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Abstract. Next-generation 21cm observations will enable imaging of reionization on very large
scales. These images will contain more astrophysical and cosmological information than the
power spectrum, and hence providing an alternative way to constrain the contribution of different
reionizing sources populations to cosmic reionization. Using Convolutional Neural Networks,
we present a simple network architecture that is sufficient to discriminate between Galaxy-
dominated versus AGN-dominated models, even in the presence of simulated noise from different
experiments such as the HERA and SKA.
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1. Introduction
The Epoch of Reionization (EoR) marks a period in the early universe, during which

the birth of first luminous cosmic objects gradually reionized the neutral hydrogen in the
Intergalactic medium (IGM). Studying this epoch will reveal a wealth of astrophysical
and cosmological information concerning the nature of these first objects, and provide
crucial input for theories of galaxy formation and evolution. Many ongoing and upcom-
ing radio interferometer experiments such as the Low Frequency Array (LOFAR), the
Precision Array for Probing the Epoch of Reionization (PAPER), the Hydrogen Epoch of
Reionization Array (HERA), the Murchison Widefield Array (MWA), the Giant Metre-
wave Radio Telescope (GMRT), and the Square Kilometer Array (SKA), are promising
to detect reionization in the near future through its 21cm fluctuations on large cosmo-
logical scales (� 500 Mpc). These experiments will provide a large amount of 21cm maps
that encode these information. It is important to develop efficient statistical tools to best
extract such information from upcoming 21cm survey data.

The nature of sources driving cosmic reionization remains most uncertain. It has long
been believed that star-forming galaxies have provided the full ionising photon budget
required to complete reionization (e.g. Shapiro & Giroux 1987; Hopkins et al. 2007).
However, several recent observational developments have triggered a debate about the
ability of the Active Galactic Nuclei (AGN) to reionize the universe. These developments
include Giallongo et al. (2015) high-redshift AGN observations, the flat slope of ionising
emissivity measurements by Becker & Bolton (2013), the early and extended Helium
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Figure 1. The 21cm brightness temperature at z = 8 when reionization is half way through for
Galaxies-only versus AGN-only models. Galaxies produce more small ionised bubbles structures
while AGN produce larger and more spherical ionised bubbles due to the strong AGN clustering
and high ionising emissivity ouput as implied by Giallongo et al. (2015) observations.

reionization by Worseck et al. (2016), and the large scale opacity fluctuations in the Lyα
forest measured by Becker et al. (2015).

In Hassan et al. (2018), we have estimated the AGN contribution to reionization using
a semi-numerical model, to which we add a plausible AGN contribution drawn from the
Giallongo et al. (2015) observed luminosity function at z = 5.75, and evolved to higher
redshifts following a fixed Quasar Halo Occupancy Distribution. We have concluded that
AGN-only models cannot simultaneously match current reionization constraints, namely
the Planck (2016) optical depth, ionising emissivity measurement by Becker & Bolton
(2013), and Fan et al.(2006) neutral fraction constraints by end of reionization. This
indicates that AGN are highly unlikely to drive cosmic reionization, even if more faint
AGN exist than previously thought. However, a model of 50% contribution of AGN and
galaxies barely matches these current constraints. This shows the need for additional set
of observations which might likely provide more stringent constraints on AGN contri-
bution to reionization. For this reason, we have performed 21cm forecasting for future
observations by LOFAR, HERA and SKA and found that the 21cm power spectrum
could potentially discriminate between these two models (Hassan et al. 2018).

Although the 21cm power spectrum is powerful in quantifying the large and small
scale ionized bubbles clustering, the actual 21cm maps will contain more information
to constrain the contribution of different reionization scenarios more efficiently. We next
would like to assess the viability of using the 21cm maps to discriminate between AGN-
only versus Galaxy-only models.

2. Simulations
We use an improved version of our semi-numerical code SimFast21 (Santos et al.

2010) that has been recently developed in Hassan et al. (2017). SimFast21 simulation
begins by generating the dark matter density field using a Monte-Carlo Gaussian ap-
proach. The density field is then dynamically evolved into the non-linear regime via the
Zel’dovich approximation. The dark matter halos are generated using the well known
excursion set formalism (ESF, Press & Schechter 1974, Bond et al. 1991). In this im-
proved model, the ionised regions are identified using a similar form of the ESF that is
based on comparing the time-integrated ionisation rate with that of the recombination
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Figure 2. Simple Convolutional Neural Network architecture used in the reionization models
classifier. Each 21cm map is processed by 2 convolutional layers followed by pooling layers to
eventually output the predicted model class (0 - Galaxy, 1 - AGN).

rate and the local neutral hydrogen density within each spherical volume specified by
the ESF. Ionising photons from galaxies are modelled using a derived parametrization
taken from a high-resolution radiative transfer simulation (Finlator et al. 2015) and a
larger volume hydrodynamic simulation (Davé et al. 2013), in order to account for the
non-linear dependence on halo mass and redshift (see Hassan et al. 2016 for more details
on this derived parametrization and its effect on the 21cm signal). Ionising photons from
AGN are computed by extrapolating the strong correlation between black hole mass and
halos circular velocity from the local Universe observations (Ferrarese 2002 and Tremaine
et al. 2002). The AGN number density, and the corresponding duty cycle, are accounted
for by adopting a fixed Quasar Halo Occupancy Distribution based on Giallongo et al.
(2015) luminosity function.

3. Reionization Models Classifier
To classify between AGN-dominated and Galaxy-dominated models, we start by prepar-

ing our training and testing samples. The training set includes ∼ 103 21cm images of
140×140 pixels for each model from a simulation box of 75 Mpc. These 21cm images
are taken out of different realizations by varying these models’ free parameters, namely
the photon escape fraction, ionising emissivity amplitude, mass power dependence. We
account for the density field evolution by including images from several redshifts in the
range z = 10 − 7 and a neutral fraction range of xHI = 0.95 − 0.05. Figure 1 shows
examples of the 21cm maps from our two models at fixed redshift (z = 8) and neutral
fraction (xHI = 0.5). As seen in this Figure, Galaxies models produce more small scale
ionised bubbles while AGN-only models produce larger ionised bubbles. We next employ
the LOFAR, HERA, and SKA final proposed configurations to add realistic random noise
to the image space using 21cmSense (Pober et al. 2014); a package for determining ex-
periments’ sensitivities to 21cm power spectrum. We use 90% of those images to train
our classifier and 10% for validation purpose. We employ Convolutional Neural Networks
(CNNs) in order to take to advantages of the 2-dimensional (2D) features (large versus
small scale bubbles) encoded in the 21cm maps. Our CNN architecture is as follows:
each 21cm map is first processed by a convolutional layer with 5×5 filter of neurons
batches, that generates 12 21cm features out of the input map. We then apply an 2×2
max pooling layer to reduce their size from 140×140 to 70×70 images. This output is
then processed by a similar convolutional layer to generate 24 more features, followed
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Figure 3. Reionization Models Classifier using 21cm maps Deep Learning. Left: Realization
of the 21cm signal from our AGN-dominated model with a simulated noise as expected from
LOFAR, HERA and SKA. The training set contains ∼ 103 different realizations taken from our
Galaxy-dominated and AGN-dominated models across several redshifts with different neutral
fractions. Right: Classifier accuracy as a function of the training step for different experiments.
Open symbols: green triangles (LOFAR), blue squares (HERA), and red circles (SKA) represent
the accuracy of our training sample, while solid lines show the testing accuracy. The developed
classifier is able to correctly recognize ¿ 90% of the training and testing samples from the first
100 training steps. Such classifier can be used to constrain the contribution of different source
populations during cosmic reionization from the future observations.

by a second pooling layer to reduce their size to half in pixels. We then process these 24
features of 35×35 pixels into a fully connected layer to produce 500 different features.
We apply the rectified linear unit (ReLU) activation function on all layers. To prevent
overfitting and reduce the CNN complexity, we apply dropout on the fully connected
layer to keep only 75% of the neurons. Finally, these features are processed into an out-
put layer with two neurons to obtain our predictions: 0 - Galaxy, 1 - AGN, as illustrated
in Figure 2. Figure 3 shows one realization of the 21cm maps from our AGN-only model,
with a simulated noise added from different experiments. We find that the noise from
LOFAR dominates the 21cm image, due to the low Signal-to-Noise ratio (SNR) and the
few number of antennae. Unlike the case with LOFAR, the signal features are clearly
seen in Figure 3 in the presence of noise from SKA and HERA, due to the high SNR
and the large number of stations. In the same Figure, we display the classifier accuracy
as a function of the training step. Open symbols: green triangles (LOFAR), blue squares
(HERA), and red circles (SKA) represent the accuracy of our training sample, while solid
lines show the testing accuracy. The developed classifier is able to correctly recognize ¿
90% of the training and testing samples from the first 100 training steps. It is evident
that this simple classifier is able to discriminate between our models in terms of their
21cm simula ted maps, even in the presence of a realistic simulated noise as expected
from future HERA and SKA observations.

4. Summary
We have presented a simple Convolutional Neural Network that is sufficient to discrim-

inate between Galaxy-only and AGN-only models based on their 21cm maps as will be
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seen from HERA and SKA observations. This confirms the capability of using the actual
21cm maps as an alternative tool, besides the power spectrum, in order to efficiently
handle the large amount of data expected from future 21cm observations. Our developed
classifier can be used to constrain the contribution of different source populations during
cosmic reionization from the future 21cm observations.

It is worthwhile to mention that our training and testing samples are obtained by
varying the astrophysical parameters, but assuming a fixed realization of the underlying
density field. With these ideal samples, it is expected to obtain high accuracy with such
a simple network. Realistically, our samples should include different density field real-
izations by changing the initial seed fluctuations. This step is currently under progress.
Our future analysis will involve training the classifier on samples whose AGN-only and
Galaxy-only models produce similar 21cm power spectra, and hence assessing the capa-
bility of using 21cm maps in extreme cases when the power spectrum is kept fixed. Using
the final trained architecture, we will be able to identify the features (e.g. large versus
small bubbles) by which the classification is determined. We finally plan to introduce
an unrealistic third model, in which the correlation between the density and ionization
fields is broken. This third model will test the classifier ability to discriminate between
a mixture of realistic and unrealistic reionization models. All these steps are required
to add more complexity and generalize our analysis in order to provide a more generic
robust classifier for the upcoming 21cm surveys.
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