a time just prior to overtopping ceasing, and four later times. In (g,h) Fr = 15, B = 0.3, the
times correspond to the instant of collision (supercritical overtopping), a time just prior to the supercritical
overtopping transitioning to subcritical overtopping, and three later times.
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Figure 7. Classification of the overtopping flow when a gravity current collides with a barrier that is
sufficiently close to the initial release, with labels for each regime (§ 4.1). The boundary curves (solid) are
labelled with the equation solved to compute them. The parameter values used in figure 6 are marked by ×. On
the abscissa, we employ a transformation so that Fr = 0 at the left and Fr → ∞ at the right. The vertical dotted
line represents Fr = √

2, a Boussinesq current. The overtopping regimes are: B-I, supercritical transitioning
to B-Ia blocked, B-Ib blocked then subcritical, B-Ic subcritical; B-II, subcritical; B-III, blocked, in B-IIIb
transitioning to subcritical; B-IV subcritical, but generating a β-fan at the barrier rather than a β-shock.

supercritical overtopping (B-Ia, B-Ib, B-Ic); subcritical overtopping with a β-shock (B-II)
or a β-fan (B-IV) generated at the barrier; and blocked flow (B-IIIa, B-IIIb), see figure 7.
These are divided by two curves. Firstly, �Ẽi ≡ �Ẽ(Fr, B) = 0 is the boundary of
supercritical overtopping, with �Ẽi the energy discrepancy when the front arrives at the
barrier. The energy discrepancy across the domain, denoted �Ẽ, is derived by substituting
(4.1a) into (2.6c), yielding

�Ẽ(F, B) ≡ �E(u, h, B) =
(

2
F + 2

)2(1
2

F2 + 1 − 3
2

F2/3
)

− B. (4.2)

Secondly, ub = 0, hb = B, which by the shock conditions (2.3) imply S̃(Fr, B) = 0, where

S̃(F, B) ≡
[

B +
(

2
F + 2

)2
][

B −
(

2
F + 2

)2
]2

− 2BF2
(

2
F + 2

)4

(4.3)

divides subcritical and blocked flow. In what follows we analyse the subsequent motion
that occurs and we document the results in terms of the dimensionless height of the barrier
B and the Froude number at the front of the flow Fr, plotting the dynamics in figure 6 and
including the regimes in figure 7.

If, at the instant of collision, the flow is blocked, then initially there will be a β-shock
that travels from the barrier with a constant velocity until it interacts with the β-fan from
the initial conditions. From this time on, the region of fluid between the shock and barrier
progressively deepens, eventually attaining unit depth (cf. Hogg & Skevington 2021).
Therefore, for barriers of height less than 1 the fluid eventually overtops (figure 6a,b),
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Overtopping of barriers

which we call regime B-IIIb, whereas for a barrier of height greater than 1 the fluid never
overtops, regime B-IIIa.

Alternatively, if at the instant of collision the fluid supercriticality overtops then no
shock is generated and instead the solution for early t̃ is valid until �Eb = 0 at the barrier.
Thus the supercritical outflow will cease while the β-fan from the initial conditions is
adjacent to the barrier. Specifically it will cease when �Ẽ(F, B) = 0 (for a given B), which
can be solved to find F which is the Froude number adjacent to the barrier. At this instant
we must solve another boundary-Riemann problem, but it is substantively the same as
the one solved above for the initial interaction, with α = 2 and the Froude number now
being F. Consequently, the division between transition to subcritical overtopping (B-Ic, see
figure 6g,h) and transition to blocked flow (B-Ia, B-Ib) is a line of constant B which can be
found by solving �Ẽ(F, B) = S̃(F, B) = 0, yielding (F, B) = (4.47, 0.661) (3 s.f.). As for
flows that initially do not overtop (B-IIIa, B-IIIb), flows that transition from supercritical
overtopping to blocked flow can subsequently transition to subcritical overtopping (B-Ib,
see figure 6c,d) if B < 1, and do not (B-Ia, see figure 6e, f ) if B > 1. On the dividing
line between these regimes the supercritical overtopping ceases when �Ẽ(F, 1) = 0, thus
F = 7.12 (3 s.f.). We note that the given values of F correspond to the values of Fr on the
bounding curve of supercritical overtopping �Ei = 0, and therefore mark the locations at
which the dividing curves meet.

We note that as t̃ → ∞ the solution limits to the same solution as the boundary-Riemann
problem with ĥi = 1/B, ûi = 0 (§ 3). Therefore with B < 1 we find subcritical
overtopping, whereas with B > 1 the flow is blocked at late times. For this reason, once
these modes of overtopping have been reached, we expect no further changes.

The classification of dynamics is shown in figure 7. One surprising result is that for
Fr > 7.12 the initial collision can only produce supercritical overtopping or blocked flow,
and that supercritical is possible for B > 1. That is to say, fluid can overtop a barrier taller
than the initial release, and for Fr → ∞ it can overtop a barrier twice the height of the
release, as a consequence of energy conservation.

We emphasise that these results are valid before the finite extent of the release influences
the overtopping through the arrival at the barrier or shock of the characteristic reflected
from the back wall (formally δ̃ → 0). The effects of a finite extent will modify the
boundaries between the regimes in a way that depends on L.

4.2. Barrier far from initial release
We now assume that the barrier is sufficiently far from the initial release that the current
is in similarity form when it reaches the barrier, which is the late time limit for all finite
values of the Froude number, Fr, at the front of the current (Gratton & Vigo 1994). We
express the similarity solution in terms of the variables

x̆ = x
L

, t̆ = t − t0
L3/2 , ξ = Kx̆

t̆2/3 , (4.4a)

where t0 is some arbitrary time offset and

K =
(

2
3

)2/3
(

1
Fr2 + ξ3

D − 1
6

)1/3

, ξD = max
(

1 − 4
Fr2 , 0

)1/2

. (4.4b)
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The similarity solution is, in terms of the variables ŭ ≡ L1/2u, h̆ ≡ Lh,

ŭ = 2ξ

3Kt̆1/3 , h̆ = 1
9K2 t̆2/3

(
ξ2 + 4

Fr2 − 1
)

, for ξD ≤ ξ ≤ 1, (4.4c)

h̆ = 0, for 0 ≤ ξ < ξD. (4.4d)

In this rescaled system the remaining parameters are Vc = BL (the confined volume (2.5))
and Fr (the front condition (2.4)), and we determine the dynamical regimes after collision
in terms of them. The similarity solution is valid until the front reaches the barrier, which
occurs at time t̆ = K3/2. At this time a boundary-Riemann problem must be solved at
x̆ = 1 to determine the dynamics immediately after the collision (see § 3). This initial
local interaction divides parameter space into four regimes corresponding to: blocked flow
(C-III); subcritical overtopping with a β-shock (C-II) or a β-fan (C-IV) generated at the
barrier; and supercritical overtopping (C-Ia, C-Ib, C-Ic) (see figure 8). These regimes are
divided by two curves. Firstly, the curve �Ĕi ≡ �Ĕ(K3/2, Vc) = 0 (energy discrepancy at
impact), where

�Ĕ(t̆, Vc) ≡ �E(ŭ, h̆, Vc)

∣∣∣
x̆=1

= 1
9K2 t̆2/3

[
3K2

t̆4/3 + 4
Fr2 − 1 − 3K2/3

21/3 t̆4/9

(
K2

t̆4/3 + 4
Fr2 − 1

)2/3]
− Vc (4.5)

(energy discrepancy computed at x̆ = 1 across ξD ≤ ξ ≤ 1) is the boundary of
supercritical overtopping. Secondly, ŭb = 0, h̆b = Vc, which by the shock conditions (2.3)
imply S̆(K3/2, Vc) = 0, where

S̆(t̆, Vc) =
[

Vc + 1
9 K2 t̆2/3

(
K2

t̆4/3 + 4
Fr2 − 1

)][
Vc − 1

9K2 t̆2/3

(
K2

t̆4/3 + 4
Fr2 − 1

)]2

− 23Vc

34 K2 t̆8/3

(
K2

t̆4/3 + 4
Fr2 − 1

)
, (4.6)

is the boundary between subcritical overtopping and blocking. In what follows we analyse
the subsequent transitions of overtopping behaviour that occur within each of the regimes.

If the fluid is unable to supercritically overtop at the instant of collision (i.e. blocked
flow or subcritical overtopping) then two cases are possible. One case is when a β-fan is
generated at the subcritically overtopping barrier (C-IV), so that the depth at the barrier
h̆b is smaller than the depth that arrived at the front. This continues until h̆b reduces to
Vc at which time the flow is blocked. The other case is when an upstream propagating
shock is formed. We find from simulation that, as time passes, the fluid depth between
the shock and wall decreases. This can be rationalised as follows. Initially, the distance
between the shock and barrier is small, and therefore the dynamics in this regime is
quasi-static and has constant velocity throughout. Using the perturbed shock condition
(C3), and the fact that upstream of the shock both u and h are decreasing, we deduce that
h downstream of the shock must decrease also. At later times the fluid is not quasi-static,
and therefore we make use of the expressions involving the invariants, (C7), remembering
that the shock sets the changes in α immediately downstream of the shock, these changes
are then reflected off the barrier resulting in changes of opposite sign to β. The large
coefficient of the perturbations to α suggests that α is decreasing and, therefore, β is
increasing, corresponding to a decreasing depth. Because the fluid adjacent to the barrier
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ŭ b 
= 0

,  h̆ b =
 V c

C-Ic

C-Ib

C-Ia

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

�Ĕ i
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Figure 8. Classification of the overtopping flow for a gravity current in similarity form (§ 4.2); (b) is the
same as (a) except for a rescaling of the axes. Each regime is labelled, and the boundary curves (solid) are
labelled with the equation solved to compute them. The circle marks the intersection of two dividing curves
at Fr = 7.03, Vc = 984. On the abscissa, we employ a transformation so that Fr = 0 at the left of (a) and
Fr → ∞ at the right, while in (b) we show 2 < Fr < ∞. The vertical dotted line in (a) represents Fr = √

2,
a Boussinesq current. The overtopping regimes are: C-I, supercritical transitioning to C-Ia subcritical then
blocked, C-Ib blocked, C-Ic dry; C-II, subcritical then blocked; C-III blocked; C-IV subcritical, but generating
a β-fan at the barrier rather than a β-shock, transitioning to blocked.

is becoming shallower, we deduce that the fluid will cease its initial overtopping (if any),
and not overtop again. Thus, in regime C-III, no fluid makes it over the barrier, and in
regime C-II the subcritical overtopping ceases after finite time.

For supercritical outflow we find that there are three possible types of subsequent
motion. Firstly, it is possible that all of the gravity current may overtop the barrier. If
mint̆ �Ĕ(t̆, Vc) ≥ 0 (equivalent to mint̆ �Ĕ(t̆, 0) ≥ Vc) the energy of fluid reaching the
barrier is sufficient to allow supercritical overtopping for all time, thus all of the fluid
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flows out of the domain supercritically (C-Ic). We note that for Fr ≥ 7.03 (3 s.f.) the time
of minimal �Ĕ(t̆, 0) is at the instant of collision, t̆ = K3/2 (at Fr = 7.03, �Ĕ(K3/2, 0) =
984), thus if there is supercritical overtopping then it will certainly dry the domain.
For supercritical overtopping that is not a part of C-Ic, we identify the time at which
�Ĕ(t̆, Vc) = 0, and at this instant the fluid can either transition to subcritical overtopping
(C-Ia) or blocked flow (C-Ib), following the boundary-Riemann problem at that instant.
The dividing curve is when h̆ = Vc and ŭ = 0 to the right of the β-shock generated at
the barrier, and to find it we solve �Ĕ(t̆, Vc) = S̆(t̆, Vc) = 0 as a coupled system for t̆
and Vc. This curve will meet the corresponding dividing curve for subcritical outflow at
the boundary of the supercritical regime, that is �Ĕ(K3/2, Vc) = S̆(K3/2, Vc) = 0 which
has solution Fr = 4.47, Vc = 133. In addition, it can be shown that the Vc = 0 solution is
found at Fr = 2. Note that, as in region C-II, the subcritical outflow of C-Ia will eventually
transition to no-overtopping.

Classification of the dynamics is shown in figure 8. For Fr � 1 it is found that the
current is able to surmount barriers that are much taller than the average depth of the
current, that is Vc is able to be very large and still permit outflow. This is because the
current has most of its volume at the front, moving forwards with very high momentum.
For more modest Fr this effect is weakened.

5. Numerical evaluation of fluid outflow over a critical barrier

Outside of the extremal cases discussed in §§ 3 and 4, developing a comprehensive
understanding of the fluid flow dynamics is challenging to do analytically; instead we
proceed with a numerical study of the dynamics. We compute two illustrative cases:
Fr = √

2 corresponding to Boussinesq currents under a deep ambient (Benjamin 1968);
and Fr → ∞ when the ambient is of a substantially lower density than the current.

5.1. Boussinesq gravity current: Fr = √
2

We begin by establishing how tall the barrier must be to prevent outflow. To find this we
run simulations imposing an insurmountable barrier at x = L (that is impose the condition
u = 0 when the current reaches the barrier, which is equivalent to the limit B → ∞), the
shortest barrier required to prevent outflow will be equal to the maximum depth of fluid at
the barrier over all time.

The variation of the maximum depth of fluid, hm, with downstream distance to the
barrier, L, arises from the interaction of two key flow features: the upstream moving
shock that is generated by the arrival of the flow at the barrier, and the trajectory of the
‘reflected’ α-characteristic from the back wall of the lock (x = 0) in response to the arrival
of the rearmost β-characteristic formed by the removal of the lock-gate. It is this latter
characteristic that ‘communicates’ the finite extent of the flow. If the barrier is sufficiently
distant from the lock, then the reflected α-characteristic catches up with the front of the
motion before the gravity current reaches the barrier; however, for a closer barrier this
characteristic intersects the shock. In figure 9, we plot the dependence of the maximum
depth, hm, on L and observe that there are two values of L at which the behaviour changes.
In what follows we demonstrate how to evaluate these transitions.

In § 4.1 we showed that the initial motion of the gravity current features a uniform
region, leading a β-fan in which the depth and velocity vary (see (4.1)). On reflection
from the barrier, the frontal uniform region develops a uniform reflection in a region
adjacent to the barrier within which the fluid is motionless and the shock moves steadily
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Figure 9. The maximum depth of fluid at the barrier, hm, as a function of the location of the barrier, L, for a
(fully reflected) Boussinesq current (Fr = √

2). Crosses show numerical data; dotted line the maximum depth
when the current is uniform at the front; and solid line the exact solution (Hogg 2006).

upstream (see Hogg & Skevington 2021). If the barrier is very close to the initial release
(L − 1 � 1) then the fluid progressively deepens at the barrier after the uniform state
(reaching the asymptotic values hm → 1 as L → 1). The deepening stops when the
reflected α-characteristic emanating from x = 0 intersects the shock and then propagates
further to the barrier. The time between the first arrival of the front of the gravity current
and this α-characteristic is reduced with increasing L in this regime, and so the maximum
depth, hm, also reduces with L (see figure 9 with 1 < L < 2.02).

A change in dependence of hm with L occurs if the α-characteristic intersects the shock
when the fluid beyond it is still in a uniform state. From (4.1), the depth and velocity of
the front of the gravity current are given by uf = 2Fr/(Fr + 2) and hf = 4/(Fr + 2)2. On
reflection from the barrier the fluid is motionless and of depth hb, which by (2.3) satisfies

2u2
f hf hb = (hf − hb)

2(hf + hb). (5.1)

For example, when Fr = √
2 we find hb = 0.930 (3 s.f.). The speed of the shock is s =

uf hf /(hf − hb) when the gravity current front first arrives at the barrier at t = (L − 1)/uf .
The position of the shock is therefore given by

xs = L + uf hf

hf − hb

(
t − L − 1

uf

)
. (5.2)

The reflected α-characteristic meets the uniform region when

x = 1 + (Fr − 1)

(
Fr + 2

2

)1/2

and t =
(

Fr + 2
2

)3/2

(5.3a,b)

(see Hogg 2006). Thus the distance from the lock, L = LA, at which the change of
behaviour occurs is determined by substituting (5.3a,b) into (5.2). For Fr = √

2, we find
LA = 2.02 (3 s.f.; see figure 10a).

For LA < L < LB, the α-characteristic intersects the shock while the reflected motion is
uniform, and the maximum depth, hm, is constant and equal to hb at the instant of collision.
The next change of behaviour is at L = LB when the characteristic catches up with the front

960 A27-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

18
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.187


E.W.G. Skevington and A.J. Hogg

1

t

0 0 1 2 3 4 50.5 1.0 1.5

x x
2.0 2.5

2

2

1

3

4

53 (b)(a)

Figure 10. Plots of the characteristic trajectories for the collision of a gravity current with an insurmountable
barrier for (a) L = LA and (b) L = LB, both for Fr = √

2. The dot dash lines are β-characteristics, dashed lines
are α-characteristics, solid lines are the front and shock and bold lines are the location of the barrier.

at the instant of collision (figure 10b). Using the results in Hogg (2006), this occurs for

LB = 1 + 2Fr
(

Fr + 2
2

)1/2

, (5.4)

and thus LB = 4.70 (3 s.f.) for Fr = √
2.

For a more distant barrier, L > LB, the fluid depth at the front of the current begins to
diminish before it reaches the barrier. In this scenario, the maximum depth at the barrier,
hm, is determined by the depth of the arriving current, which may be evaluated directly
from Hogg (2006). The results are plotted in figure 9, which shows how hm diminishes
with L.

For barriers which permit overflow we may expect to see some supercritical overtopping,
but for Fr = √

2 this has been found to only occur for very short barriers indeed. Using
the results of § 3 and the early time solution (4.1) we find that supercritical overtopping
only occurs for B � 0.038. We do not consider B this small, and instead focus on barriers
which cause subcritical overtopping or blocked flow.

In figure 11 we plot the results from our numerical computations for L = 4, B = 1/4 and
L = 6, B = 1/6. On reaching the barrier, both flows overtop subcritically but the nature of
the interaction at early times differs between the two cases. Following the analysis above
for insurmountable barriers, when L < 4.70, the overtopping is not initially affected by
the finite extent of the release (through the reflection of the characteristic from the back
wall, figure 11e), whereas for L > 4.70 it is (figure 11f ). This means that the former case
exhibits a short period during which the overtopping flux is constant (figure 11a,c) and
thereafter it varies temporally.

After the initial overtopping event, subsequent overtopping can occur as the flow
oscillates in the basin, a shock being reflected between the back wall and the barrier. These
oscillations may cause the depth at the barrier to exceed B again at later times, indeed in
figure 11(g,h) both simulations exhibit a secondary overtopping when the shock collides
with the barrier. It is possible for the oscillations to result in many overtopping events.

During this oscillating phase of motion, we may be concerned that mixing becomes
important. The mixing at the upper shear layer can be shown to be small by an
analysis of mixing rate reported in Strang & Fernando (2001). Across the shock,
however, the depth approximately doubles during the first passage of the shock across
the domain (figure 11a,b), becoming substantially weaker after the first reflection due to
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Figure 11. (a,b) The depth, h, as a function of x at various instances of time as indicated in the legend, with
h = B in grey dotted line. The first time plotted is when the current reaches the barrier. (c,d) The velocity, u,
as a function of x at the times in the legend of (a,b) respectively, with u = 0 in grey dotted line. (e, f ) The
characteristic plane, with gradient discontinuities in dashed lines, and the front and shock locations in solid
lines. (g,h) The depth at x = 0 (dashed) and x = L (solid), with h = B in grey dotted line. Panels (a,c,e,g) are
for L = 4, B = 1/4, while (b,d, f,h) are for L = 6, B = 1/6.
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Figure 12. (a) The escaped volume �V∞ (the colour bar) as a function of L and Vc for Fr = √
2. The black

lines are the contours �V∞ ∈ {0.1, 0.2, . . . , 1}. We also plot in a white solid curve the maximum Vc for
overtopping from figure 9. The crosses mark the parameter values used in figure 11. (b) The difference between
the trapped volume and the value predicted by a purely geometric argument, min(Vc, 1) − V∞. We plot in a
white solid curve the maximum Vc for overtopping from figure 9, and in a white dashed curve the function
(5.10) with R = 8 which approximately bounds the region in which V∞ = Vc.

energy dissipation. As shown by Borden, Meiburg & Constantinescu (2012) for moving
shocks and Wood & Simpson (1984) and Lawrence & Armi (2022) for stationary shocks,
shocks of this size do not cause substantial mixing, and instead the principal difference
between our model and real currents is in the balance of momentum flux in the single
layer model (2.3b) due to the energy dissipation and inertia in the upper layer. We do not
expect this effect to be significant in our case of interest, flows under a deep ambient, but
certainly would need to be included if the ambient and current were of a similar depth.

To characterise the overtopping, we calculate the dimensionless volume of fluid that has
escaped at late times

�V = 1 − V∞, where V∞ = lim
t→∞

∫ L

0
h dx. (5.5)

Whilst formally V∞ should be evaluated at t → ∞, we compute it numerically by stopping
the simulation when there is less than 0.001 change in volume over 2 oscillations of the
fluid trapped behind the barrier. Specifically, at the instant of collision the volume of fluid
in the domain is calculated as V0 = 1, then the simulation is run for a period L3/2/V1/2

0 ,
which approximates the time for a characteristic to cross the domain. This is then repeated,
Vn being the volume after n runs, and the duration of the (n + 1)th run being L3/2/V1/2

n .
If, after Vn is calculated, we have maxm∈{n−4,...,n}(Vm) − minm∈{n−4,...,n}(Vm) < 0.001,
then we cease performing further computations, and approximate V∞ � Vn. We simulate
for L ∈ {1, 1.5, . . . , 10}, Vc ≡ BL ∈ {0.2, 0.4, . . . , 3} with a resolution of 1000 cells, and
include in our plots that all the fluid escapes for B = 0, and that the fluid drains to a
height h = B for L = 1 as discussed in Skevington & Hogg (2020). We now explore the
overtopping that occurs for L > 1, for which the escaped volume is shown in figure 12(a).

The simplest limiting case is that �V = 0 when no fluid is able to overtop, thus V∞ = 1.
For smaller barriers which permit overtopping, it is possible for the limiting volume to be
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exactly that required by volume conservation, V∞ = Vc ≤ 1, thus �V = 1 − Vc. For this
to happen the limiting behaviour must be that discussed in Skevington & Hogg (2020),
i.e. at late times

h ∼ ha ≡ B + 27
2L2τ 2 uh ∼ qa ≡ 27x

L4τ 3 , (5.6a,b)

where τ is an offset time. For the proper ordering of terms the difference between the
leading order solution above and the exact solution cannot be too large. We suppose that,
at the instant the current reaches the barrier, haL = 1 which determines τ , thus

qa =
(

2(1 − Vc)

3

)3/2 x
L5/2 . (5.7)

We then compare the total inertia of the flow at the instant of collision Q (from the
simulation of a lock-release current) with that of the asymptotic Qa, producing the ratio

R ≡ Q
Qa

, (5.8)

where

Q ≡
∫ L

0
uh dx, Qa ≡

∫ L

0
qa dx =

(
2
L

)1/2(
(1 − Vc)

3

)3/2

, (5.9a,b)

thus

Vc = 1 − 3L1/3Q2/3

21/3R2/3 . (5.10)

Our simulations suggest that, so long as R � 8 then V∞ ≈ Vc, see figure 12(b). We see then
that the requirement for limiting to the draining discussed in Skevington & Hogg (2020) is
that the inertia is not too much greater than that of the asymptotic solution, Q � 8Qa. This
bound is surprisingly weak, a priori it may be anticipated that |R − 1| � 1 is required; it
seems the asymptotic solution is unusually robust.

This leaves an intermediate regime, where the inertia is large enough to cause
overtopping in excess of that required by volumetric arguments, and the barrier
insufficiently tall to prevent outflow. In this regime the inertia is enough to decrease
the remaining volume below that which is required by simple volumetric arguments,
V∞ = min(Vc, 1). Indeed, for Vc ≈ 1, L � 3 the outflow volume is over 0.3 greater than
the minimal value, which shows the inertia has a significant effect. In this regime the
fluid oscillates in the basin, and during each oscillation some portion of the fluid overtops
(figure 11).

Beyond L = 10, indeed largely beyond L = 5, the current is approximately in similarity
form at collision and, to leading order, �V is a function of Vc. This is because the
characteristic reflected off the back wall has caught up with the front, see figure 11.
This means that, so long as Vc remains constant, the barrier may be placed any distance
downstream and the same behaviour will be observed.

Our analysis shows that a barrier constructed so that Vc = 1 is not capable of containing
the fluid. That is, if the confined volume is equal to the volume of the current then we
should expect approximately 30 % of the fluid to escape. From our simulations, we expect
that a barrier confining around 2–3 times the volume of the current is required to stop it,
and even then a small portion of the current, around 5 %–10 %, will still overtop.
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Figure 13. (a) The escaped volume �V∞ (the colour bar) as a function of L and Vc for Fr → ∞. The black
lines are the contours �V∞ ∈ {0.1, 0.2, . . . , 1}. (b) The difference between the trapped volume and the value
predicted by a purely geometric argument, min(Vc, 1) − V∞. We plot in a white dashed curve the function
(5.10) with R = 8 which approximately bounds the region in which V∞ = Vc.

5.2. Dam-break flow: Fr → ∞
In this case the current does not evolve into similarity form, and the front is not caught
up by the reflected characteristic from the back wall (Hogg 2006). Thus the β-fan
(4.1) generated by the initial release persists for all time. Hence, the initial overtopping
behaviour is independent of L and only depends on B as shown in figure 7 for Fr → ∞.
Specifically, supercritical overtopping occurs for B < 2, although the volume that escapes
may be quite small prior to the transition to other modes.

The escaped volume as measured using (5.5) is plotted in figure 13(a) from numerical
simulations. We observe that, for L � 5 and B � 0.5, �V∞ is only weakly dependent on
L. This is because the reflected characteristic from the back is advancing slowly across the
β-fan. For L < 5 the effect of the back wall is more pronounced, thus the dependence on L
is stronger. Similarly to the Boussinesq case, the boundary of the region in which V∞ ≈ Vc
is given by (5.10) with R = 8 (Q evaluated for a dam-break current), see figure 13(b).
However, in this case the region is much smaller. Indeed, across a wide range of parameters
the actual escaped volume is substantially underestimated by volumetric considerations;
in excess of an additional 60 % of the initial volume overtops the barrier for L = 10, B =
1/10.

6. Comparison with experiments and three-dimensional simulations

6.1. Dam-break flow
The boundary condition used in this study is very similar to that developed by Cozzolino
et al. (2014), only differing in that they chose to suppress supercritical overtopping.
They compared the predictions of their model with a dam-break (Fr → ∞) experiment
performed by Hiver (2000) with L = 1.74, B = 0.53, ε = 0.19, θ = 7.6◦, H/X = 0.048,
and found a good agreement. However, we note that the overtopping predicted for this set
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of parameter values features only a very short period of supercritical overtopping, and so
does not clearly differentiate between the two boundary conditions.

Instead, we compare our model with the experiments of Greenspan & Young (1978). In
particular, their data evidence an initial period of supercritical overtopping, as is modelled
by our boundary condition. Their figure 9 shows a dam-break experiment with L = 2,
B = 0.5, ε = 0.26, θ = 60◦, H/X = 0.89, a jet can be seen that initially leaps the barrier
prior to the formation of an upstream bore.

The dam-break experiments of Greenspan & Young (1978) only explored the initial
period of overtopping for the case Vc ≥ 1. In this parameter regime the fluid is below the
elevation of the barrier when the surface is level, and consequently overtopping is driven
by the oscillatory sloshing motion depicted in figure 11. The initial period of overtopping
is the time up to the instant when the depth drops from h > B to h ≤ B at x = L− (if h < B
for all t then then initial period extends to t → ∞). Both the volume that overtops during
the initial period and the volume that has escaped by late times are plotted in figure 14(a)
from simulations of our model, showing that there is little difference between these two
measures (at least, for the range of B and L plotted). Additionally, as noted by Greenspan &
Young (1978), the curves for different L are very similar. We understand this as the effect
of the β-fan in the frontal region of the dam-break that persists over long distances (Hogg
2006). The extent of this frontal region relative to the length of the overall current varies
slowly as it is caught up by the reflection of the β-fan from the back wall.

We next consider the experiments with a barrier at θ = 90◦. There may be concerns
that the deviation of the critical barrier boundary condition precludes application to such
steep slopes, however, we only require that there is no energy difference between the
‘base’ and ‘crest’. These are not necessarily at the locations immediately adjacent to the
incline, but rather the first locations up- and down-stream where the assumptions of the
shallow water equations are satisfied, thus the model may be applied with a small change
in interpretation. The experiments show good agreement with our simulations (figure 14b),
with only small discrepancies. For the barriers that are close and tall (red) the experiments
show a slightly larger escaped volume than predicted by our simulations, and we suspect
that this discrepancy is because the region around the barrier where the shallow water
assumptions are violated is large in comparison with the domain (ε �� 1). For the shorter,
distal barriers (cyan and magenta) our simulations over-predict the escaped volume,
and it is likely that this is in part because of drag reducing the inertia of the physical
current, which will reduce the escaped volume. Indeed, comparing our simulations with
the experiments of Hiver (2000) we find that our initial overtopping exceeds that found
experimentally, while the example simulation with drag reported by Cozzolino et al. (2014)
showed better agreement. In the regime Vc = 1 (L = 1/B), however, our simulations agree
remarkably well with experiment (figure 14d), indicating that the small errors cancel in this
important case.

Investigating the effect of different barrier angles θ , we find that our simulations slightly
underestimate the escaped volume for θ = 30◦ and θ = 60◦. These experiments were not
performed at the scales at which our model was derived (see § 2), in particular ε �� 1 and
Z �� X, thus higher-order corrections to the model may be required to fully capture this
non-shallow dynamics.

6.2. Boussinesq gravity current
Our analysis applies to overtopping currents, propagating under relatively deep ambient
fluid so that the momentum of the latter may be neglected. This condition is
particularly important when interpreting data from laboratory and numerical simulations
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Figure 14. Comparison between our theoretical predictions (§ 5.2) and the experimental results of Greenspan
& Young (1978). In all plots the escaped volume is plotted as a function of barrier height; the curves are our
simulations, and the markers are experiments. In (a,b) the different distances to the barrier L correspond to
the plot colours and markers: red ×, 4/3; green ©, 2; blue +, 3; magenta �, 4; cyan ∗, 5. In (a) we plot only
numerical results, the solid curves being the volume that overtops during the initial period of overtopping, the
dashed representing the late time cumulative escaped volume. In (b) we plot the same solid curves, along with
experimental results for a barrier at θ = 90◦. In (c) we plot the same solid curves, but now experiments are
shown for different angles θ : ©, 30◦; +, 60◦; �, 90◦. In (d) the experiments are for θ = 90◦, but in this panel
L = 1/B.

of Boussinesq currents, many of which feature currents that are not initially shallow
relative to the ambient and are potentially strongly influenced by the motion of the ambient
fluid. Notably, however, Gonzalez-Juez & Meiburg (2009) report two-dimensional DNS
of gravity currents driven from a sustained source and propagating under a deep ambient
towards an obstacle that spans the channel. They present data on the depth and velocity
of the gravity current motion downstream of the obstacle (their figure 12), from which we
can compute the overtopping flux of fluid. We present their simulation results in figure 15,
along with the outflow flux predicted by our solution of the boundary-Riemann problem in
§ 3, in which we use the Froude number of the incident fluid, Fi ≡ ui/h1/2

i , determined by
Gonzalez-Juez & Meiburg (2009). The data series with no-slip and slip basal boundary
conditions have different reported frontal Froude numbers. In both cases, we observe
in figure 15 that there is quite close agreement between the simulated results and the
predictions from our boundary-Riemann calculation. We also note that the analysis in § 3
gives a formal justification for the simplified modelling used by Gonzalez-Juez & Meiburg
(2009); their box model analysis upstream of the barrier is identical to the full solution of
a shallow water model with the critical barrier boundary condition derived in § 2, and
their simulations all fall into regime A-II of the boundary-Riemann problem of § 3 (see
figure 5).
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Figure 15. The overtopping flux, qc/h3/2
i , as a function of barrier height, B/hi, both scaled relative to the

depth of the incident fluid, hi. Potted are data from the simulations of Gonzalez-Juez & Meiburg (2009) (�,
Re = 3535; ©/� with error bar, Re = 707) and the predictions of the analysis in § 3 (solid lines). In (a) the
simulations have no-slip boundary conditions and Fr = 0.83, while (b) have slip boundaries and Fr = 1.00.
Also plotted in both are the predictions with Fr = √

2 (dashed lines).

More complete model comparisons with data from simulations and experiments would
enable us to test other aspects of our predictions, such as flow depths and velocities
and shock speeds and to probe dynamical effects that we have not included. The
three-dimensional, large eddy simulations of gravity currents flowing over a triangular
obstacle performed by Tokyay & Constantinescu (2015) report some of these features.
However, we find that the depth computed above the crest of the obstacle differs
substantially from the critical depth, as calculated using their reported data. It is possible
that this discrepancy comes from how the depth and velocity of the current have been
calculated: the former is actually the depth integral of concentration (normalised by
the concentration at release), and the latter the concentration flux per unit ‘depth’.
Consequently, any mixing present prior to overtopping has a substantial effect on the
measurement, and the initial conditions used to generate these currents are likely to cause a
substantial mixed layer to form. Some recent laboratory experiments have been performed
by De Falco, Adduce & Maggi (2021) and Adduce, Maggi & De Falco (2022) using lock
release of saline water propagating through fresh water and overtopping an initially distant
triangular obstacle. The width-averaged density of the the flowing current is measured, as
well as the position of the front and the proportion of the released fluid that is retained
behind the barrier. The currents are released from a lock that occupies the full depth of the
ambient; therefore the motion is strongly influenced by flow within the ambient. Evidence
of this is provided from the measurement of the speed of the front, which is approximately
constant and close to the predictions of two-layer hydraulic models (see Appendix B of
Hogg et al. (2016) for the analytical evaluation of the front speed in a two-layer model
of slumping). The effects of the upper layer are not included in the model of overtopping
developed here and this precludes comparison with this dataset.

7. Summary and conclusions

The collision of a gravity current with a barrier has been investigated using the shallow
water equations, revealing the spatial and temporal dependence of the fluid confined
behind the barrier, and the net volume of fluid that is transported over it following release
from a lock.
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These calculations have utilised a sophisticated boundary condition to model the effects
of a barrier, modifying that of Cozzolino et al. (2014) and generalising that of Skevington
& Hogg (2020). The resulting model has been explored in the case of a collision with
a spatially and temporally uniform current, § 3, which is a similar flow scenario to the
studies of Long (1954, 1970) and Baines (1995), except that we require that the flow beyond
the barrier is supercritical which yields a unique solution. In particular, we find for any
uniform state adjacent to the barrier, one of six behaviours will be exhibited (figure 5):
uniform supercritical overtopping (A-I); an upstream propagating bore with subcritical
overtopping (A-II); an upstream propagating bore with blocked flow (A-III); a rarefaction
fan with subcritical overtopping (A-IV); a rarefaction fan with blocked flow (A-V); or
a rarefaction fan leaving the barrier dry (A-VI). The classification of the interaction has
been extended to the case of an unsteady and spatially varying current. In particular, we
analyse the transitions between them for a lock-release current. This has been carried out
for barriers that are relatively close to the release (§ 4.1) and relatively distant (§ 4.2),
revealing the consequences of the dynamics in the oncoming current on the overtopping.

In addition to the analytical results we presented numerical simulations in § 5. These
demonstrated that, for a ‘lock-release’ flow with a specified frontal Froude number, the
volume of fluid that traverses the barrier depends on the dimensionless distance from the
back wall to the barrier, L, and the dimensionless barrier height, B. It was shown that, for
Boussinesq currents where the reflected characteristic off the back wall quickly catches
up with the front, the escaped volume is approximately a function of only Vc ≡ BL for
L ≥ 5, thus for these distances the current may already be considered to approximately be
in similarity form for the purposes of the collision (§ 4.2). Conversely, for a dam-break
current, the escaped volume is approximately a function of only B for L ≥ 5, B ≤ 1/2,
showing that the effects of the back wall do not significantly affect the overtopping
dynamics in this regime.

An important application of our results is in the design of barriers to trap fluids in the
case of spillage or rupture of a container. We find that, for a Boussinesq current, a barrier
that confines precisely the volume of fluid may permit 30 % of the fluid to escape. Instead,
a barrier that could confine a substantial volume of quiescent fluid, perhaps 2 to 3 times
the volume of released fluid, is required to contain the current. Even with such a barrier, a
small portion of the fluid will still overtop, meaning that additional defences are required
downstream to totally stop the current. However, in real flows mixing may be important,
and in situations where the upper ambient fluid is also shallow a principal difference is
expected to be the influence of the inertial and energetic processes in the upper layer.
Further research is required to quantify these effects. For a dam-break current, a barrier
that confines precisely the volume of the released fluid may have 60 % or more of the
fluid overtop, and to contain the current a barrier of similar height to the initial release is
required. In this case, we expect the effect of drag to have a non-negligible effect over the
distances considered, and again further investigation is required to quantify its effect.

Our comparison with experimental and simulation data in § 6 provided support for
our theoretical model, but highlighted some additional features that could be included in
future models. Indeed, high quality datasets would be of very considerable value for future
testing and refinement of the model. Firstly, it is believed that drag will slightly reduce the
magnitude of overtopping in the range of parameters considered, and it is possible that in
other regions of parameter space the magnitude of the effect could be larger; it remains to
classify the effect of drag on the overtopping of both dam-break and lock-release flows.
Secondly, we argued that the likely cause of the discrepancies in our comparison with
experiment was the violation of the assumptions approximately length scales made in the
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original derivation; how best to include higher order corrections in the model? Finally, for
the case of a gravity current there is the possibility that entrainment of ambient, and the
inertia of the upper layer, may have an influence on and be influenced by the overtopping
process. The fundamental theory presented here for the canonical, simplified problem
forms a basis for these future research endeavours.
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Appendix A. The constant surface elevation boundary condition

In some earlier studies (e.g. Greenspan & Young 1978; Rottman et al. 1985), subcritical
flow over a barrier is modelled on the assumption that the surface elevation is constant
between the base (x = L1) and the crest (x = L2), along with the condition of criticality
(h = q2/3) at the crest. In these models

h|x=L1 = h|x=L2 + B = q2/3|x=L2 + B = (uh)2/3|x=L1 + B, (A1)

thus the boundary condition is

hb − B = (ubhb)
2/3. (A2)

While this may appear reasonable, in fact it predicts energy generation. Indeed by (2.6b)
the energy loss is required to be positive, �Eb ≥ 0, whereas the above model predicts a
negative value

�Eb = 1
2 u2

b + hb − B − 3
2 (ubhb)

2/3 = 1
2 u2

b − 1
2 (ubhb)

2/3

= 1
2 (ubhb)

2/3
(

F4/3
b − 1

)
< 0. (A3)

Here, Fb = ub/h1/2
b is the local Froude number at the base of the slope, and for subcritical

conditions at that location 0 < Fb < 1.
We may ask: What boundary condition should we impose if we wish to minimise the

change in surface elevation while not violating conservation of energy? That is we choose
to impose

�Eb = u2
b

2
+ hb − B − 3

2
(ubhb)

2/3, (A4)

where �Eb ≥ 0 is some value to be determined so as to minimise

�h ≡ h|x=L − (h|x=L+ε + B) = hb − B − (ubhb)
2/3. (A5)

This is the type of problem considered in Appendix B, for a given set of initial conditions in
a boundary-Riemann problem how best to choose �Eb to minimise �h? By (B10) we have
that ∂�h/∂�Eb > 0 (holding initial condition constant, only changing boundary values),
thus the minimal drop in elevation permitted by energetic considerations is that found by
imposing �Eb = 0 for subcritical outflow, as is done in this study (see § 2).
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Appendix B. Results pertaining to the boundary-Riemann problem

B.1. Classification of solutions, with existence and uniqueness
Here, we discuss the classification of solutions which do not correspond to supercritical
overtopping, thus ûi ≤ ĥ1/2

i or �Êi ≤ 0 (or both), and do not contain a dry region adjacent
to the boundary, thus ûi > −2ĥ1/2

i . We explore existence and uniqueness of solutions.
A priori, it is not clear whether a given initial condition (ûi, ĥi) meeting the preceding
constraints will have a solution subject to applying the subcritical overtopping condition
from § 2, and we may be concerned by the possibility that multiple solutions exist. In this
appendix we find when a solution to subcritical overtopping exists, and demonstrate that
it is unique.

For the purpose of this discussion, we define a flow state to be any solution to the shallow
water system (2.1) satisfying the initial conditions (3.1a,b) irrespective of any boundary
conditions. Thus there are infinitely many flow states, each being either a uniform state
(3.3a), a β-fan (3.3b), or a β-shock (3.3c). For a given initial condition (ûi, ĥi) the flow
states form a one parameter family, and during our discussion we will employ the following
parameters one by one: Fb ≡ ûb/ĥ1/2

b , μ̂b ≡ ûb − ĥ1/2
b and ŝ ≡ (ûiĥi − ûbĥb)/(ĥi − ĥb).

Each parameter uniquely specifies the solution by the results in Appendix B.2, so long
as they are in a regime so that the dynamics at the outflow is at most critical, thus
Fb ≤ 1, μ̂b ≤ 0. For ŝ, we first note that it is still a defined quantity for the case of a
β-fan, although it no longer represents a shock speed. To specify a solution uniquely, we
require

ŝ ≤ û3
bc − ûiĥi

û2
bc − ĥi

, (B1a)

where

ûbc = ûi + 2ĥ1/2
i

3
, for ûi ≤ ĥ1/2

i , (B1b)

and

ûbc − ûi = −
(

û2
bc + ĥi

2û2
bcĥi

)1/2

(û2
bc − ĥi), for ûi ≥ ĥ1/2

i , (B1c)

specify the velocity at the barrier under critical flow conditions ûbc, the value of ûb when
ûb = ĥ1/2

b : (B1b) is a consequence of α being constant across a β-fan; (B1c) is from the
shock conditions (2.3); and (B1a) is because of (B7a).

First, we consider flow states parametrised by Fb, thus �Êb is a function of ûi, ĥi, Fb.
The question as to whether there exists a flow state satisfying �Êb = 0 can be answered
by showing that there exists an interval in Fb over which �Êb changes sign. Restricting
ourselves to subcritical flow 0 ≤ Fb ≤ 1, for Fb = 0 we find �Êb = ĥb − 1 whilst Fb = 1
yields �Êb = −1. Thus, if the flow state with Fb = 0 satisfies ĥb ≥ 1 then a solution exists
to imposing �Êb = 0 (intermediate value theorem), this is illustrated in figure 16. We can
further show the existence of a flow state with Fb = 0, ĥb ≥ 1 is necessary for �Êb = 0 to
have a solution by noting that ∂�Êb/∂Fb < 0 for 0 < Fb < 1, see Appendix B.2, which
also shows the solution is unique.
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3

2

1

ĥb

�Êb > 0

�Êb < 0

0 0.2 0.4 0.6 0.8 1.0

Fb

Figure 16. An illustration of the condition for subcritical overtopping to exist. The solid black curve represents
the condition �Êb = 0, and divides the plane into two regions in which �Êb is of differing sign. The solid
grey curves are contours �Êb ∈ {−0.9, −0.8, . . . , 3.4}. The dashed curve represents the flow states at x̂ = 0
accessible from the initial condition ûi = 0, ĥi = 2. The change in sign on the dashed curve between ûb = 0 and
ûb = ĥ1/2

b , marked with crosses, implies the existence of an accessible flow state satisfying �Êb = 0, marked
with a circle, which is the flow state that solves the boundary-Riemann problem.

Next we seek to divide up the (ûi, ĥi)-plane based on the type of solution found in each
region. If blocked flow is imposed then ûi = 0 results in a uniform state, ûi < 0 a β-fan,
and ûi > 0 a β-shock. For subcritical outflow the situation is more complicated. If ûi < 0
then ûi ≤ ûb thus we have a β-fan, and if ûi ≥ ĥ1/2

i then ûi > ûb thus we have a β-shock.
For subcritical initial conditions (0 < ûi < ĥ1/2

i ) we consider �Êb a function of ûi, ĥi, μ̂b,
from which we find that ∂�Êb/∂μ̂b < 0 for 0 < ûb < ĥ1/2

b , see Appendix B.2. We take
the uniform flow state and move through parameter space to the �Êb = 0 flow state, thus
if �Êi > 0 then μ̂i < μ̂b and we have a β-fan, whilst if �Êi < 0 then μ̂i > μ̂b and we
have a β-shock.

The final thing to check is that the dynamics derived above all occurs within the domain.
That is to say, if in the above construction we inadvertently made use of a shock or fan
that existed in the region x̂ > 0 then the results would be invalid. To demonstrate that the
dynamics is confined to x̂ ≤ 0 we note that in a uniform state there is no spatial variation,
and for solutions with a β-fan the fact that we enforce subcritical or blocked flow implies
that μ̂b < 0, thus a uniform region exists between the fan and the barrier. Therefore the
only cases that require any computation are those with β-shocks. The shock speed is given
by (3.3c), and because ĥb > ĥi we know that the shock satisfies ŝ < 0 precisely when
ûbĥb < ûiĥi, which is clearly satisfied for the blocked case. For subcritical overtopping,
when the initial condition is subcritical ûi ≤ ĥ1/2

i then, because the β-shock absorbs
β-characteristics (Lax entropy), we have ŝ < 0. When ûi > ĥ1/2

i then we know �Êi ≤ 0
or else the solution would be supercritical overtopping. Thus we can construct a flow state
with ŝ = 0 for which �Êb < �Êi ≤ 0, where we have used that [E]+− < 0 for a stationary
β-shock. The flow downstream of this stationary shock is subcritical. Treating �Êb a
function of ûi, ĥi, ŝ, for 0 < û < ĥ1/2 we can show ∂�Êb/∂ ŝ < 0, see Appendix B.2,
therefore to obtain the state �Êb = 0 we must decrease ŝ and thus, in the required solution,
ŝ < 0.
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B.2. Derivatives of the energy difference at the barrier

We consider an arbitrary flow state for a given, fixed initial condition ûi ĥi, the flow states
parametrised by the velocity at the barrier ûb. This means that we can consider ĥb and �Êb
as functions of ûi, ĥi, ûb. To start with we evaluate the derivative of �Êb with respect to
ûb from which we can determine its sign. By (2.6b)

∂�Êb

∂ ûb
=
(

Fb − 1

F1/3
b

)
ĥ1/2

b + (1 − F2/3
b )

∂ ĥb

∂ ûb
, (B2)

where Fb ≡ ûb/ĥ1/2
b . From here we require ∂ ĥb/∂ ûb. The two types of solution will be

considered separately. For a β-fan we use that α is constant across the domain, that is

ûb + 2ĥ1/2
b = ûi + 2ĥ1/2

i , and so
∂ ĥb

∂ ûb
= −ĥ1/2

b . (B3a)

For a β-shock we can deduce from (2.3) that

ûb − ûi = −
(

ĥb + ĥi

2ĥbĥi

)1/2

(ĥb − ĥi), and so
∂ ĥb

∂ ûb
= − (8H(H + 1))1/2

H2 + H + 2
ĥ1/2

b , (B3b)

where H ≡ ĥi/ĥb, and 0 < H ≤ 1 for a β-shock. We combine these two cases into the
single expression

∂ ĥb

∂ ûb
= −Kĥ1/2

b , where K =
⎧⎨
⎩

(8H(H + 1))1/2

H2 + H + 2
, for 0 < H ≤ 1,

1, for 1 ≤ H,

(B3c)

and 0 < K ≤ 1. The monotonicity of the relationship between ĥb and ûb implies that
selecting either ĥb or ûb uniquely determines the other and, consequently, the flow state.
From (B2) and (B3c) we obtain

∂�Êb

∂ ûb
= − ĥ1/2

b

F1/3
b

(1 − F2/3
b )(F2/3

b + KF1/3
b + 1), (B4)

where the last term in the product is strictly positive. Finally, we conclude that for a
subcritical flow state 0 < ûb < ĥ1/2

b , we have 0 ≤ Fb < 1, and therefore the derivative
is negative.

To investigate other parametrisations of the flow state we expand ∂�Êb/∂ ûb using the
chain rule, which means we require the derivative of our new parametrisation with respect
to ûb.

First we parametrise with Fb, where

∂Fb

∂ ûb
= 2 + KFb

2ĥ1/2
b

> 0 (B5a)

thus specifying Fb uniquely determines the flow state, and

∂�Êb

∂Fb
= − 2ĥb

(2 + KFb)F
1/3
b

(1 − F2/3
b )(F2/3

b + KF1/3
b + 1), (B5b)
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which is negative for a subcritical flow state. Next we parametrise with μ̂b ≡ ûb − ĥ1/2
b ,

for which
∂μ̂b

∂ ûb
= 1 + K

2
> 0, (B6a)

thus specifying μ̂b uniquely determines the flow state, and

∂�Êb

∂μ̂b
= − 2ĥ1/2

b

(2 + K)F1/3
b

(1 − F2/3
b )(F2/3

b + KF1/3
b + 1), (B6b)

which is negative for a subcritical flow state. Next we parametrise using ŝ, which for a
β-shock is the shock speed. By

∂ ŝ
∂ ûb

= ĥ1/2
b

K(ŝ − μ̂b) + (1 − K)ĥ1/2
b

ĥb − ĥi
> 0, (B7a)

we find that specifying ŝ uniquely determines the flow state, and

∂�Êb

∂ ŝ
= − ĥb − ĥi

K(ŝ − μ̂b) + (1 − K)ĥ1/2
b

1

F1/3
b

(1 − F2/3
b )(F2/3

b + KF1/3
b + 1), (B7b)

which is negative for a subcritical flow state. Finally we consider a parametrisation relevant
to Appendix A, namely the decrease in surface elevation from the flow at the edge of the
domain to the flow over the barrier, given by

�ĥ ≡ ĥb − 1 − (ûbĥb)
2/3. (B8)

Using that

∂�ĥ
∂ ûb

= − ĥ1/2
b

3F1/3
b

(
3KF1/3

b + 2(1 − KFb)
)

(B9)

is negative for subcritical flow we find that �ĥ uniquely determines subcritical outflow
states, and

∂�Êb

∂�ĥ
= 3

(1 − F2/3
b )(F2/3

b + KF1/3
b + 1)

3KF1/3
b + 2(1 − KFb)

, (B10)

which is positive for a subcritical flow state.

Appendix C. Effect of perturbations on a shock

We consider a shock satisfying (2.3), and perturb the values and speed as

u± = u±
0 + δu±

1 + O
(
δ2
)

, h± = h±
0 + δh±

1 + O
(
δ2
)

, s = s0 + δs1 + O
(
δ2
)

,

(C1a–c)

where u±
0 , h±

0 and s0 are assumed to satisfy the shock conditions exactly. Substitution of
the perturbations and equating at O (δ) yields the system

[(u0 − s0)h1 + (u1 − s1)h0]+− = 0, (C2a)[
(u0 − s0)

2h1 + 2(u0 − s0)(u1 − s1)h0 + h0h1

]+
−

= 0. (C2b)
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Defining q̃0 ≡ (u−
0 − s0)h−

0 = (u+
0 − s0)h+

0 , this system can be rearranged to give

s1 =
[
q̃0h1/h0 + h0u1

]+
−

[h0]+−
, (C3a)

0 =
[(

q̃2
0

h2
0

+ h0

)
h1 + 2q̃0u1

]+

−
. (C3b)

In § 4.2 it is helpful to have the perturbed shock conditions in terms of the perturbations
to the characteristic invariants

α± ≡u± + 2
√

h± = α±
0 + δα±

1 + O
(
δ2
)

, β± ≡u± − 2
√

h± = β±
0 + δβ±

1 +O
(
δ2
)

.

(C4a,b)
Substituting for our expansions of velocity and depth we obtain

α±
1 = u±

1 + h±
1√
h±

0

, β±
1 = u±

1 − h±
1√
h±

0

, (C5a,b)

thus

u±
1 = α±

1 + β±
1

2
, h±

1 =
√

h±
0

α±
1 − β±

1
2

. (C6a,b)

Therefore the expressions needed for the shock conditions are

q̃0h±
1

h±
0

+ h±
0 u±

1 =
√

h±
0

2

((
u±

0 +
√

h±
0 − s0

)
α±

1 −
(

u±
0 −

√
h±

0 − s0

)
β±

1

)
, (C7a)

(
q̃2

0

(h±
0 )2

+ h±
0

)
h±

1 + 2q̃0u±
1 =

√
h±

0

2

((
u±

0 +
√

h±
0 − s0

)2

α±
1 −

(
u±

0 −
√

h±
0 −s0

)2

β±
1

)
.

(C7b)
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