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An improved resolvent analysis is proposed in the regime of compressible turbulent
boundary layers. To better model nonlinear processes in the input, the resolvent
framework is augmented by adding eddy viscosity. To this end, we propose two
eddy-viscosity models: a modified Cess eddy-viscosity model coupling the compressibility
transformation and outer-layer correction, and a new eddy-viscosity model based on an
empirical relationship and mixing-length theory. Both are incorporated into the resolvent
operator to examine the performance of the eddy-viscosity-improved resolvent-based
reduced-order modelling. Results of the augmented resolvent analysis are compared
qualitatively and quantitatively with the first leading mode of spectral proper orthogonal
decomposition, by checking the profiles and cross-spectral densities of velocities, density
and temperature in two hypersonic turbulent boundary layers under different wall
conditions. Higher accuracy of the turbulence prediction is achieved by adding the
proposed eddy-viscosity models, particularly for the energetic cycle in the outer-layer
region where strong nonlinear energy transfer exists.
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1. Introduction

Resolvent analysis is known as a promising operator-theoretic modal decomposition
method in fluid dynamics (McKeon & Sharma 2010; Taira et al. 2017; Jovanović 2021).
Based on linear dynamical system theory, the Navier–Stokes equations are linearized
around the steady base flow to form an input–output framework, governed by the
resolvent operator. Resolvent analysis has been used widely to identify the prominent
linear mechanisms, predict the organization of coherent structures, and design optimal
flow-control algorithms, for canonical wall-bounded turbulence (Sharma & McKeon 2013;
Zare, Jovanović & Georgiou 2017; Martini et al. 2020, 2022; Karban et al. 2022), mixing
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jets (Schmidt et al. 2018; Towne, Schmidt & Colonius 2018; Lesshafft et al. 2019;
Pickering et al. 2021), bluff-body wakes (Jin, Symon & Illingworth 2021; Jin, Illingworth
& Sandberg 2022) and shock buffet (He & Timme 2020; Kojima et al. 2020), to name a
few.

Performing singular value decomposition of the resolvent operator, the response to
the endogenous stimulus is ranked at particular wavenumber and frequency pairs. By
selecting the optimal response modes, the chaotic motions in wall-bounded turbulence
can be characterized by the low-rank approximation of resolvent modes. For instance,
Sharma & McKeon (2013) identified the complex coherent structures in turbulent
pipe flow, based on a single optimal response mode or a linear superposition of
modes at representative wavenumber combinations. Moarref et al. (2013a) exploited the
optimal resolvent modes as basis functions to predict streamwise velocity fluctuations
in high-Reynolds-number channel flows. A convex optimization problem was solved
to determine the weight functions amplifying or attenuating the energy densities of
the optimal modes, and good agreements with experimental or well-resolved numerical
results were achieved. Similar optimization algorithms were also applied to estimate
the distribution of spanwise and wall-normal velocity fluctuations, and the Reynolds
shear stress across the wall layer (Moarref et al. 2013b, 2014). Abreu et al. (2020) used
the resolvent analysis and spectral proper orthogonal decomposition (SPOD) to identify
the dominant near-wall coherent structures in channel flows. Quantitative comparisons
suggested that the resolvent and SPOD modes are consistent with each other, especially
at the frequencies and wavenumbers where the lift-up mechanism is present. In the
context of compressible wall turbulence, Dawson, McKeon & Saxton-Fox (2018) and
Dawson & McKeon (2019) extended the resolvent formulation to a compressible form, by
incorporating the advection–diffusion equation of temperature (or any scalar), allowing the
prediction of passive scalar structures. Compressible resolvent analysis has been applied to
supersonic/hypersonic wall-bounded turbulence, for various purposes, including revealing
the features of energy-distribution mechanisms and examining the scaling laws of resolvent
modes (Bae, Dawson & McKeon 2020a,b), identifying coherent structures under the
condition of wall cooling (Fan, Li & Sandberg 2023), and analysing the mechanisms
responsible for the energy amplification in subsonic and supersonic response modes
(Madhusudanan & McKeon 2022; Chen et al. 2023).

Recently, various modifications to the standard resolvent formulation have been
proposed to improve the accuracy of resolvent-based modelling and prediction (McKeon
2017; Gupta et al. 2021; Wu & He 2023). Among the modifications, a critical point is
that the nonlinear process in the resolvent formulation needs to be modelled appropriately.
Generally, a stochastic excitation is imposed on the linear system as an input, to avoid
the calculation or modelling of the complex nonlinear terms. However, this strategy
may lead to a poor performance of prediction. For instance, Symon, Illingworth &
Marusic (2021) reported that given white noise inputs, the predicted production term
in the turbulent kinetic energy budgets is much larger than the inter-scale transfer term,
which conflicts with the real physics. They found that this unphysical phenomenon is
associated directly with the non-normality in the resolvent operator, and it can be alleviated
by adding appropriate eddy viscosity to the resolvent formulation, so as to account
for part of the nonlinear process. In the resolvent analysis of incompressible turbulent
channel flows, the Cess eddy-viscosity model (Cess 1958; Reynolds & Hussain 1972)
is used widely. Significant improvements of accuracy were achieved, for the prediction
of instantaneous velocity fields (Illingworth, Monty & Marusic 2018; Madhusudanan,
Illingworth & Marusic 2019), energy transfer (Symon et al. 2021) and spatio-temporal
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power spectral densities (Morra et al. 2019, 2021; Symon, Illingworth & Marusic 2020),
especially for the high-energy-containing scales. The turbulent dissipation introduced by
the eddy viscosity plays an important role in modelling the nonlinear transfer from large-
to small-scale motions (Symon et al. 2021, 2023). Aiming to model the remaining part of
the nonlinear process, Gupta et al. (2021) decomposed the nonlinear terms into two parts,
the eddy-viscosity term and the improved stochastic-forcing term. The two terms were
modelled separately as functions of the wall distance and turbulence scales, to estimate
the large-scale fluctuations at different wall-normal locations in channel flows.

So far, no eddy-viscosity model has been developed for the resolvent analysis in the
case of compressible turbulent boundary layers, to the best of the authors’ knowledge.
Due to the different geometries between the channel and boundary layer, the classical
Cess model, without modifications, may not be suitable for turbulent boundary layers,
especially for the dynamics in the outer region. On the other hand, in compressible
turbulent boundary layers, the mean velocity profiles differ from their incompressible
counterparts due to the variations of thermodynamic properties. The Cess eddy-viscosity
model (Cess 1958; Reynolds & Hussain 1972) is defined such that the universal mean
velocity profile in incompressible channel flows is obtained by simply integrating the
expression Reτ (1 − x2)μw/μT in the wall-normal direction. (In this expression, Reτ is
the friction Reynolds number, μw and μT are the wall dynamic and total viscosities, and
x2 is the normalized wall-normal distance to the surface.) However, with rapid density
variations in the compressible cases, the velocity profiles deviate from those resulting
from the classical Cess model. Therefore, compressibility effects need to be taken into
account in the development of eddy-viscosity models for compressible flows.

In the present study, two eddy-viscosity models are proposed to improve the resolvent
analysis for compressible turbulent boundary layers: (i) the classical Cess eddy-viscosity
model is modified by coupling a compressibility transformation with an outer-layer
correction; (ii) we develop a new eddy-viscosity model based on an empirical expression
and the mixing-length theory. To examine their capability in resolvent-based modelling,
we apply them to the resolvent formulation for two hypersonic turbulent boundary layers
under different wall conditions. The remainder of the paper is outlined as follows.
Section 2 introduces the resolvent formulation for the compressible turbulent boundary
layers, with/without the addition of eddy viscosity. Two eddy-viscosity models are
proposed herein, with a priori examinations conducted in contrast to the direct numerical
simulations (DNS) data. In § 3, to evaluate the performance of eddy-viscosity-improved
resolvent-based reduced modelling, we compare the predicted perturbations in velocities,
density and temperature to those issued from the SPOD. Finally, concluding remarks are
given in § 4.

2. Methodology

2.1. Governing equations
For a perfect heat-conduction gas, the non-dimensional compressible Navier–Stokes
equations are given as

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − 1

γ M2∞

∂p
∂xi

+ 1
Re

∂

∂xj

[
μ

(
∂ui

∂xj
+ ∂uj

∂xi

)
+ λ ∂uk

∂xk
δij

]
, (2.1)

∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ

∂uj

∂xj
, (2.2)
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ρ

(
∂T
∂t

+ uj
∂T
∂xj

)
= −(γ − 1)p

∂ui

∂xi
+ γ

Re
∂

∂xj

(
k

∂T
∂xj

)

+ γ (γ − 1)
M2∞
Re

[
μ

∂ui

∂xj

∂ui

∂xj
+ μ

∂ui

∂xj

∂uj

∂xi
+ λ

(
∂uk

∂xk

)2
]
, (2.3)

where t is time, xk (k = 1, 2, 3) denote the streamwise, wall-normal and spanwise
directions, respectively, and uk are the corresponding velocity components. Here, ρ is
density, p is pressure, and T is temperature, and they satisfy the ideal gas state equation
p = ρT . Also, μ and λ = −2/3μ are the coefficients of the molecular and second
viscosity, respectively. The heat conduction coefficient k is defined by μ/Pr, where Pr is
the molecular Prandtl number. Also, γ is the specific heat ratio, δij is the Kronecker delta,
and M∞ is the freestream Mach number. The freestream Reynolds number Re is defined
by ρ∗∞u∗∞δ∗

99/μ
∗∞, with δ99 being the 99 % boundary-layer thickness. The subscript ∞

denotes the freestream state, and the superscript ∗ denotes dimensional values, otherwise
all variables are non-dimensionalized by the freestream flow quantities.

2.2. Resolvent analysis
The boundary-layer flow is assumed to be locally parallel (Bae et al. 2020a),
that is, the effects of streamwise development are ignored. Thus flow quantities
q = [u1, u2, u3, ρ, T]T can be Fourier transformed in the temporal, streamwise and
spanwise directions, namely

q (x1, x2, x3, t) =
∫∫∫ ∞

−∞
q̂ (x2; κ1, κ3, ω) exp(i(κ1x1 + κ3x3 − ωt)) dκ1 dκ3 dω, (2.4)

where (̂·) denotes the Fourier-transformed variable, κ1 and κ3 are the streamwise and
spanwise wavenumbers, ω is the temporal frequency, and i = √−1. The speed of the
streamwise wave is defined by c = ω/kx.

Substituting (2.4) into the non-dimensional compressible Navier–Stokes equations
(2.1)–(2.3), we get a linearized form for each (κ1, κ3, ω) /= (0, 0, 0) (Mack 1984),

[−iωI + L(κ1, κ3, ω)] q̂(x2; κ1, κ3, ω) = f̂ (x2; κ1, κ3, ω), (2.5)

where I is the identity matrix. The high-order nonlinear contributions in the Navier–Stokes
equations are all represented within a single forcing term f̂ . For the detailed expression of
L, readers can refer to Fan et al. (2023).

Equation (2.5) leads to an input–output form

q̂(x2; κ1, κ3, ω) = H(κ1, κ3, ω) f̂ (x2; κ1, κ3, ω), (2.6)

where H(κ1, κ3, ω) = (−iωI + L(κ1, κ3, ω))−1 is termed the resolvent operator, which
linearly relates the input forcing to the output state. To characterize the resolvent operator
H , a singular value decomposition is used, with a weight matrix taken into account for a
physically appropriate norm for compressible turbulent boundary layers, that is,

W 1/2HW −1/2 =
N∑

p=1

ψ̃pσpφ̃
†
p, φp = W −1/2φ̃p, ψp = W −1/2ψ̃p, (2.7a–c)

where N is the number of resolvent modes, ψp and φp are the pth orthogonal basis
functions of the response and forcing modes, and the real singular value σp represents
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the linear amplification rate ranked by σp > σp+1. The weight matrix selected here is
defined by Chu (1965), i.e. W = diag(ρ̄, ρ̄, ρ̄, T̄/γ M2ρ̄, ρ̄/γ (γ − 1)M2T̄) dx2, where the
overline represents Reynolds averaging. In such a way, the corresponding norm

〈
q̂, q̂

〉 =
q̂†W q̂ (where the superscript † denotes the complex conjugate transpose) eliminates the
pressure-related energy transfer terms (compression work) and has been used widely in
studies of compressible flows.

2.3. Improved resolvent analysis with addition of eddy viscosity
To model part of the pivotal nonlinear contribution, a widely acknowledged method is
to add an eddy-viscosity term in the linearized Navier–Stokes equations. The role of the
eddy viscosity is to introduce a closure, establishing a constitutive relation between the
oscillation of Reynolds stresses associated with the passage of the disturbance and the
strain rate of the turbulent motions (Illingworth et al. 2018; Symon et al. 2021; Holford,
Lee & Hwang 2023). The same approach is applied to the relation between the fluctuations
of turbulent heat flux and the temperature gradient in the energy equation. In this way, a
new set of non-dimensional linearized Navier–Stokes equations is obtained:

q̂(x2; κ1, κ3, ω) = H e(κ1, κ3, ω) f̂ (x2; κ1, κ3, ω)

= (−iωI + Le(κ1, κ3, ω))−1 f̂ (x2; κ1, κ3, ω). (2.8)

In the eddy-embedded resolvent operator H e, substitutions are made for the momentum
and energy equations, that is,

μ → μ + μt, λ→ λ+ λt and k → k + kt = μ

Pr
+ μt

Prt
, (2.9a–c)

where μt and λt are the eddy molecular and second viscosity coefficients, respectively.
Here, Prt is the turbulent Prandtl number, which is nearly constant in most regions of
the boundary layer and is mostly insensitive to the freestream Mach number and wall
temperature conditions (Zhang, Duan & Choudhari 2018). In this study, we set Prt to
0.85, which is informed by previous studies (Zhang et al. 2014), and our preliminary tests
showed that this value does not influence the prediction results, which was also reported by
Chen et al. (2023). As the additional part compensates for the inter-scale energy transfer
in the physical process, the resolvent operator H e is able to provide a more promising tool
for prediction than H . Accordingly, this eddy-viscosity-improved resolvent operator can
also be characterized by singular value decomposition, leading to the response and forcing
modes as ψe,p and φe,p. The definition of the norm

〈
q̂, q̂

〉 = q̂†W q̂ given by Chu (1965) is
used here, yielding an energy eliminating the pressure-related work.

2.3.1. A modified Cess eddy-viscosity model
An issue here is how to define the profile of eddy viscosity (μt) in the compressible
boundary layer. In resolvent analysis of incompressible channel flows, the Cess
approximation has been used commonly and proved to be efficient in recovering the
energetic modes. As is derived from the mean momentum equation for incompressible
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channel flows, this algebraic total-viscosity model (Cess 1958) is given as

μT,Cess

μw
= 1

2

(
1 + κ2 Re2

τ

9

(
2x2 − x2

2

)2 (
3 − 4x2 + 2x2

2

)2
[

1 − exp
(−Reτ x2

A

)]2
)1/2

+ 1
2
, (2.10)

where κ = 0.426 and A = 25.4, following previous studies (Pujals et al. 2009; Amaral
et al. 2021). The subscript w denotes quantities at the wall.

However, in the case of compressible turbulent boundary layers, the situation differs
(see the Introduction). The turbulent boundary layer is a composite layer, which can be
characterized by two regions associated with different fluid responses to shear and pressure
gradient (Cebeci 1971). Therefore, in the present study, we decompose the boundary
layer into two separate regions, i.e. the inner and outer regions, where different strategies
of modelling are developed. Note that the so-called ‘inner’ and ‘outer’ regions in the
remainder of the paper are here used as broad concepts, distinguishing the regions nearer
the wall (x2 ≤ δc) and further away from the wall (x2 > δc), where δc is the crossover
wall-normal position. This differs from the classical identification of layers related to the
mean-velocity behaviour.

In the inner region, we adopt the Cess approximation, considering that the dynamics
there is very similar to that in channel flows (Pope 2000), whereas in the outer region, since
the boundary-layer flow behaviour departs from that in channels, the Cess model (2.10),
which is specifically derived for incompressible channel flows, is not applicable. Moreover,
the Cess formulation does not consider the region outside the boundary-layer thickness.
In this sense, we propose to define the eddy viscosity based on Prandtl’s mixing-length
hypothesis in the outer region. Consequently, a two-layer algebraic eddy-viscosity model
is proposed, generalizing the Cess model to the regime of compressible turbulent boundary
layers:

μt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
ρ̄

ρw
μT,Cess − μ̄, for x2 ≤ δc,

Re ρ̄l2m

∣∣∣∣dū1

dx2

∣∣∣∣ , for x2 > δc,

(2.11)

where lm is the mixing length (Pope 2000).
In the modified model (2.11), when x2 ≤ δc, the original Cess total-viscosity

definition is premultiplied by
√

ρ̄/ρw, so that the velocity profile obtained from the
integral of Reτ (1 − x2)μw/μT still follows the classical velocity laws, upon van Driest
transformation (van Driest 1951) (especially suitable for the adiabatic cases). The subscript
T denotes the total quantity, which means μT = μt + μ̄, with the first term representing
the turbulent contribution, and the second the mean molecular viscosity. When x2 > δc,
the eddy viscosity is determined by Prandtl’s mixing-length hypothesis. It is necessary to
specify the expression of lm that we are concerned about. Normally, it can be approximated
as a constant in the outer region (core region) (Cebeci 2004). For example, Escudier (1966)
set lm to be the minimum value of κx2 (which is assumed to be the lm expression in
the logarithmic region) in the core region and 0.09. In the present study, to ensure the
continuity of the μt profile across the boundary layer, lm is determined so that the μt
at x2 = δc calculated from the first and second parts of (2.11) are equal. This treatment
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is believed to be reasonable, and the following results suggest that it yields a good
approximation of turbulent eddy viscosity in the outer region.

2.3.2. A new semi-empirical eddy-viscosity model
We propose another approach to estimate the eddy-viscosity profile, based on an empirical
law and the mixing-length theory, which is especially suitable for zero-pressure-gradient
turbulent boundary layers. It is still a two-layer eddy-viscosity model, with major
differences from (2.11) in the inner region. Instead of a Cess-based correction originated
from the channel-flow models, here we start from the universal scaling of the total shear
stress, which is exclusive for turbulent boundary layers and hence will potentially lead to
a more accurate eddy-viscosity profile.

In zero-pressure-gradient turbulent boundary layers, Hou, Somandepalli & Mungal
(2006) found that the (1 − x2) weighted total shear stress (τ ) can be fitted by a linear
expression in the region x2 ≤ 0.5. This (1 − x2) fit is expressed as

(1 − x2)
τ

τw
= ax2 + b, for x2 ≤ 0.5, (2.12)

where τw is the wall shear stress. The intercept b is fixed as b = 1 to ensure τ = τw at
x2 = 0. The slope −a lies in the range from 1.2 to 1.6 (Hou et al. 2006). The databases of
numerical and experimental results for a wide range of Reynolds numbers suggested that
there is no clear dependence of −a on the Reynolds number (Hou et al. 2006; Xia, Zhang
& Yang 2021).

To examine the feasibility of (2.12) for compressible turbulent boundary layers, the
profiles of the weighted total shear stress at various Mach numbers and Reynolds numbers
are depicted in figure 1. Details of the cases at the freestream Mach number M = 2, 3, 4
with the friction Reynolds number Reτ ranging from 250 to 1110 can be retrieved
from Pirozzoli & Bernardini (2011) and Bernardini & Pirozzoli (2011). The hypersonic
databases at M = 5.86, Reτ ≈ 420 and the wall-to-recovery temperature ratios Tw/Tr =
1.0 and 0.25, representing the adiabatic and cold-wall conditions, are obtained from DNS
in Fan, Li & Pirozzoli (2022) and Fan & Li (2023). In figure 1, good alignment is observed
between the weighted total shear stress and the fitting law −1.3x2 + 1 in x2 ≤ 0.5, for all of
the compressible cases considered, confirming its suitability for the empirical modelling.

In the region further away from the wall (x2 > δc), mixing-length theory is also
exploited, leading to the analytical description of the new eddy-viscosity profile across
the boundary layer:

μt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μw

dū+
1 /dx̄+

2

−1.3x2 + 1
1 − x2

− μ̄, for x2 ≤ δc,

Re ρ̄l2m

∣∣∣∣dū1

dx2

∣∣∣∣ , for x2 > δc,

(2.13)

where the superscript + denotes normalization by wall units. To ensure the applicability
of the model in x2 ≤ δc, δc should not be larger than 0.5. On the other hand, a
crossover position too close to the wall is also avoided under the constant-lm assumption.
Conservatively, we make δc = 0.5 for the cases under scrutiny in the following study.

2.3.3. A priori comparison with DNS results
Hereafter, we focus on hypersonic turbulent boundary layers at M = 5.86 with adiabatic
and cold-wall conditions, since the compressibility effects in these cases are strong and,
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0 0.5 1.0

x2

–0.5

0

0.5

1.0

(1
 –

 x
2
) 
τ/

τ w

M2R250

M2R580

M2R840

M2R1110

M3R500

M4R500

M5.86R420, adiabatic

M5.86R420, cold

Figure 1. The DNS profiles of (1 − x2)τ/τw in compressible zero-pressure-gradient turbulent boundary
layers, at: M = 2, Reτ ≈ 250–1110 (Pirozzoli & Bernardini 2011); M = 3, Reτ ≈ 500 and M = 4, Reτ ≈ 500
(Bernardini & Pirozzoli 2011); and M = 5.86, Reτ ≈ 420 under the adiabatic and cold-wall conditions (Fan
et al. 2022; Fan & Li 2023). The black dashed line denotes the linear expression −1.3x2 + 1.

0.5 1.0

x2

0

0.5

1.0

1.5

(1
 –

 x
2
) 
τ/

τ w

Adiabatic, cess correction

Adiabatic, semi-empirical

Adiabatic, DNS

Cold, cess correction

Cold, semi-empirical

Cold, DNS

Figure 2. Modelled profiles of (1 − x2)τ/τw in the adiabatic and cold-wall hypersonic turbulent boundary
layer at M = 5.86.

more importantly, we have detailed DNS solutions to evaluate the performance of the
resolvent-based modelling. With the models (2.11) and (2.13), the distribution of the
total shear stress across the boundary layer can be obtained on the basis of known
mean flow quantities (a requirement for resolvent analysis), including the velocities,
density and temperature. Figure 2 compares the modelled weighted total shear stress
((1 − x2)τ/τw = (1 − x2)(μt + μ̄)(dū1/dx2)/τw) with the DNS results. The total stresses
predicted with the semi-empirical model are found to collapse perfectly onto the DNS
profiles, whereas with the Cess-correction model, there are obvious deviations, especially
in the inner region.

Figure 3 quantifies the total viscosity (μT/μw) profile across the boundary layer. It can
be seen that both models proposed here capture the trends of the DNS profiles. Note that
the eddy viscosity in DNS is solved from the Reynolds stress expressions based on the
turbulent viscosity hypothesis. Nonetheless, the semi-empirical eddy-viscosity model is
more accurate, with the profiles almost collapsed onto those of the DNS, according to the

983 A46-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

17
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.174


Eddy-viscosity-improved resolvent analysis

10–2 10–1 100

x2

0

20

40

60
μ
T 

/μ
w

Cess correction

Semi-empirical

Adiabatic, DNS

10–2 10–1 100

x2

0

10

20

30

40

50

Cess correction

Semi-empirical

Cold, DNS

(a) (b)

Figure 3. Profiles of the total viscosity μT/μw in the (a) adiabatic and (b) cold-wall hypersonic turbulent
boundary layer at M = 5.86.

a priori examinations. In the next section, both eddy-viscosity models will be utilized in
the resolvent operator, to examine their roles in the performance of resolvent-based flow
modelling.

3. Consistency between the resolvent modes and SPOD modes

Spectral proper orthogonal decomposition (Lumley 1967; Berkooz, Holmes & Lumley
1993; Towne et al. 2018) is known as a promising data-driven tool to construct a
reduced-order model of fluctuating flow fields, from the perspective of energy. It extracts
the orthogonal basis functions at discrete frequencies from a series of snapshots using
Welch’s method, with the leading SPOD modes to be optimally representative of the
turbulent energy of the system (Taira et al. 2017; Towne et al. 2018). This section aims
to examine the similarity between the SPOD modes issued from the DNS data and the
response modes from the resolvent analysis with/without eddy viscosity, to evaluate the
feasibility of resolvent-based reduced-order modelling (Abreu et al. 2020; Pickering et al.
2021) in the compressible regime.

Figure 4 quantifies the energy ratios of the first eight leading resolvent and SPOD modes,
at two representative scales in the adiabatic and cold-wall turbulent boundary layers.
The scales are selected at positions of local energy peaks characterizing the inner- and
outer-layer dynamics, referring to our previous study (Fan & Li 2023). It is observed that
the first mode in the standard resolvent and SPOD analysis captures near or more than
50 % of the total energy. The first six modes are capable of recovering more than 85 % of
the small-scale energy, and more than 90 % of the large-scale energy. This feature is not
evident in the eddy-viscosity-improved resolvent analysis, with the first mode capturing
only 2 %–20 % of the total energy, and the higher-order modes still holding significant
energy. Nevertheless, such results do not reduce the accuracy of the response modes in the
prediction of flow structures (Symon et al. 2023), since the singular value does not strictly
convey the weight of the corresponding mode in recovering the flow field in resolvent
analysis. The weight function is determined by both the singular value and the projection
of the forcing mode on the real nonlinear process; see (14) in Fan et al. (2023).

Considering the representativeness of the first SPOD mode in terms of energy, we
first examine its alignment with the optimal resolvent response mode with/without
eddy viscosity. Figure 5 presents the wall-normal profiles of the streamwise velocity
(û1), wall-normal velocity (û2), spanwise velocity (û3), density (ρ̂) and temperature (T̂)
components of the optimal resolvent and the first SPOD mode at the representative scales
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Figure 4. Energy contained in the ith resolvent and SPOD modes relative to the total, defined by σ 2
i /
∑

j σ
2
j

and Λi/
∑

j Λj (where Λ denotes the eigenvalue in the SPOD analysis), respectively, at (a) (λ+1 , λ+3 , c) =
(465, 96, 0.52) and (b) (λ+1 , λ+3 , c) = (1210, 450, 0.89) in the adiabatic turbulent boundary layer, and
(c) (λ+1 , λ+3 , c) = (929, 208, 0.66) and (d) (λ+1 , λ+3 , c) = (1239, 459, 0.88) in the cold-wall turbulent boundary
layer.

in the adiabatic turbulent boundary layer. Generally, in figures 5(a–e), all three types of
resolvent-based results are able to capture approximately the features in the distribution
of perturbations, especially with respect to the correctly identified most energetic location
following the critical-layer arguments (McKeon & Sharma 2010). More specifically, better
agreements can be observed at the tails between the eddy-viscosity-improved resolvent
and SPOD modes for all components, in contrast to the performance of the standard
resolvent mode. It thus suggests a higher prediction accuracy of resolvent analysis with
the addition of eddy viscosity in the near-wall cycle. The profiles with the addition of the
Cess-correction and semi-empirical models are almost collapsed onto each other. A further
comparison of the two eddy-viscosity models is performed, in terms of the mode shapes of
the streamwise velocity. Details are shown in the Appendix. The remarkable consistency
between the two models confirms that the optimal resolvent mode is not sensitive to the
small differences in the eddy-viscosity quantities, as long as the μt model can resemble its
real distribution appropriately (Cossu, Pujals & Depardon 2009).

For the larger energetic scales in the outer region, e.g. (λ+1 , λ+3 , c) = (1210, 450, 0.89)

in figures 5( f – j), the resolvent modes without eddy viscosity are localized narrowly,
since they neglect the true nonlinear transfer of energy, hence the local production is
dissipated rapidly by molecular viscosity. On the other hand, the predictive performances
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Figure 5. The streamwise velocity, wall-normal velocity, spanwise velocity, density and temperature
components of the optimal resolvent with/without adding the semi-empirical eddy viscosity model and the
leading SPOD mode at (a–e) (λ+1 , λ+3 , c) = (465, 96, 0.52) and ( f – j) (λ+1 , λ+3 , c) = (1210, 450, 0.89), in the
adiabatic turbulent boundary layer.

of the proposed eddy-viscosity-improved resolvent analysis are nearly perfect for the
components û1, ρ̂ and T̂ , by modulating the energy transfer mechanism upon adding the
eddy viscous work (Symon et al. 2021). As for the components û2 and û3 (in figures 5g,h),
the resolvent-based predictions are degraded when compared with the SPOD profiles.
Underestimations of these components are observed without eddy viscosity, which is
associated with the nature of high non-normality in the shear flow operator (Symon et al.
2023). The addition of either eddy-viscosity profile is able to reduce the deviation between
the resolvent and SPOD modes to some extent, exhibiting larger values of |û2|, |û3| and
|ρ̂| than the mode without eddy viscosity.

In the cold-wall case, a similar phenomenon is seen in figure 6. The addition of eddy
viscosity makes the response modes richer in light of the wide spanning in the wall-normal
direction, as mentioned earlier. Hence it provides a more efficient basis for turbulence
prediction. In particular for the prediction of density and temperature perturbations close to
the wall (in figures 6d,e), the inherent dual-peak feature is identified reasonably well in all
types of resolvent modes, though no significant improvement is observed in the resolvent
analysis with eddy viscosity. The dual-peak feature is ascribed to the non-monotonous
profile of the mean temperature in the cold-wall turbulent boundary layer. The sign
change in the mean temperature gradient leads to a reversed conductive and turbulent
heat transfer in the wall-normal direction, which challenges the basic assumptions in the
streamwise-velocity–temperature correlation (Wenzel, Gibis & Kloker 2022) and makes
the prediction of the thermal statistics more difficult.

To assess quantitatively the alignment between the resolvent and SPOD modes, a
coefficient β11, which is defined by the projection of the optimal resolvent mode (ψ1 or
ψe,1) onto the first SPOD mode (q̂SPOD1) at each wavenumber combination, is introduced.
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Figure 6. The streamwise velocity, wall-normal velocity, spanwise velocity, density and temperature
components of the optimal resolvent with/without adding the semi-empirical eddy viscosity model and the
leading SPOD mode at (a–e) (λ+1 , λ+3 , c) = (929, 208, 0.66) and ( f – j) (λ+1 , λ+3 , c) = (1239, 459, 0.88), in the
cold-wall turbulent boundary layer.

It is written as

β11(κ1, κ3, ω) =
∣∣〈q̂SPOD1(x2; κ1, κ3, ω),ψ1(x2; κ1, κ3, ω)

〉∣∣
‖q̂SPOD1(x2; κ1, κ3, ω)‖ × ‖ψ1(x2; κ1, κ3, ω)‖ , (3.1)

where 〈·, ·〉 denotes the inner product defined by Chu (1965), and ‖ · ‖ represents the
weighted L2 norm. Note that ψ1 is replaced by ψe,1 when taking into account the eddy
viscosity. Having β11 = 1 indicates perfect agreement between the two, giving identical
identifications of turbulent structures and energy distribution, whereas β11 = 0 suggests
that the SPOD mode and the resolvent mode are orthogonal to each other (Abreu et al.
2020; Pickering et al. 2021). For the scales under scrutiny in figures 5 and 6, the
projection coefficient β11 is calculated and listed in table 1. Remarkable improvement
of the representativeness of the optimal resolvent mode is seen clearly, especially for
the larger scale where the added eddy viscosity plays a significant role in modelling the
nonlinear energy transfer.

To examine the alignment at other scales, we sample at varying spanwise wavelengths
and a fixed streamwise wavelength and wave speed, which is cross-sectional in the
near-wall and outer-layer cycle, i.e. (λ+1 , c) = (430, 0.57) and (λ+1 , c) = (1291, 0.8) for
the adiabatic case, and (λ+1 , c) = (929, 0.66) and (λ+1 , c) = (1239, 0.88) for the cold-wall
case. The variation of β11 as a function of λ+3 is shown in figures 7 and 8. The background
colour represents the turbulent energy spectra at the corresponding wall-normal location
in the sense of the critical layer. As anticipated, for the near-wall scales shown in
figures 7(a) and 8(a), β11 is larger than or close to 0.8 in the high-energy-containing region
(e.g. 20 < λ+3 < 175 in the adiabatic case, and 60 < λ+3 < 400 in the cold-wall case),
between either type of resolvent and SPOD modes. Only small variations are induced
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Figure 7. Variation of β11 with regard to the spanwise wavelength, in the adiabatic turbulent boundary layer.
The background colour represents the normalized energy spectra at matching streamwise wavelengths and
wall-normal locations.
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Figure 8. Variation of β11 with regard to the spanwise wavelength, in the cold-wall turbulent boundary layer.

by the addition of eddy viscosity. As highlighted by the red dashed box, the so-called
‘high-energy-containing region’ covers more than 70 % of the total energy at respective
heights. Beyond this region, the value of β11 reduces dramatically, thus indicating a poor
prediction of the low-energy-containing structures. Nonetheless, this biased predictive
capability is believed to have limited impacts on constructing the full flow field, as the
contribution of low-energy-containing structures is minor with low energy amplification.

To be more specific, we quantify the energy captured by the resolvent mode in
contrast to that contained in the first SPOD mode (Eqq,SPOD1) at the characteristic
wall-normal location, as shown in figure 9. The Eqq,SPOD1 value is calculated based
on the energy spectra at matching streamwise wavelengths and wall-normal locations,
which are obtained from DNS, premultiplied by the rate of the first eigenvalue to the
total (i.e. Λ1/

∑
j Λj). In the adiabatic case, the energy distribution exhibited by the

eddy-viscosity-improved resolvent mode aligns quite well with that of the first SPOD
mode, especially in the highlighted ‘high-energy-containing region’. In general, both types
of eddy-viscosity-improved modes are able to capture up to 53 % of the SPOD energy
when integrated in the spanwise wavenumber direction, while the standard resolvent mode
captures approximately 38 %. The situation is similar in the cold-wall turbulent boundary
layer, with approximately 50 % of the energy captured in the resolvent mode with eddy
viscosity, while 45 % is captured in the standard resolvent mode.
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Figure 9. Energy distribution in the optimal resolvent modes and the first SPOD mode, for the near-wall
cycle in the (a) adiabatic and (b) cold-wall turbulent boundary layers. The grey background covers the
high-energy-containing region.

As for the energetic large-scale motions characterizing the outer-layer dynamics in
figures 7(b) and 8(b), although the general performance is poorer than that for the small
scales, the addition of the proposed eddy-viscosity model indeed enhances the projection
coefficients. Hence it confirms the efficient role of the rational eddy-viscosity models in
resolvent-based reduced-order modelling.

In addition to the wall-normal profiles of the state variables, the distribution of the
cross-spectral density (CSD) is of great concern in turbulence prediction, since it can
properly reconstruct the second-order statistics of the flow (Towne et al. 2018). The
low-rank approximation of the CSD tensor is calculated by the optimal response mode
at a particular wavenumber pair:

S11(x2, x′
2; κ1, κ3, ω) = ψ̂1(x2; κ1, κ3, ω) ψ̂

†
1(x

′
2; κ1, κ3, ω). (3.2)

The absolute value of the modelled rank-1 CSD for each component (including û1, û2,
û3, ρ̂ and T̂) is plotted as a function of x2 and x′

2 in figure 10, at the two selected scales
in the adiabatic turbulent boundary layer. At small scales (figure 10a), the three types of
resolvent-based models are expected to reproduce faithfully the CSD from SPOD results.
A slight exception occurs in the autocorrelation and cross-correlations of û3. As we see
in the third row and the third column, the μt-modelled energy densities appear at a lower
height. This indicates that the addition of eddy viscosity introduces a strong energy transfer
among components near the wall, since the spanwise velocity receives energy from the
streamwise and wall-normal components, due to the effect of pressure strain and splat
(Lee & Moser 2019; Fan et al. 2022). Moreover, the additional eddy diffusion also plays
a critical role in the positive energy receipt in the near-wall region (Symon et al. 2023).
At a larger energetic scale (figure 10b), the CSD results using the Cess-correction and
semi-empirical models are also observed to be very similar to each other, and they exhibit
much better alignment with the DNS data in contrast to those without an eddy-viscosity
model. A very narrow distribution is observed in the CSD without eddy viscosity, and the
turbulent energy decays from its peak dramatically, consistent with the observations in the
profiles of the response mode. This issue can be alleviated efficiently with the addition
of eddy viscosity, suggesting that the eddy-viscosity models help to improve the mode
representation of the second-order turbulent statistics. Hence the influence of the dominant
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Figure 10. Absolute value of the CSD for each component, at (a) (λ+1 , λ+3 , c) = (465, 96, 0.52) and
(b) (λ+1 , λ+3 , c) = (1210, 450, 0.89), in the adiabatic turbulent boundary layer. The background colour
represents the CSD of the first SPOD results. The contour lines indicate 0.3, 0.6 and 0.9 of their respective
maximum, moving inwards, and the legend for the coloured lines is as in figure 7.

turbulent structures can be identified more accurately in the eddy-viscosity-improved
resolvent analysis.

For the CSD prediction in the cold-wall cases, as shown in figure 11, the
situation is similar. The predictive performance is greatly improved by using the
eddy-viscosity-improved resolvent analysis. Therefore, the reliability and improvement
of the proposed models in comparison with the standard resolvent-based modelling, for
the prediction of turbulent fluctuations in the compressible turbulent boundary layers, are
believed to be achieved.

At last, although the first (optimal) mode is believed to be of the greatest importance
in terms of energy occupation, the alignment of the other resolvent and SPOD modes is
also of interest. We project the first four response modes onto the corresponding SPOD
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û3

û3
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Figure 11. Absolute value of the CSD for each component, at (a) (λ+1 , λ+3 , c) = (929, 208, 0.66) and
(b) (λ+1 , λ+3 , c) = (1239, 459, 0.88), in the cold-wall turbulent boundary layer.

modes, and the projection coefficients are shown in figures 12 and 13 for the adiabatic and
cold-wall turbulent boundary layers, respectively. The projection coefficient is formulated
as

βij(κ1, κ3, ω) =
∣∣〈q̂SPODi(x2; κ1, κ3, ω),ψ j(x2; κ1, κ3, ω)

〉∣∣
‖q̂SPODi(x2; κ1, κ3, ω)‖ × ‖ψ j(x2; κ1, κ3, ω)‖ , (3.3)

where q̂SPODi denotes the ith SPOD mode. For the near-wall cycle in both cases,
evident promotion of the eddy-viscosity models is observed only in some of the
modes, e.g. the first and third resolvent modes at the scale under scrutiny. Similarities
between the two proposed eddy-viscosity-improved resolvent analyses are also observed
in higher-order modes. On the other hand, for the larger scales in the outer region,
the plots in figures 12(d– f ) and 13(d– f ) show that the projection coefficients of the
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Figure 12. Projections of the first four response modes onto the corresponding SPOD modes, at (a–c)
(λ+1 , λ+3 , c) = (465, 96, 0.52) and (d– f ) (λ+1 , λ+3 , c) = (1210, 450, 0.89), in the adiabatic turbulent boundary
layer.
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Figure 13. Projections of the first four response modes onto the corresponding SPOD modes, at (a–c)
(λ+1 , λ+3 , c) = (929, 208, 0.66) and (d– f ) (λ+1 , λ+3 , c) = (1239, 459, 0.88), in the cold-wall turbulent boundary
layer.

eddy-viscosity-improved modes at the diagonal line (i.e. βii) are all superior to those
of the standard modes. Hence in these cases, higher-order resolvent modes can help to
improve the capability of turbulence modelling/prediction, in particular in that the second
SPOD modes capture more than 20 % of the total energy for large-scale motions (see
figures 4b,d).
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4. Summary

This paper develops two eddy-viscosity models to improve the low-rank approximation
of resolvent analysis in compressible turbulent boundary layers, i.e. a modified Cess
eddy-viscosity model and a new semi-empirical eddy-viscosity model. The models are
represented with a two-layer algebraic expression, considering the composite-layer nature
of the turbulent boundary layer. The first model is a correction of the classical Cess model,
based on the compressibility transformation in the inner region and the mixing-length
hypothesis in the outer region, such that the density variation and the outer-layer difference
between the boundary layer and the channel flow are properly modelled. Considering the
exclusive features of zero-pressure-gradient turbulent boundary layers, the second model
is proposed based on an empirical fitting law of the total shear stress and the mixing-length
theory.

In the a priori tests, both models are able to capture the tendency of the eddy-viscosity
profile reasonably well; nonetheless, the semi-empirical model seems to outperform the
corrected Cess model. With the DNS data of two hypersonic turbulent boundary layers,
comparisons between the resolvent response modes with/without eddy viscosity and the
SPOD modes are conducted in terms of the perturbations of velocities, density and
temperature. Results show that the predictive performance of the optimal resolvent mode
in turbulent motions is improved significantly by adding eddy viscosity in the resolvent
operator, especially at the high-energy-containing scales, confirming the promising
low-rank approximations of resolvent analysis with the proposed eddy-viscosity models.
It is also noted that there is no significant difference observed between the predictions
with the two models, suggesting that the optimal response mode is not sensitive to the
relatively small differences in the eddy-viscosity quantities, as long as its distribution can
be represented properly.
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Appendix. Resolvent mode shapes of the streamwise velocity

Figure 14 shows the mode shapes of the streamwise velocity in the wall-normal–temporal
(x2–t) plane, using SPOD analysis and resolvent analysis with/without the addition of
eddy-viscosity models, in the adiabatic turbulent boundary layer. Common features are
observed in all types of modes: the shapes are all inclined, exhibiting a phase variation
in both the wall-normal and temporal directions. The positive and negative values
appear alternatively along the t direction. In contrast to the response in figure 14(b),
the eddy-viscosity-improved modes are more outstretched in the wall-normal coordinate,
containing richer flow information, which is more similar to the SPOD mode in
figure 14(a). In this sense, the eddy-viscosity-improved modes provide a more promising
basis for predicting the turbulent structures, which agrees well with the aforementioned
discussion. As for the comparison between the two eddy-viscosity models, a high degree
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Figure 14. Mode shapes of the streamwise velocity in the wall-normal–temporal plane, using (a) SPOD
analysis and (b–d) resolvent analysis, with (b) no eddy viscosity, (c) the Cess-correction model and (d) the
semi-empirical model, at (λ+1 , λ+3 , c) = (465, 96, 0.52) in the adiabatic turbulent boundary layer.

of consistency is observed in the shape contours in figures 14(c,d). Hence this further
confirms that the resolvent analysis is insensitive to the small variations of eddy-viscosity
quantities. At more scales in adiabatic and cold-wall turbulent boundary layers, similar
features are observed, thus the plots are not shown here.
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